Littérature scientifique sur le sujet « Quantity quantile regression »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Quantity quantile regression ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Quantity quantile regression"
Pryce, Robert, Bruce Hollingsworth et Ian Walker. « Alcohol quantity and quality price elasticities : quantile regression estimates ». European Journal of Health Economics 20, no 3 (1 octobre 2018) : 439–54. http://dx.doi.org/10.1007/s10198-018-1009-8.
Texte intégralForthmann, Boris, et Denis Dumas. « Quantity and Quality in Scientific Productivity : The Tilted Funnel Goes Bayesian ». Journal of Intelligence 10, no 4 (1 novembre 2022) : 95. http://dx.doi.org/10.3390/jintelligence10040095.
Texte intégralCarreño, Pia, et Andres Silva. « Fruit and vegetable expenditure disparities : evidence from Chile ». British Food Journal 121, no 6 (20 juin 2019) : 1203–19. http://dx.doi.org/10.1108/bfj-06-2018-0365.
Texte intégralIdris, N., Rais Rais et I. T. Utami. « APLIKASI REGRESI KUANTIL PADA KASUS DBD DI KOTA PALU SULAWESI TENGAH ». JURNAL ILMIAH MATEMATIKA DAN TERAPAN 15, no 1 (14 mai 2018) : 108–17. http://dx.doi.org/10.22487/2540766x.2018.v15.i1.10207.
Texte intégralKostakis, Ioannis, Dimitrios Paparas, Anna Saiti et Stamatina Papadaki. « Food Consumption within Greek Households : Further Evidence from a National Representative Sample ». Economies 8, no 1 (25 février 2020) : 17. http://dx.doi.org/10.3390/economies8010017.
Texte intégralCao, Jialei, et Chenran Ge. « Research on the Impact of Technology Innovation on Quantity and Quality of Economic Growth in the Yangtze River Delta of China : A Comparative Study ». International Journal of Sustainable Development and Planning 16, no 8 (30 décembre 2021) : 1455–64. http://dx.doi.org/10.18280/ijsdp.160806.
Texte intégralHlubinka, Daniel, et Miroslav Šiman. « On elliptical quantiles in the quantile regression setup ». Journal of Multivariate Analysis 116 (avril 2013) : 163–71. http://dx.doi.org/10.1016/j.jmva.2012.11.016.
Texte intégralShaikh, Imlak. « The Relation between Implied Volatility Index and Crude Oil Prices ». Engineering Economics 30, no 5 (14 décembre 2019) : 556–66. http://dx.doi.org/10.5755/j01.ee.30.5.21611.
Texte intégralLipovetsky, Stan. « Quantile Regression ». Technometrics 48, no 3 (août 2006) : 445–46. http://dx.doi.org/10.1198/tech.2006.s410.
Texte intégralJurečková, Jana. « Quantile Regression ». Journal of the American Statistical Association 101, no 476 (1 décembre 2006) : 1723. http://dx.doi.org/10.1198/jasa.2006.s143.
Texte intégralThèses sur le sujet "Quantity quantile regression"
RADAELLI, PAOLO. « La Regressione Lineare con i Valori Assoluti ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2004. http://hdl.handle.net/10281/2290.
Texte intégralRodrigues, Cátia Sofia Martins. « Quais os fatores que determinam o rendimento dos indivíduos em Portugal ? - Regressão de Quantis ». Master's thesis, Instituto Superior de Economia e Gestão, 2021. http://hdl.handle.net/10400.5/23425.
Texte intégralApesar de se ter vindo a verificar, ao longo dos anos, um decréscimo significativo na desigualdade entre rendimentos, este tema ainda é alvo de estudo, principalmente numa abordagem econométrica, onde o principal objetivo passa por identificar e perceber os principais fatores que estão por detrás das desigualdades sentidas. Desta forma, o presente projeto destina-se ao estudo dos fatores que determinam o rendimento dos indivíduos residentes em Portugal, adotando uma abordagem de regressão de quantis, uma vez que grupos de indivíduos com diferentes valores de rendimento podem ter comportamentos distintos. Para tal, foram utilizados dados provenientes do Instituto Nacional de Estatística (INE) que permitiram construir o modelo estimado. A variável em estudo é o rendimento anual dos residentes em Portugal, no ano de 2019, e o modelo conta com oito regressores que caracterizam não só o indivíduo, incluindo, nomeadamente, a sua idade, sexo ou estado civil, mas também a sua instituição empregadora, incluindo variáveis como a dimensão, número de horas de trabalho, entre outras. Com o desenvolvimento do projeto e tendo em conta a análise aos resultados da estimação, é possível concluir que existem fatores, nomeadamente o género, nível de educação e região onde o indivíduo reside, responsáveis pela diferença significativa no valor do rendimento anual dos residentes em Portugal. No entanto, esta diferença não é uniforme para todos os grupos de indivíduos e comporta-se de maneira diferente quando comparados grupos de indivíduos com rendimentos mais baixos, médios ou altos. Este comportamento não linear permitiu ainda compreender a vantagem da utilização do método de regressão de quantis face ao método econométrico mais comum, a regressão linear, cujo objetivo é estimar o efeito das diferentes variáveis explicativas nos valores médios da variável dependente. A base de dados utilizada foi construída utilizando o software SQL Developer e a análise foi conduzida com recurso ao Stata.
Despite the fact that, over the years, there has been a significant decrease in income inequality, this issue is still a subject under study, mainly in an econometric approach, with the aim of studying and understanding the factors behind those inequalities. The main focus of this project is to identify and study the factors that determine the income of individuals living in Portugal, adopting a quantile regression approach, since individuals with different wages may have different behaviors. For this purpose, a regression model was created, using data from Statistics Portugal. The variable under study is the annual income of residents in Portugal, in 2019, and the model has several regressors that not only characterize the individual, such as their age, sex or marital status, but also the company, such as their dimension and number of working hours. With the development of this project and taking into account the estimation results, it is possible to conclude that there are factors, namely the individual's gender, level of education and region where he lives, responsible for the significant difference in the value of the annual income of residents in Portugal. However, these differences are not uniform for all groups of individuals, since there is a different behavior when comparing groups of individuals with lower, medium or high income. This nonlinear behavior also allowed to understand the advantage of using quantile regression over the most common econometric method, linear regression, whose objective is to estimate the effect of different explanatory variables on the average values of the dependent variable. The database used was built using SQL Developer and the analysis was conducted with software Stata.
info:eu-repo/semantics/publishedVersion
Guo, Mengmeng. « Generalized quantile regression ». Doctoral thesis, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, 2012. http://dx.doi.org/10.18452/16569.
Texte intégralGeneralized quantile regressions, including the conditional quantiles and expectiles as special cases, are useful alternatives to the conditional means for characterizing a conditional distribution, especially when the interest lies in the tails. We denote $v_n(x)$ as the kernel smoothing estimator of the expectile curves. We prove the strong uniform consistency rate of $v_{n}(x)$ under general conditions. Moreover, using strong approximations of the empirical process and extreme value theory, we consider the asymptotic maximal deviation $\sup_{ 0 \leqslant x \leqslant 1 }|v_n(x)-v(x)|$. According to the asymptotic theory, we construct simultaneous confidence bands around the estimated expectile function. We develop a functional data analysis approach to jointly estimate a family of generalized quantile regressions. Our approach assumes that the generalized quantiles share some common features that can be summarized by a small number of principal components functions. The principal components are modeled as spline functions and are estimated by minimizing a penalized asymmetric loss measure. An iteratively reweighted least squares algorithm is developed for computation. While separate estimation of individual generalized quantile regressions usually suffers from large variability due to lack of sufficient data, by borrowing strength across data sets, our joint estimation approach significantly improves the estimation efficiency, which is demonstrated in a simulation study. The proposed method is applied to data from 150 weather stations in China to obtain the generalized quantile curves of the volatility of the temperature at these stations
Yu, Keming. « Smooth regression quantile estimation ». Thesis, Open University, 1996. http://oro.open.ac.uk/57655/.
Texte intégralSanches, Nathalie C. Gimenes Miessi. « Quantile regression approaches for auctions ». Thesis, Queen Mary, University of London, 2014. http://qmro.qmul.ac.uk/xmlui/handle/123456789/8146.
Texte intégralJeffrey, Stephen Glenn. « Quantile regression and frontier analysis ». Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/47747/.
Texte intégralChao, Shih-Kang. « Quantile regression in risk calibration ». Doctoral thesis, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17223.
Texte intégralQuantile regression studies the conditional quantile function QY|X(τ) on X at level τ which satisfies FY |X QY |X (τ ) = τ , where FY |X is the conditional CDF of Y given X, ∀τ ∈ (0,1). Quantile regression allows for a closer inspection of the conditional distribution beyond the conditional moments. This technique is par- ticularly useful in, for example, the Value-at-Risk (VaR) which the Basel accords (2011) require all banks to report, or the ”quantile treatment effect” and ”condi- tional stochastic dominance (CSD)” which are economic concepts in measuring the effectiveness of a government policy or a medical treatment. Given its value of applicability, to develop the technique of quantile regression is, however, more challenging than mean regression. It is necessary to be adept with general regression problems and M-estimators; additionally one needs to deal with non-smooth loss functions. In this dissertation, chapter 2 is devoted to empirical risk management during financial crises using quantile regression. Chapter 3 and 4 address the issue of high-dimensionality and the nonparametric technique of quantile regression.
Elseidi, Mohammed. « Quantile regression-based seasonal adjustment ». Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3423191.
Texte intégralLiu, Xi. « Some new developments for quantile regression ». Thesis, Brunel University, 2018. http://bura.brunel.ac.uk/handle/2438/16204.
Texte intégralKecojevic, Tatjana. « Bootstrap inference for parametric quantile regression ». Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/bootstrap-inference-for-parametric-quantile-regression(194021d5-e03f-4f48-bfb8-5156819f5900).html.
Texte intégralLivres sur le sujet "Quantity quantile regression"
Hao, Lingxin, et Daniel Naiman. Quantile Regression. 2455 Teller Road, Thousand Oaks California 91320 United States of America : SAGE Publications, Inc., 2007. http://dx.doi.org/10.4135/9781412985550.
Texte intégralDavino, Cristina, Marilena Furno et Domenico Vistocco. Quantile Regression. Oxford : John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118752685.
Texte intégralMarilena, Furno, et Vistocco Domenico. Quantile Regression. Chichester, UK : John Wiley & Sons Ltd, 2018. http://dx.doi.org/10.1002/9781118863718.
Texte intégralHao, Lingxin. Quantile regression. Thousand Oaks, Calif : Sage Publications, 2007.
Trouver le texte intégralFirpo, Sergio. Unconditional quantile regressions. Cambridge, MA : National Bureau of Economic Research, 2007.
Trouver le texte intégralChernozhukov, Victor. Instrumental variable quantile regression. Cambridge, MA : Massachusetts Institute of Technology, Dept. of Economics, 2006.
Trouver le texte intégralCleophas, Ton J., et Aeilko H. Zwinderman. Quantile Regression in Clinical Research. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82840-0.
Texte intégralMcMillen, Daniel P. Quantile Regression for Spatial Data. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31815-3.
Texte intégralFitzenberger, Bernd, Roger Koenker et José A. F. Machado, dir. Economic Applications of Quantile Regression. Heidelberg : Physica-Verlag HD, 2002. http://dx.doi.org/10.1007/978-3-662-11592-3.
Texte intégralChernozhukov, Victor. Quantile regression with censoring and endogeneity. Cambridge, MA : National Bureau of Economic Research, 2011.
Trouver le texte intégralChapitres de livres sur le sujet "Quantity quantile regression"
Fahrmeir, Ludwig, Thomas Kneib, Stefan Lang et Brian Marx. « Quantile Regression ». Dans Regression, 597–620. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34333-9_10.
Texte intégralČížek, Pavel. « Quantile Regression ». Dans XploRe® - Application Guide, 19–48. Berlin, Heidelberg : Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57292-0_1.
Texte intégralAwange, Joseph L., Béla Paláncz, Robert H. Lewis et Lajos Völgyesi. « Quantile Regression ». Dans Mathematical Geosciences, 359–404. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67371-4_12.
Texte intégralHooten, Mevin B., et Trevor J. Hefley. « Quantile Regression ». Dans Bringing Bayesian Models to Life, 205–20. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2019. : CRC Press, 2019. http://dx.doi.org/10.1201/9780429243653-18.
Texte intégralBuchinsky, Moshe. « Quantile Regression ». Dans The New Palgrave Dictionary of Economics, 11065–73. London : Palgrave Macmillan UK, 2018. http://dx.doi.org/10.1057/978-1-349-95189-5_2795.
Texte intégralBuchinsky, Moshe. « Quantile Regression ». Dans The New Palgrave Dictionary of Economics, 1–9. London : Palgrave Macmillan UK, 2008. http://dx.doi.org/10.1057/978-1-349-95121-5_2795-1.
Texte intégralBuchinksy, Moshe. « Quantile Regression ». Dans Microeconometrics, 202–13. London : Palgrave Macmillan UK, 2010. http://dx.doi.org/10.1057/9780230280816_25.
Texte intégralCleophas, Ton J., et Aeilko H. Zwinderman. « Quantile Regression ». Dans Regression Analysis in Medical Research, 453–67. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61394-5_27.
Texte intégralJurečková, Jana. « Regression Quantile and Averaged Regression Quantile Processes ». Dans Analytical Methods in Statistics, 53–62. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51313-3_3.
Texte intégralKohn, Wolfgang, et Riza Öztürk. « Quantils-Regression ». Dans Springer-Lehrbuch, 337–43. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-50442-0_31.
Texte intégralActes de conférences sur le sujet "Quantity quantile regression"
Wen, Yuxin, Donna AlHakeem, Paras Mandal, Shantanu Chakraborty, Yuan-Kang Wu, Tomonobu Senjyu, Sumit Paudyal et Tzu-Liang Tseng. « Performance Evaluation of Probabilistic Methods Based on Bootstrap and Quantile Regression to Quantify PV Power Point Forecast Uncertainty ». Dans 2020 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2020. http://dx.doi.org/10.1109/pesgm41954.2020.9281380.
Texte intégralHuang, Liqi, Xin Wei, Peikang Zhu, Yun Gao, Mingkai Chen et Bin Kang. « Federated Quantile Regression over Networks ». Dans 2020 International Wireless Communications and Mobile Computing (IWCMC). IEEE, 2020. http://dx.doi.org/10.1109/iwcmc48107.2020.9148186.
Texte intégralKevin Michael Brannan et Donald Paul Butcher. « TMDL Development Using Quantile Regression ». Dans TMDL 2010 : Watershed Management to Improve Water Quality Proceedings, 14-17 November 2010 Hyatt Regency Baltimore on the Inner Harbor, Baltimore, Maryland USA. St. Joseph, MI : American Society of Agricultural and Biological Engineers, 2010. http://dx.doi.org/10.13031/2013.35780.
Texte intégralBhat, Harish S., Nitesh Kumar et Garnet J. Vaz. « Towards scalable quantile regression trees ». Dans 2015 IEEE International Conference on Big Data (Big Data). IEEE, 2015. http://dx.doi.org/10.1109/bigdata.2015.7363741.
Texte intégralNatesan Ramamurthy, Karthikeyan, Kush R. Varshney et Moninder Singh. « Quantile regression for workforce analytics ». Dans 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2013. http://dx.doi.org/10.1109/globalsip.2013.6737097.
Texte intégralFagundes, Roberta A. A., Renata M. C. R. de Souza et Yanne M. G. Soares. « Quantile regression of interval-valued data ». Dans 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2016. http://dx.doi.org/10.1109/icpr.2016.7900025.
Texte intégralBallings, Michel, Dries Benoit et Dirk Van den Poel. « RFM Variables Revisited Using Quantile Regression ». Dans 2011 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE, 2011. http://dx.doi.org/10.1109/icdmw.2011.148.
Texte intégralDichandra, D., I. Fithriani et S. Nurrohmah. « Parameter estimation of Bayesian quantile regression ». Dans PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2020 (ISCPMS 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0059103.
Texte intégralZhou Lihui. « Quantile regression model and application profile ». Dans 2010 International Conference on Computer Application and System Modeling (ICCASM 2010). IEEE, 2010. http://dx.doi.org/10.1109/iccasm.2010.5622905.
Texte intégralde Oliveira, Augusto Born, Sebastian Fischmeister, Amer Diwan, Matthias Hauswirth et Peter F. Sweeney. « Why you should care about quantile regression ». Dans the eighteenth international conference. New York, New York, USA : ACM Press, 2013. http://dx.doi.org/10.1145/2451116.2451140.
Texte intégralRapports d'organisations sur le sujet "Quantity quantile regression"
Carlier, Guillaume, Alfred Galichon et Victor Chernozhukov. Vector quantile regression. Institute for Fiscal Studies, décembre 2014. http://dx.doi.org/10.1920/wp.cem.2014.4814.
Texte intégralLee, Sokbae (Simon), et Le-Yu Chen. Sparse Quantile Regression. The IFS, juin 2020. http://dx.doi.org/10.1920/wp.cem.2020.3020.
Texte intégralFirpo, Sergio, Nicole Fortin et Thomas Lemieux. Unconditional Quantile Regressions. Cambridge, MA : National Bureau of Economic Research, juillet 2007. http://dx.doi.org/10.3386/t0339.
Texte intégralChetverikov, Denis, Yukun Liu et Aleh Tsyvinski. Weighted-Average Quantile Regression. Cambridge, MA : National Bureau of Economic Research, mai 2022. http://dx.doi.org/10.3386/w30014.
Texte intégralGraham, Bryan, Jinyong Hahn, Alexandre Poirier et James Powell. Quantile Regression with Panel Data. Cambridge, MA : National Bureau of Economic Research, mars 2015. http://dx.doi.org/10.3386/w21034.
Texte intégralPowell, James L., Alexandre Poirier, Bryan S. Graham et Jinyong Hahn. Quantile regression with panel data. Institute for Fiscal Studies, mars 2015. http://dx.doi.org/10.1920/wp.cem.2015.1215.
Texte intégralKoenker, Roger. Quantile regression 40 years on. The IFS, août 2017. http://dx.doi.org/10.1920/wp.cem.2017.3617.
Texte intégralChernozhukov, Victor, Tetsuya Kaji et Ivan Fernandez-Val. Extremal quantile regression : an overview. The IFS, décembre 2017. http://dx.doi.org/10.1920/wp.cem.2017.6517.
Texte intégralSeverini, Thomas A., Elie Tamer et Tatiana V. Komarova. Quantile uncorrelation and instrumental regressions. Institute for Fiscal Studies, septembre 2010. http://dx.doi.org/10.1920/wp.cem.2010.2610.
Texte intégralDagli, Suzette, Paul Mariano et Arjan Paulo Salvanera. Quantile Debt Fan Charts. Asian Development Bank, juin 2022. http://dx.doi.org/10.22617/wps220242-2.
Texte intégral