Littérature scientifique sur le sujet « Quantum chemistry »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Quantum chemistry ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Quantum chemistry"

1

Johnson, Jeffrey Allan. « The Case of the Missing German Quantum Chemists ». Historical Studies in the Natural Sciences 43, no 4 (novembre 2012) : 391–452. http://dx.doi.org/10.1525/hsns.2013.43.4.391.

Texte intégral
Résumé :
This paper discusses factors limiting the development of a modern, quantum-based chemistry in Nazi Germany. The first part presents a case study of industrial research in Nazi Germany that suggests the delayed introduction of space-filling molecular models into structural analysis and synthesis in industrial organic chemistry, almost a decade after their invention by a German physicist. Was this symptomatic of a broader pattern of neglect of quantum chemistry in Nazi Germany? To answer this question this paper examines the origins of such models, and their appearance (or not) in selected textbooks and monographs dealing with problems in the interdisciplinary borderland between the physical and organic dimensions of chemistry. While it appears that those on the physical side were more comfortable with such models than those on the organic side, it is also clear that even a theoretically unsophisticated organic chemist could learn to use these models effectively, without necessarily understanding the intricacies of the quantum chemistry on which they were based. Why then were they not better integrated into mainstream chemical education? To this end the second part discusses three phases (pre-1933, 1933–38, 1939–43) of the broader scientific, institutional, and political contexts of efforts to reform or “modernize” chemical education among many groups in Germany, particularly through the Association of Laboratory Directors in German Universities and Colleges, the autonomous group that administered the predoctoral qualifying examination (Association Examination) for chemistry students until its dissolution in 1939 by the Education Ministry and the establishment of the first official certifying examination and associated title for chemists, the Diplom-Chemiker (certified chemist). Continuing debates modified the examination in 1942–43, but given the limitations imposed by the political and wartime contexts, and the need to accelerate chemical training for the purposes of industrial and military mobilization, the resulting chemical education could not produce students adequately trained in the modern physical science emerging elsewhere in the world. Quantum chemists remained missing in action in Nazi Germany.
Styles APA, Harvard, Vancouver, ISO, etc.
2

W.J.O.-T. « Quantum Chemistry ». Journal of Molecular Structure : THEOCHEM 279 (février 1993) : 321–22. http://dx.doi.org/10.1016/0166-1280(93)90081-l.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

J.W. « Quantum chemistry ». Journal of Molecular Structure : THEOCHEM 121 (mars 1985) : 317. http://dx.doi.org/10.1016/0166-1280(85)80072-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

W, J. « Quantum chemistry ». Journal of Molecular Structure : THEOCHEM 136, no 1-2 (mars 1986) : 201. http://dx.doi.org/10.1016/0166-1280(86)87075-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Rempel, A. A., O. V. Ovchinnikov, I. A. Weinstein, S. V. Rempel, Yu V. Kuznetsova, A. V. Naumov, M. S. Smirnov, I. Yu Eremchev, A. S. Vokhmintsev et S. S. Savchenko. « Quantum dots : modern methods of synthesis and optical properties ». Russian Chemical Reviews 93, no 4 (avril 2024) : RCR5114. http://dx.doi.org/10.59761/rcr5114.

Texte intégral
Résumé :
Quantum dots are the most exciting representatives of nanomaterials. They are synthesized by modern methods of nanotechnology pertaining to both inorganic and organic chemistry. Quantum dots possess unique physical and chemical properties; therefore, they are used in very different fields of physics, chemistry, biology, engineering and medicine. It is not surprising that the Nobel Prize in chemistry in 2023 was given for discovery and synthesis of quantum dots. In this review, modern methods of synthesis of quantum dots, their optical properties and practical applications are analyzed. In the beginning, a short historical background of quantum dots is given. Many gifted scientists, including chemists and physicists, were engaged in these studies. The synthesis of quantum dots in solid and liquid matrices is described in detail. Quantum dots are well-known owing to their unique optical properties, that is why the attention in the review is focused on the quantum-size effect. The causes for fascinating blinking of quantum dots and techniques for observation of a single quantum dot are explained. The last part of the review describes important applications of quantum dots in biology, medicine and quantum technologies.<br> Bibliography — 772 references.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Clark, Timothy, et Martin G. Hicks. « Models of necessity ». Beilstein Journal of Organic Chemistry 16 (13 juillet 2020) : 1649–61. http://dx.doi.org/10.3762/bjoc.16.137.

Texte intégral
Résumé :
The way chemists represent chemical structures as two-dimensional sketches made up of atoms and bonds, simplifying the complex three-dimensional molecules comprising nuclei and electrons of the quantum mechanical description, is the everyday language of chemistry. This language uses models, particularly of bonding, that are not contained in the quantum mechanical description of chemical systems, but has been used to derive machine-readable formats for storing and manipulating chemical structures in digital computers. This language is fuzzy and varies from chemist to chemist but has been astonishingly successful and perhaps contributes with its fuzziness to the success of chemistry. It is this creative imagination of chemical structures that has been fundamental to the cognition of chemistry and has allowed thought experiments to take place. Within the everyday language, the model nature of these concepts is not always clear to practicing chemists, so that controversial discussions about the merits of alternative models often arise. However, the extensive use of artificial intelligence (AI) and machine learning (ML) in chemistry, with the aim of being able to make reliable predictions, will require that these models be extended to cover all relevant properties and characteristics of chemical systems. This, in turn, imposes conditions such as completeness, compactness, computational efficiency and non-redundancy on the extensions to the almost universal Lewis and VSEPR bonding models. Thus, AI and ML are likely to be important in rationalizing, extending and standardizing chemical bonding models. This will not affect the everyday language of chemistry but may help to understand the unique basis of chemical language.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Barden, Christopher J., et Henry F. Schaefer. « Quantum chemistry in the 21st century (Special topic article) ». Pure and Applied Chemistry 72, no 8 (1 janvier 2000) : 1405–23. http://dx.doi.org/10.1351/pac200072081405.

Texte intégral
Résumé :
Quantum chemistry is the field in which solutions to the Schrödinger equation are used to predict the properties of molecules and solve chemical problems. This paper considers possible future research directions in light of the discipline's past successes. After decades of incremental development—accompanied by a healthy dose of skepticism from the experimental community—the ready availability of fast computers has ushered in a "golden age" of quantum chemistry. In this new era of acceptance, theoretical predictions often precede experiment in small molecule chemistry, and quantum chemical methods play an ever greater role in biochemical and other larger systems. Quantum chemists increasingly divide their efforts along three fronts: high-level (spectroscopic) accuracy for small molecules, characterized by such techniques as Brueckner methods, r12 formalisms, and multireference calculations; parameterization- or extrapolation-based intermediate-level schemes (such as Gaussian-N theory) for medium molecules; and lower-level (chemical) accuracy for large molecules, characterized by density functional theory and linear scaling techniques. These tools, and quantum chemistry as a whole, are examined here from a historical perspective and with a view toward their future applications.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Makushin, K. M., M. D. Sapova et A. K. Fedorov. « Quantum computing library for quantum chemistry applications ». Journal of Physics : Conference Series 2701, no 1 (1 février 2024) : 012032. http://dx.doi.org/10.1088/1742-6596/2701/1/012032.

Texte intégral
Résumé :
Abstract Quantum computing is aimed to solve tasks, which are believed to be exponentially hard to existing computational devices and tools. A prominent example of such classically hard problems is simulating complex quantum many-body systems, in particular, for quantum chemistry. However, solving realistic quantum chemistry problems with quantum computers encounters various difficulties, which are related, first, to limited computational capabilities of existing quantum devices and, second, to the efficiency of algorithmic approaches. In the present work, we address the algorithmic side of quantum chemistry applications by introducing a Python 3 code library, whose primary objective is to speed up the development of variational quantum algorithms for electronic structure problems. We describe the various features and capabilities of this library, including its ease in constructing customized versions of variational quantum algorithms. We elucidate how the developed library allows one to design quantum circuits and enable for the efficient execution of quantum algorithms. Furthermore, the library facilitates the integration of classical and quantum algorithms for hybrid computations and helps to realize the cross-verification of data with traditional computational methods, thereby enhancing the overall reliability of quantum chemistry simulations.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Arrazola, Juan Miguel, Olivia Di Matteo, Nicolás Quesada, Soran Jahangiri, Alain Delgado et Nathan Killoran. « Universal quantum circuits for quantum chemistry ». Quantum 6 (20 juin 2022) : 742. http://dx.doi.org/10.22331/q-2022-06-20-742.

Texte intégral
Résumé :
Universal gate sets for quantum computing have been known for decades, yet no universal gate set has been proposed for particle-conserving unitaries, which are the operations of interest in quantum chemistry. In this work, we show that controlled single-excitation gates in the form of Givens rotations are universal for particle-conserving unitaries. Single-excitation gates describe an arbitrary U(2) rotation on the two-qubit subspace spanned by the states |01&#x27E9;,|10&#x27E9;, while leaving other states unchanged – a transformation that is analogous to a single-qubit rotation on a dual-rail qubit. The proof is constructive, so our result also provides an explicit method for compiling arbitrary particle-conserving unitaries. Additionally, we describe a method for using controlled single-excitation gates to prepare an arbitrary state of a fixed number of particles. We derive analytical gradient formulas for Givens rotations as well as decompositions into single-qubit and CNOT gates. Our results offer a unifying framework for quantum computational chemistry where every algorithm is a unique recipe built from the same universal ingredients: Givens rotations.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hastings, Matthew B., Dave Wecker, Bela Bauer et Matthias Troyer. « Improving quantum algorithms for quantum chemistry ». Quantum Information and Computation 15, no 1&2 (janvier 2015) : 1–21. http://dx.doi.org/10.26421/qic15.1-2-1.

Texte intégral
Résumé :
We present several improvements to the standard Trotter-Suzuki based algorithms used in the simulation of quantum chemistry on a quantum computer. First, we modify how Jordan-Wigner transformations are implemented to reduce their cost from linear or logarithmic in the number of orbitals to a constant. Our modification does not require additional ancilla qubits. Then, we demonstrate how many operations can be parallelized, leading to a further linear decrease in the parallel depth of the circuit, at the cost of a small constant factor increase in number of qubits required. Thirdly, we modify the term order in the Trotter-Suzuki decomposition, significantly reducing the error at given Trotter-Suzuki timestep. A final improvement modifies the Hamiltonian to reduce errors introduced by the non-zero Trotter-Suzuki timestep. All of these techniques are validated using numerical simulation and detailed gate counts are given for realistic molecules.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Quantum chemistry"

1

Altunata, Serhan. « Generalized quantum defect methods in quantum chemistry ». Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/36257.

Texte intégral
Résumé :
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2006.
Vita.
Includes bibliographical references (p. 247-254).
The reaction matrix of multichannel quantum defect theory, K, gives a complete picture of the electronic structure and the electron - nuclear dynamics for a molecule. The reaction matrix can be used to examine both bound states and free electron scattering properties of molecular systems, which are characterized by a Rydberg/scattering electron incident on an ionic-core. An ab initio computation of the reaction matrix for fixed molecular geometries is a substantive but important theoretical effort. In this thesis, a generalized quantum defect method is presented for determining the reaction matrix in a form which minimizes its energy dependence. This reaction matrix method is applied to the Rydberg electronic structure of Calcium monofluoride. The spectroscopic quantum defects for the ... states of CaF are computed using an effective one-electron calculation. Good agreement with the experimental values is obtained. The E-symmetry eigenquantum defects obtained from the CaF reaction matrix are found to have an energy dependence characteristic of a resonance. The analysis shows that the main features of the energy-dependent structure in the eigenphases are a consequence of a broad shape resonance in the 2E+ Rydberg series.
(cont.) This short-lived resonance is spread over the entire 2E+ Rydberg series and extends well into the ionization continuum. The effect of the shape resonance is manifested as a global "scarring" of the Rydberg spectrum, which is distinct from the more familiar local level-perturbations. This effect has been unnoticed in previous analyses. The quantum chemical foundation of the quantum defect method is established by a many-electron generalization of the reaction matrix calculation. Test results that validate the many-electron theory are presented for the quantum defects of the lsagnpo, E+ Rydberg series of the hydrogen molecule. It is possible that the reaction matrix calculations on CaF and H2 can pave the way for a novel type of quantum chemistry that aims to calculate the electronic structure over the entire bound-state region, as opposed to the current methods that focus on state by state calculations.
by Serhan Altunata.
Ph.D.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Njegic, Bosiljka. « Cooking up quantum chemistry ». [Ames, Iowa : Iowa State University], 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Rudberg, Elias. « Quantum Chemistry for Large Systems ». Doctoral thesis, Stockholm : Bioteknologi, Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4561.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Gilbert, A. T. B. « Density methods in quantum chemistry ». Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599402.

Texte intégral
Résumé :
Density functional theory (DFT) has become a central aspect of quantum chemistry and provides the mainstay of chemical calculations. The advantage of DFT methods lies in their relatively inexpensive computational cost and their dealing with an experimentally tangible quantity, i.e. the density. The chief drawback is its lack of well-defined path from approximation to exactitude. Consequently many models and approaches have emerged, and been enthusiastically advocated, often with little more justification than "it works". This thesis begins with an overview of traditional quantum chemical theory and methods, and places DFT within this framework. In chapters 5 and 6 new model systems are presented, and novel methods to derive exchange functionals that are exact for these model systems are developed. By taking this approach, rather than the more pragmatic one of data fitting, the successes and failures can be traced to the underlying soundness of the model and/or the method used in the derivation. In the development of these functionals some difficulties were encountered with convergence of the self-consistent field calculations. These problems are addressed in chapter 7. The observation that a molecular density is very close to that given by the superposition of its constituent atoms, leads naturally to the idea of modelling a density by a sum of nuclear centred, spherically symmetric 'Stewart Atoms'. However, attempts at constructing Stewart atoms in the past have been thwarted by slow basis set convergence. In chapter 8 we overview the work that has been undertaken on Stewart atoms and present several formalisms in which the theory has been developed. Chapter 9 deals with the problem of constructing accurate representations of Stewart atoms. Several different approaches are considered and the most accurate is determined. Applications of the Stewart atoms are considered in chapter 10.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Strange, Robin. « Electron correlation in quantum chemistry ». Thesis, University of Birmingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289793.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Murray, Christopher William. « Quantum chemistry for large molecules ». Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317841.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Rubensson, Emanuel H. « Matrix Algebra for Quantum Chemistry ». Doctoral thesis, Stockholm : Bioteknologi, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9447.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Pye, Cory C. « Applications of optimization to quantum chemistry ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/nq23109.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ling, Song. « Aspects of quantum dynamics in chemistry / ». Thesis, Connect to this title online ; UW restricted, 1990. http://hdl.handle.net/1773/11620.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Bast, Radovan. « Quantum chemistry beyond the charge density ». Université Louis Pasteur (Strasbourg) (1971-2008), 2008. https://publication-theses.unistra.fr/public/theses_doctorat/2008/BAST_Radovan_2008.pdf.

Texte intégral
Résumé :
Cette thèse se concentre sur les calculs et la visualisation des propriétés moléculaires dans le cadre relativiste à quatre composantes. La théorie des réponses linéaire et quadratiquecombinée avec la théorie de la fonctionnelle de la densité (DFT) Kohn-Sham sont les outils principaux utilisés dans ce travail. Nous avons présenté la mise en oeuvre relativiste à quatre composantes des réponses linéaire et quadratique dans des systèmes à couche fermée dans le cadre de la DFT dépendant du temps avec la contribution de la densité de spin non-colinéaire. Cette thèse contient les premières études Hartree-Fock relativiste à quatre composantes des contributions électrofaibles de la non-conservation de la parité des paramètres spectraux de la résonance magnétique nucléaire. Nous avons introduit une approche visuelle des propriétés moléculaires au deuxième ordre statiques et dépendant de la fréquence dans l'espace physique à trois dimensions dans le cadre relativiste à quatre composantes. Nous avons démontré comment des perturbations statiques peuvent être imposées et visualisées en utilisant la méthode des perturbations finies
This thesis focuses on the calculation and visualization of molecular properties within the 4-component relativistic framework. Response theory together with density functional theory (DFT) within the Kohn-Sham approach are the main tools. The implementation of closed-shell linear and quadratic response functions within time-dependent DFT in the 4-component relativistic framework is presented with extensions that include contributions from the spin density. This thesis contains the first 4-component relativistic Hartree-Fock study of parity-violating effects on nuclear magnetic resonance parameters. An analytical real-space approach to frequency-dependent second-order molecular properties within the 4-component relativistic framework is introduced together with tools for the visualization of higher-order molecular properties based on the finite perturbation approach
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Quantum chemistry"

1

N, Levine Ira. Quantum chemistry. 6e éd. Upper Saddle River, N.J : Prentice Hall, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Veszprémi, Tamás, et Miklós Fehér. Quantum Chemistry. Boston, MA : Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4189-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lowe, John P. Quantum chemistry. 2e éd. Boston : Academic Press, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

N, Levine Ira. Quantum chemistry. 5e éd. Upper Saddle River, N.J : Prentice Hall, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

N, Levine Ira. Quantum chemistry. 3e éd. USA : Allyn & Bacon, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

McQuarrie, Donald A. Quantum chemistry. 2e éd. Sausalito, Calif : University Science Books, 2007.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Lowe, John P. Quantum chemistry. 3e éd. Amsterdam : Elsevier, 2005.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Prasad, R. K. Quantum chemistry. New York : Wiley, 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Lowe, John P. Quantum chemistry. 3e éd. Burlington, MA : Elsevier Academic Press, 2006.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

N, Levine Ira. Quantum chemistry. 4e éd. Englewood Cliffs, N.J : Prentice Hall, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Quantum chemistry"

1

Simões, Ana. « Quantum Chemistry ». Dans Compendium of Quantum Physics, 518–23. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70626-7_158.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Tsuneda, Takao. « Quantum Chemistry ». Dans Density Functional Theory in Quantum Chemistry, 1–33. Tokyo : Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54825-6_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Battaglia, Franco, et Thomas F. George. « Quantum Chemistry ». Dans Fundamentals in Chemical Physics, 141–82. Dordrecht : Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-1636-9_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Handy, Nicholas C., et S. F. Boys. « Quantum chemistry ». Dans 100 Years of Physical Chemistry, 57–66. Cambridge : Royal Society of Chemistry, 2007. http://dx.doi.org/10.1039/9781847550002-00057.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Pène, Olivier, Karl Jansen, Norman H. Christ, Norman H. Christ et Salvador Coll. « Quantum Chemistry ». Dans Encyclopedia of Parallel Computing, 1689. Boston, MA : Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-09766-4_2418.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wilson, Stephen. « Quantum Chemistry ». Dans Chemistry by Computer, 41–83. Boston, MA : Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2137-8_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Casadesús, Ricard. « Quantum Chemistry ». Dans Encyclopedia of Sciences and Religions, 1921–22. Dordrecht : Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-8265-8_1666.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Onishi, Taku. « Helium Chemistry ». Dans Quantum Computational Chemistry, 277–85. Singapore : Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5933-9_15.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Dua, Amita, et Chayannika Singh. « Basics of Computational Chemistry ». Dans Quantum Chemistry, 565–91. London : CRC Press, 2024. http://dx.doi.org/10.1201/9781003490135-11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Sautet, Philippe. « Quantum Chemistry Methods ». Dans Characterization of Solid Materials and Heterogeneous Catalysts, 1119–45. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527645329.ch24.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Quantum chemistry"

1

Maroulis, George. « Computational quantum chemistry ». Dans INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2009 : (ICCMSE 2009). AIP, 2012. http://dx.doi.org/10.1063/1.4771781.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ellinger, Yves. « The Quantum Chemistry alternative ». Dans Second international conference on atomic and molecular data and their applications. AIP, 2000. http://dx.doi.org/10.1063/1.1336283.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Fedorov, Dmitry, Matthew Otten, Byeol Kang, Anouar Benali, Salman Habib, Stephen Gray et Yuri Alexeev. « Quantum Resource Estimation for Quantum Chemistry Algorithms ». Dans 2022 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2022. http://dx.doi.org/10.1109/qce53715.2022.00144.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Singh, Harshdeep. « Analytic Quantum Gradient Descent in Quantum Chemistry Simulations ». Dans Quantum 2.0. Washington, D.C. : Optica Publishing Group, 2022. http://dx.doi.org/10.1364/quantum.2022.qw2a.4.

Texte intégral
Résumé :
The AQGD optimization technique requires the presence of some specific gates in the quantum circuit and the hydrogen molecule simulation using AQGD in a VQA reveals the incompatibility of Unitary Coupled-Cluster ansatz with the method. Further, varying the parameters of the optimizer results in a significant reduction of simulation run-time.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Freedman, Danna. « Chemistry for quantum information science ». Dans Quantum Sensing, Imaging, and Precision Metrology, sous la direction de Selim M. Shahriar et Jacob Scheuer. SPIE, 2023. http://dx.doi.org/10.1117/12.2657322.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Yuan, Zhiyang, Lila V. H. Rodgers, Jared Rovny, Sorawis Sangtawesin, Srikanth Srinivasan, James Allred, Nathalie P. de Leon et Patryk Gumann. « Ultrahigh Vacuum Surface Chemistry For Nanoscale Sensors In Diamond ». Dans Quantum 2.0. Washington, D.C. : Optica Publishing Group, 2022. http://dx.doi.org/10.1364/quantum.2022.qtu2a.11.

Texte intégral
Résumé :
We have constructed a unique cluster tool for surface preparation and spectroscopy in ultrahigh vacuum combined with cryogenic, confocal microscopy of single nitrogen vacancy centers in diamond. We modify the diamond surface chemistry and investigate shallow nitrogen vacancy center properties in situ.
Styles APA, Harvard, Vancouver, ISO, etc.
7

« THE CROSS-PLATFORM QUANTUM CHEMISTRY SOFTWARE FOR COLLEGE CHEMISTRY EDUCATION ». Dans 2nd International Conference on Computer Supported Education. SciTePress - Science and and Technology Publications, 2010. http://dx.doi.org/10.5220/0002793104380441.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Perera, Ajith, Theodore E. Simos et George Maroulis. « Predictive Quantum Chemistry : A Step Toward “Chemistry Without Test Tubes” ». Dans COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING : Theory and Computation : Old Problems and New Challenges. Lectures Presented at the International Conference on Computational Methods in Science and Engineering 2007 (ICCMSE 2007) : VOLUME 1. AIP, 2007. http://dx.doi.org/10.1063/1.2835948.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ma, Jonathan H., Han Wang, David Prendergast, Andrew R. Neureuther et Patrick Naulleau. « Investigating EUV radiation chemistry with first principle quantum chemistry calculations ». Dans International Conference on Extreme Ultraviolet Lithography 2019, sous la direction de Kurt G. Ronse, Paolo A. Gargini, Patrick P. Naulleau et Toshiro Itani. SPIE, 2019. http://dx.doi.org/10.1117/12.2538558.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Yuen-Zhou, Joel. « Controlling chemistry with vibrational polaritons ». Dans Conference on Coherence and Quantum Optics. Washington, D.C. : OSA, 2019. http://dx.doi.org/10.1364/cqo.2019.w4b.4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Quantum chemistry"

1

Aspuru-Guzik, Alan. Quantum Computing for Quantum Chemistry. Fort Belvoir, VA : Defense Technical Information Center, septembre 2010. http://dx.doi.org/10.21236/ada534093.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Author, Not Given. Computational quantum chemistry website. Office of Scientific and Technical Information (OSTI), août 1997. http://dx.doi.org/10.2172/7376091.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Taube, Andrew Garvin. Steps toward fault-tolerant quantum chemistry. Office of Scientific and Technical Information (OSTI), mai 2010. http://dx.doi.org/10.2172/992330.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Umrigar, Cyrus J. Quantum Chemistry via Walks in Determinant Space. Office of Scientific and Technical Information (OSTI), janvier 2016. http://dx.doi.org/10.2172/1233718.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

C. F. Melius et M. D. Allendorf. Bond additivity corrections for quantum chemistry methods. Office of Scientific and Technical Information (OSTI), avril 1999. http://dx.doi.org/10.2172/751014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sholl, David. Quantum Chemistry for Surface Segregation in Metal Alloys. Office of Scientific and Technical Information (OSTI), août 2006. http://dx.doi.org/10.2172/1109080.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Hollingsworth, Jennifer. Advanced Quantum Emitters : Chemistry, Photophysics, Integration and Application. Office of Scientific and Technical Information (OSTI), mai 2021. http://dx.doi.org/10.2172/1781363.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Harrison, Robert J., David E. Bernholdt, Bruce E. Bursten, Wibe A. De Jong, David A. Dixon, Kenneth G. Dyall, Walter V. Ermler et al. Computational Chemistry for Nuclear Waste Characterization and Processing : Relativistic Quantum Chemistry of Actinides. Office of Scientific and Technical Information (OSTI), août 2002. http://dx.doi.org/10.2172/15010139.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Jones, H. W., et C. A. Weatherford. Analytical Methods Using Slater-Type Orbitals in Quantum Chemistry. Fort Belvoir, VA : Defense Technical Information Center, mars 1992. http://dx.doi.org/10.21236/ada251044.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Mun, Eundeok. Yb-based heavy fermion compounds and field tuned quantum chemistry. Office of Scientific and Technical Information (OSTI), janvier 2010. http://dx.doi.org/10.2172/985312.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie