Littérature scientifique sur le sujet « Purinergic stimulu »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Purinergic stimulu ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Purinergic stimulu"

1

Panicucci, Chiara, Lizzia Raffaghello, Santina Bruzzone, Serena Baratto, Elisa Principi, Carlo Minetti, Elisabetta Gazzerro et Claudio Bruno. « eATP/P2X7R Axis : An Orchestrated Pathway Triggering Inflammasome Activation in Muscle Diseases ». International Journal of Molecular Sciences 21, no 17 (19 août 2020) : 5963. http://dx.doi.org/10.3390/ijms21175963.

Texte intégral
Résumé :
In muscle ATP is primarily known for its function as an energy source and as a mediator of the “excitation-transcription” process, which guarantees muscle plasticity in response to environmental stimuli. When quickly released in massive concentrations in the extracellular space as in presence of muscle membrane damage, ATP acts as a damage-associated molecular pattern molecule (DAMP). In experimental murine models of muscular dystrophies characterized by membrane instability, blockade of eATP/P2X7 receptor (R) purinergic signaling delayed the progression of the dystrophic phenotype dampening the local inflammatory response and inducing Foxp3+ T Regulatory lymphocytes. These discoveries highlighted the relevance of ATP as a harbinger of immune-tissue damage in muscular genetic diseases. Given the interactions between the immune system and muscle regeneration, the comprehension of ATP/purinerigic pathway articulated organization in muscle cells has become of extreme interest. This review explores ATP release, metabolism, feedback control and cross-talk with members of muscle inflammasome in the context of muscular dystrophies.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Buchanan, Kelly L., Laura E. Rupprecht, M. Maya Kaelberer, Atharva Sahasrabudhe, Marguerita E. Klein, Jorge A. Villalobos, Winston W. Liu et al. « The preference for sugar over sweetener depends on a gut sensor cell ». Nature Neuroscience 25, no 2 (13 janvier 2022) : 191–200. http://dx.doi.org/10.1038/s41593-021-00982-7.

Texte intégral
Résumé :
AbstractGuided by gut sensory cues, humans and animals prefer nutritive sugars over non-caloric sweeteners, but how the gut steers such preferences remains unknown. In the intestine, neuropod cells synapse with vagal neurons to convey sugar stimuli to the brain within seconds. Here, we found that cholecystokinin (CCK)-labeled duodenal neuropod cells differentiate and transduce luminal stimuli from sweeteners and sugars to the vagus nerve using sweet taste receptors and sodium glucose transporters. The two stimulus types elicited distinct neural pathways: while sweetener stimulated purinergic neurotransmission, sugar stimulated glutamatergic neurotransmission. To probe the contribution of these cells to behavior, we developed optogenetics for the gut lumen by engineering a flexible fiberoptic. We showed that preference for sugar over sweetener in mice depends on neuropod cell glutamatergic signaling. By swiftly discerning the precise identity of nutrient stimuli, gut neuropod cells serve as the entry point to guide nutritive choices.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Shirai, Y., K. Kashiwagi, N. Sakai et N. Saito. « Phospholipase A(2) and its products are involved in the purinergic receptor-mediated translocation of protein kinase C in CHO-K1 cells ». Journal of Cell Science 113, no 8 (15 avril 2000) : 1335–43. http://dx.doi.org/10.1242/jcs.113.8.1335.

Texte intégral
Résumé :
The signal transduction involved in the purinergic stimuli-induced activation of protein kinase C (PKC) in CHO-K1 cells was investigated. Purinergic stimuli such as adenosine triphosphate and uridine triphosphate induced a transient translocation of PKC epsilon, gamma, and delta from the cytoplasm to the plasma membrane. These translocations were blocked by an inhibitor of phosphatidylinositol-specific phospholipase C (PLC), but not by an inhibitor of phosphatidylcholine-specific PLC. A diacylglycerol (DAG) analogue also induced reversible translocations of PKC gamma, epsilon, and delta from the cytoplasm to the plasma membrane, while the calcium ionophore A23187 caused a similar translocation of only the gamma subtype. These results confirm that the hydrolysis of phosphatidylinositol-2-phosphate by PLC and the subsequent generation of DAG and increase in Ca(2+)are involved in the purinergic stimuli-induced translocation of PKC. A DAG antagonist, 1-o-hexadecyl-2-o-acetyl-glycerol, blocked the DAG analogue-induced translocations of all PKC subtypes tested but failed to inhibit the purinergic stimuli-induced translocations of PKC epsilon and gamma. The DAG antagonist could not block the ATP- and UTP-induced translocation of PKC epsilon even in the absence of extracellular Ca(2+). Co-application of the DAG antagonist and a phospholipase A(2) (PLA(2)) inhibitor such as aristolochic acid, arachidonyltrifluoromethyl ketone, or bromoenol lactone inhibited the purinergic receptor-mediated translocation of PKC epsilon although each PLA(2) inhibitor alone did not block the translocation. In contrast to the epsilon subtype, ATP-induced translocation of PKC gamma was observed in the presence of both the PLA(2) inhibitor and the DAG antagonist. However, it is noteworthy that re-translocation of PKC gamma was hastened by the PLA(2) inhibitor. Furthermore products of PLA(2), such as lysophospholipids and fatty acids, induced the translocation of PKC gamma and epsilon in a dose dependent manner, but not delta. These results indicate that, in addition to PLC and DAG, PLA(2) and its products are involved in the purinergic stimuli-induced translocation of PKC epsilon and gamma in CHO-K1 cells. Each subtype of PKC in CHO-K1 cell is individually activated in response to a purinergic stimulation.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Matsuyama, Hayato, AbuBakr El-Mahmoudy, Yasutake Shimizu et Tadashi Takewaki. « Nitrergic Prejunctional Inhibition of Purinergic Neuromuscular Transmission in the Hamster Proximal Colon ». Journal of Neurophysiology 89, no 5 (1 mai 2003) : 2346–53. http://dx.doi.org/10.1152/jn.00686.2002.

Texte intégral
Résumé :
Neurogenic ATP and nitric oxide (NO) may play important roles in the physiological control of gastrointestinal motility. However, the interplay between purinergic and nitrergic neurons in mediating the inhibitory neurotransmission remains uncertain. This study investigated whether neurogenic NO modulates the purinergic transmission to circular smooth muscles of the hamster proximal colon. Electrical activity was recorded from circular muscle cells of the hamster proximal colon by using the microelectrode technique. Intramural nerve stimulation with a single pulse evoked a fast purinergic inhibitory junction potential (IJP) followed by a slow nitrergic IJP. The purinergic component of the second IJP evoked by paired stimulus pulses at pulse intervals between 1 and 3 s became smaller than that of the first IJP. This purinergic IJP depression could be observed at pulse intervals <3 s, but not at longer ones, and failed to occur in the presence of NO synthase inhibitor. Exogenous NO (0.3–1 μM), at which no hyperpolarization is produced, inhibited purinergic IJPs, without altering the nitrergic IJP and exogenously applied ATP-induced hyperpolarization. In the presence of both purinoceptor antagonist and nitric oxide synthase (NOS) inhibitor, intramural nerve stimulation with 5 pulses at 20 Hz evoked vasoactive intestinal peptide (VIP)-associated IJPs, suggesting that VIP component may be masked in the IJPs of the hamster proximal colon. Our results suggest that neurogenic NO may modulate the purinergic transmission to circular smooth muscles of the hamster proximal colon via a prejunctional mechanism. In addition, VIP may be involved in the neurotransmitter in the hamster proximal colon.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Spek, Annabel, Bingsheng Li, Beata Rutz, Anna Ciotkowska, Ru Huang, Yuhan Liu, Ruixiao Wang et al. « Purinergic smooth muscle contractions in the human prostate : estimation of relevance and characterization of different agonists ». Naunyn-Schmiedeberg's Archives of Pharmacology 394, no 6 (11 janvier 2021) : 1113–31. http://dx.doi.org/10.1007/s00210-020-02044-4.

Texte intégral
Résumé :
AbstractNon-adrenergic prostate smooth muscle contractions may account for the limited effectiveness of α1-adrenoceptor antagonists, which are the first-line option for medical treatment of voiding symptoms suggestive of benign prostatic hyperplasia. In non-human prostates, purinergic agonists induce contractions reaching similar magnitudes as α1-adrenergic contractions. However, evidence for the human prostate is highly limited, and pointed to much weaker purinergic contractions. Here, we examined contractions of different purinergic agonists in human prostate tissues. Tissues were obtained from radical prostatectomy. Contractions were studied in an organ bath, and expression of purinergic receptors was studied by RT-PCR. Electric field stimulation (EFS)–induced contractions amounted to 104% of KCl-induced contractions (95% CI: 84–124%). From all tested agonists, only ATP induced concentration-dependent contractions, reaching an average maximum of 18% (12–24%) of KCl. Maximum tensions following application of other agonists averaged to 7.1% of KCl for α,β-methylene-ATP (1.8–12.4%), 3.9% for β,γ-methylene-ATP (2.0–5.4%), 3.1% for 2-methylthio-ATP (− 0.1–6.3%), and 5.1% for ATPγS (1.0–9.2%). Responses were not affected by the P2X antagonist NF023 or the P2Y antagonist PPADS. mRNA expression of P2X1-4 correlated with expression of a marker for catecholaminergic nerves, although neither ATP, NF023, nor PPADS changed EFS-induced contractions. Correlation between expression of receptors and the smooth muscle marker calponin was not observed. Our findings point to a low relevance of purinergic contractions in the human prostate, compared to other contractile stimuli in the human prostate and compared to purinergic contractions in non-human prostates. Purinergic contractions in the human prostate are not sensitive to NF023 or PPADS.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Oyasu, Miho, Mineko Fujimiya, Kaori Kashiwagi, Shiho Ohmori, Hirotsugu Imaeda et Naoaki Saito. « Immunogold Electron Microscopic Demonstration of Distinct Submembranous Localization of the Activated γPKC Depending on the Stimulation ». Journal of Histochemistry & ; Cytochemistry 56, no 3 (12 novembre 2007) : 253–65. http://dx.doi.org/10.1369/jhc.7a7291.2007.

Texte intégral
Résumé :
We examined the precise intracellular translocation of γ subtype of protein kinase C (γPKC) after various extracellular stimuli using confocal laser-scanning fluorescent microscopy (CLSM) and immunogold electron microscopy. By CLSM, treatment with 12- O-tetradecanoylphorbol-13-acetate (TPA) resulted in a slow and irreversible accumulation of green fluorescent protein (GFP)-tagged γPKC (γPKC–GFP) on the plasma membrane. In contrast, treatment with Ca2+ ionophore and activation of purinergic or NMDA receptors induced a rapid and transient membrane translocation of γPKC–GFP. Although each stimulus resulted in PKC localization at the plasma membrane, electron microscopy revealed that γPKC showed a subtle but significantly different localization depending on stimulation. Whereas TPA and UTP induced a sustained localization of γPKC–GFP on the plasma membrane, Ca2+ ionophore and NMDA rapidly translocated γPKC–GFP to the plasma membrane and then restricted γPKC–GFP in submembranous area (<500 nm from the plasma membrane). These results suggest that Ca2+ influx alone induced the association of γPKC with the plasma membrane for only a moment and then located this enzyme at a proper distance in a touch-and-go manner, whereas diacylglycerol or TPA tightly anchored this enzyme on the plasma membrane. The distinct subcellular targeting of γPKC in response to various stimuli suggests a novel mechanism for PKC activation.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Klausen, Polina, Daria Semenova, Daria Kostina, Vladimir Uspenskiy et Anna Malashicheva. « Purinergic Signaling in Pathologic Osteogenic Differentiation of Aortic Valve Interstitial Cells from Patients with Aortic Valve Calcification ». Biomedicines 11, no 2 (21 janvier 2023) : 307. http://dx.doi.org/10.3390/biomedicines11020307.

Texte intégral
Résumé :
Purinergic signaling is associated with a vast spectrum of physiological processes, including cardiovascular system function and, in particular, its pathological calcifications, such as aortic valve stenosis. Aortic valve stenosis (AS) is a degenerative disease for which there is no cure other than surgical replacement of the affected valve. Purinergic signaling is known to be involved in the pathologic osteogenic differentiation of valve interstitial cells (VIC) into osteoblast-like cells, which underlies the pathogenesis of AS. ATP, its metabolites and related nucleotides also act as signaling molecules in normal osteogenic differentiation, which is observed in pro-osteoblasts and leads to bone tissue development. We show that stenotic and non-stenotic valve interstitial cells significantly differ from each other, especially under osteogenic stimuli. In osteogenic conditions, the expression of the ecto-nucleotidases ENTPD1 and ENPP1, as well as ADORA2b, is increased in AS VICs compared to normal VICs. In addition, AS VICs after osteogenic stimulation look more similar to osteoblasts than non-stenotic VICs in terms of purinergic signaling, which suggests the stronger osteogenic differentiation potential of AS VICs. Thus, purinergic signaling is impaired in stenotic aortic valves and might be used as a potential target in the search for an anti-calcification therapy.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Zhang, Yong, et William G. Paterson. « Characterization of the peristaltic reflex in murine distal colon ». Canadian Journal of Physiology and Pharmacology 94, no 2 (février 2016) : 190–98. http://dx.doi.org/10.1139/cjpp-2015-0086.

Texte intégral
Résumé :
Ascending and descending neuromuscular reflexes play an important role in gastrointestinal motility. However, the underlying mechanisms in colon are incompletely understood. Nerve stimulation (NS)- and balloon distention (BD)-mediated reflexes in distal colonic circular smooth muscle (CSM) and longitudinal smooth muscle (LSM) of mice were investigated using conventional intracellular recordings. In the CSM, NS evoked ascending purinergic inhibitory junction potentials (IJPs), whereas BD induced atropine-sensitive ascending depolarization with superimposed action potentials (APs). The ascending depolarization reached a peak ∼4–7 s after the onset of distention and gradually returned to baseline after termination of the distention. In the LSM, NS produced an ascending biphasic IJP followed by a train of atropine-sensitive APs. Both stimuli produced similar descending IJPs in CSM and LSM, which were blocked by MRS-2500 and MRS-2179, putative purinergic receptor blockers. These data indicate that in the murine distal colon, descending purinergic inhibition in both CSM and LSM occurs. Ascending responses are more complex, with NS producing both inhibition and excitation to CSM and LSM, and BD evoking only cholinergic excitation.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Guzman-Aranguez, Ana, Xavier Gasull, Yolanda Diebold et Jesús Pintor. « Purinergic Receptors in Ocular Inflammation ». Mediators of Inflammation 2014 (2014) : 1–11. http://dx.doi.org/10.1155/2014/320906.

Texte intégral
Résumé :
Inflammation is a complex process that implies the interaction between cells and molecular mediators, which, when not properly “tuned,” can lead to disease. When inflammation affects the eye, it can produce severe disorders affecting the superficial and internal parts of the visual organ. The nucleoside adenosine and nucleotides including adenine mononucleotides like ADP and ATP and dinucleotides such as P1,P4-diadenosine tetraphosphate (Ap4A), and P1,P5-diadenosine pentaphosphate (Ap5A) are present in different ocular locations and therefore they may contribute/modulate inflammatory processes. Adenosine receptors, in particularA2Aadenosine receptors, present anti-inflammatory action in acute and chronic retinal inflammation. Regarding the A3receptor, selective agonists like N6-(3-iodobenzyl)-5′-N-methylcarboxamidoadenosine (CF101) have been used for the treatment of inflammatory ophthalmic diseases such as dry eye and uveoretinitis. Sideways, diverse stimuli (sensory stimulation, large intraocular pressure increases) can produce a release of ATP from ocular sensory innervation or after injury to ocular tissues. Then, ATP will activate purinergic P2 receptors present in sensory nerve endings, the iris, the ciliary body, or other tissues surrounding the anterior chamber of the eye to produce uveitis/endophthalmitis. In summary, adenosine and nucleotides can activate receptors in ocular structures susceptible to suffer from inflammatory processes. This involvement suggests the possible use of purinergic agonists and antagonists as therapeutic targets for ocular inflammation.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Chen, Zhiyong, Chi Zhang, Xiaodan Song, Xiang Cui, Jing Liu, Neil C. Ford, Shaoqiu He et al. « BzATP Activates Satellite Glial Cells and Increases the Excitability of Dorsal Root Ganglia Neurons In Vivo ». Cells 11, no 15 (23 juillet 2022) : 2280. http://dx.doi.org/10.3390/cells11152280.

Texte intégral
Résumé :
The purinergic system plays an important role in pain transmission. Recent studies have suggested that activation of P2-purinergic receptors (P2Rs) may be involved in neuron-satellite glial cell (SGC) interactions in the dorsal root ganglia (DRG), but the details remain unclear. In DRG, P2X7R is selectively expressed in SGCs, which closely surround neurons, and is highly sensitive to 3’-O-(4-Benzoyl) benzoyl-ATP (BzATP). Using calcium imaging in intact mice to survey a large number of DRG neurons and SGCs, we examined how intra-ganglionic purinergic signaling initiated by BzATP affects neuronal activities in vivo. We developed GFAP-GCaMP6s and Pirt-GCaMP6s mice to express the genetically encoded calcium indicator GGCaM6s in SGCs and DRG neurons, respectively. The application of BzATP to the ganglion induced concentration-dependent activation of SGCs in GFAP-GCaMP6s mice. In Pirt-GCaMP6s mice, BzATP initially activated more large-size neurons than small-size ones. Both glial and neuronal responses to BzATP were blocked by A438079, a P2X7R-selective antagonist. Moreover, blockers to pannexin1 channels (probenecid) and P2X3R (A317491) also reduced the actions of BzATP, suggesting that P2X7R stimulation may induce the opening of pannexin1 channels, leading to paracrine ATP release, which could further excite neurons by acting on P2X3Rs. Importantly, BzATP increased the responses of small-size DRG neurons and wide-dynamic range spinal neurons to subsequent peripheral stimuli. Our findings suggest that intra-ganglionic purinergic signaling initiated by P2X7R activation could trigger SGC-neuron interaction in vivo and increase DRG neuron excitability.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Purinergic stimulu"

1

FORCAIA, GRETA. « Multifunctional Liposomes modulate Purinergic Receptor-induced Calcium Wave in Cerebral Microvascular Endothelial Cells and Astrocytes ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/261943.

Texte intégral
Résumé :
I nostri precedenti studi dimostrano che liposomi multifunzionalizzati con il monomero dell’ApoE e con acido fosfatidico (mApoE-PA-LIP) riducono l’accumulo di Aβ nel cervello migliorando il declino cognitivo in modelli murini di malattia di Alzheimer (AD) (Balducci et al., 2014). In riferimento ai nostri precedenti risultati, abbiamo studiato l’interazione di liposomi funzionalizzati con un peptide derivante dall’ApoE (mApoE) e acido fosfatidico (PA), con le cellule che costituiscono l’unità neurovascolare. In particolar modo, abbiamo valutato la loro attività in cellule di microcircolo cerebrale umano (hCMEC/D3), utilizzate come modello in vitro di barriera ematoencefalica, e in astrociti in coltura (iAstro-WT). Grazie a misurazioni effettuate con la tecnica del calcium imaging abbiamo studiato le dinamiche di calcio intracellulare generate dall’attivazione dei recettori purinergici. I nostri risultati mostrano che l’interazione dei mApoE-PA-LIP con le hCMEC/D3 e gli astrociti inducono attivamente una modulazione della durata delle onde di calcio indotte dall’attivazione dei recettori purinergici stimolati da ATP. In particolare, possiamo confermare che il pre-trattamento con i mApoE-PA-LIP induce un aumento significativo della durata della risposta indotta dall’ATP che non si verifica nelle cellule controllo. Dopo il pre-trattamento con mApoE-PA_LIP, anche l’area sotto la curva (AUC) risulta essere maggiore rispetto alle cellule non pre-trattate sia nelle hCMEC che negli iAstro-WT. Possiamo inoltre affermare che il pre-trattamento con i mApoE-PA-LIP in assenza di calcio extracellulare, aumenta in modo significativo sia i valori di durata di risposta al calcio allo stimolo di ATP sia quelli di AUC paragonati ai controlli. In aggiunta, abbiamo trovato che quando la pompa del calcio del reticolo sarcoplasmatico (SERCA) è inattiva, perché selettivamente bloccata dall’acido ciclopiazonico, in presenza o assenza di calcio extracellulare, l’ATP non riesce a generare onde di calcio anche dopo pre-trattamento con i mApoE-PA-LIP. In conclusione, considerando il ruolo neuroprottettivo dell’attivazione dei recettori purinergici (Weisman et al., 2012), possiamo affermare che i mApoE-PA-LIP modulano le dinamiche al calcio ATP indotte quando la SERCA è attiva. I nostri risultati potrebbero aggiungere dati interessanti utili a promuovere i mApoE-PA-LIP come innovativo strumento per il trattamento della malattia di Alzheimer.
Our previous results show that multifunctional liposomes (mApoE-PA-LIP) reduce brain Aβ burden and ameliorate memory impairment in Alzheimer’s disease (AD) mouse models (Balducci et al., 2014). In light of these results, we assessed liposomes functionalized with ApoE-derived peptide (mApoE) and phosphatidic acid (PA) at neurovascular unit. In particular, we evaluated their activities on cultured human cerebral microvascular cells (hCMEC/D3), as an in vitro human blood brain barrier model, and on cultured astrocytes (iAstro-WT). By means of calcium imaging measurements, we aimed to study the intracellular calcium dynamics triggered by purinergic receptors activation. Our result show that the interaction of mApoE-PA-LIP with the hCMEC/D3 and astrocytes actively induced a modulation in the calcium waves duration of ATP evoked response. In particular, we find an increase of the duration of the ATP evoked calcium waves in presence of mApoE-PA-LIP in comparison to untreated cells. After the mApoE-PA-LIP pre-treatment also the area under the curve (AUC) is increased in comparison to controls both in hCMEC and iAstro-WT. Furthermore, we found that the pre-treatment with mApoE-PA-LIP in absence of extracellular calcium significantly increased ATP evoked calcium waves in comparison to controls. Also under this condition, the AUC increased in comparison to control. We also found that when the Sarco-Endoplasmic Reticulum Calcium ATPase (SERCA) was inactive, due to its specific blockage with cyclopiazonic acid, both in presence or in absence of extracellular calcium, ATP failed to activate calcium wave also after a pre-treatment with mApoE-PA-LIP both in hCMEC and iAstro-WT. In conclusion, mApoE-PA-LIP modulate calcium dynamics evoked by ATP when SERCA is active. In light of the protective role of the purinergic receptor activation (Weisman et al., 2012), our obtained results would provide an additional support to promote mApoE-PA-LIP as putative therapeutic tool for AD treatment.
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Purinergic stimulu"

1

Vanhoutte, Paul M. « PLATELETS, ENDOTHELIUM AND VASOSPASM ». Dans XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643722.

Texte intégral
Résumé :
The endothelium can secrete both relaxing and contracting substances. One of the most powerful stimuli to the release of the former are thrombin and aggregating platelets. This contributes to the protective role of the endothelium against inappropriate intraluminal platelet aggregation and coagulation in blood vessels with an intact intima. Thrombin-induced, endothelium-dependent relaxations have been obtained in isolated arteries of different species, including humans. Endothelium-dependent relaxations can be evoked by autologous platelets in isolated blood vessels of the dog, pig and rat; they can be obtained in canine coronary arteries with human platelets. The major platelet-products involved in these endothelium-dependent relaxations are 5-hydroxytryptamine (serotonin) and the adenine nucleotides. Although platelet-activating factor (PAF) can evoke endothelium-dependent relaxation it only does so at concentrations much higher than those occurring under physiological conditions; since the relaxations are not prevented by PAF-antagonists, they are non-specific in nature.The receptor mediating the endothelium-dependent relaxations to serotonin released from the aggregating platelets can be subtyped as a S1~(5HT1) serotonergic receptor;those mediating the response to the adenine nucleotides as P2y-purinergic receptors. In the absence of the endothelium aggregating platelets cause contractions of vascular smooth muscle; these are mediated by a mixture of S1-like and S2~serotoner-gic receptors in coronary arteriesof the dog, and by S2-serotonergic receptors in those of the pig. Thus, in the porcine coronary artery, the S2-serotonergic antagonist ketanserin markedly enhances the platelet-induced endothelium-dependent relaxation. After previous (four weeks) injury, the regenerated endothelium of the porcine coronary artery loses the ability to respond to serotonin,and is unable to prevent the constrictionsevoked by aggregating platelets. The endothelium-dependent relaxations of porcine coronary arteries evoked by aggregating platelets are potentiated by chronic treatmentof the donor animals with cod liver oil. These studies emphasize the protective roleof the endothelial cells against the vasoconstriction (vasospasm) induced by aggregating platelets. This role is depressed after previous injury, and can be facilitatedby dietary adj ustments.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie