Littérature scientifique sur le sujet « PUF Physically imcloneable function »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « PUF Physically imcloneable function ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "PUF Physically imcloneable function"
Chattopadhyay, Saranyu, Pranesh Santikellur, Rajat Subhra Chakraborty, Jimson Mathew et Marco Ottavi. « A Conditionally Chaotic Physically Unclonable Function Design Framework with High Reliability ». ACM Transactions on Design Automation of Electronic Systems 26, no 6 (30 novembre 2021) : 1–24. http://dx.doi.org/10.1145/3460004.
Texte intégralKomano, Yuichi, Kazuo Ohta, Kazuo Sakiyama, Mitsugu Iwamoto et Ingrid Verbauwhede. « Single-Round Pattern Matching Key Generation Using Physically Unclonable Function ». Security and Communication Networks 2019 (1 janvier 2019) : 1–13. http://dx.doi.org/10.1155/2019/1719585.
Texte intégralLee, Sangjae, Mi-Kyung Oh, Yousung Kang et Dooho Choi. « Design of Resistor-Capacitor Physically Unclonable Function for Resource-Constrained IoT Devices ». Sensors 20, no 2 (10 janvier 2020) : 404. http://dx.doi.org/10.3390/s20020404.
Texte intégralLapidas, V., A. Zhizhchenko, E. Pustovalov, D. Storozhenko et A. Kuchmizhak. « Direct laser printing of high-resolution physically unclonable function anti-counterfeit labels ». Applied Physics Letters 120, no 26 (27 juin 2022) : 261104. http://dx.doi.org/10.1063/5.0091213.
Texte intégralKuribara, Kazunori, Yuichi Watanabe, Atsushi Takei, Sei Uemura et Manabu Yoshida. « Robustness of organic physically unclonable function with buskeeper circuit for flexible security devices ». Japanese Journal of Applied Physics 61, SE (7 avril 2022) : SE1016. http://dx.doi.org/10.35848/1347-4065/ac4c6a.
Texte intégralOkura, Shunsuke, Masanori Aoki, Tatsuya Oyama, Masayoshi Shirahata, Takeshi Fujino, Kenichiro Ishikawa et Isao Takayanagi. « Area-Efficient Post-Processing Circuits for Physically Unclonable Function with 2-Mpixel CMOS Image Sensor ». Sensors 21, no 18 (10 septembre 2021) : 6079. http://dx.doi.org/10.3390/s21186079.
Texte intégralWatanabe, Yuichi, Kouji Suemori, Kazunori Kuribara, Nobuko Fukuda, Ken-ichi Nomura et Sei Uemura. « Development of a simple contact-type printable physically unclonable function device using percolation conduction of rod-like conductive fillers ». Japanese Journal of Applied Physics 61, SE (24 mars 2022) : SE1005. http://dx.doi.org/10.35848/1347-4065/ac506b.
Texte intégralAbdolinezhad, Saeed, Lukas Zimmermann et Axel Sikora. « A Novel Key Generation Method for Group-Based Physically Unclonable Function Designs ». Electronics 10, no 21 (24 octobre 2021) : 2597. http://dx.doi.org/10.3390/electronics10212597.
Texte intégralHuang, Zhao, Liang Li, Yin Chen, Zeyu Li, Quan Wang et Xiaohong Jiang. « RPPUF : An Ultra-Lightweight Reconfigurable Pico-Physically Unclonable Function for Resource-Constrained IoT Devices ». Electronics 10, no 23 (5 décembre 2021) : 3039. http://dx.doi.org/10.3390/electronics10233039.
Texte intégralKhan, Mohammad Nasim Imtiaz, Chak Yuen Cheng, Sung Hao Lin, Abdullah Ash-Saki et Swaroop Ghosh. « A Morphable Physically Unclonable Function and True Random Number Generator Using a Commercial Magnetic Memory ». Journal of Low Power Electronics and Applications 11, no 1 (14 janvier 2021) : 5. http://dx.doi.org/10.3390/jlpea11010005.
Texte intégralThèses sur le sujet "PUF Physically imcloneable function"
Scafuro, Alessandra. « Secure computation under network and physical attacks ». Doctoral thesis, Universita degli studi di Salerno, 2013. http://hdl.handle.net/10556/1205.
Texte intégralThis thesis proposes several protocols for achieving secure com- putation under concurrent and physical attacks. Secure computation allows many parties to compute a joint function of their inputs, while keeping the privacy of their input preserved. It is required that the pri- vacy one party's input is preserved even if other parties participating in the protocol collude or deviate from the protocol. In this thesis we focus on concurrent and physical attacks, where adversarial parties try to break the privacy of honest parties by ex- ploiting the network connection or physical weaknesses of the honest parties' machine. In the rst part of the thesis we discuss how to construct proto- cols that are Universally Composable (UC for short) based on physical setup assumptions. We explore the use of Physically Uncloneable Func- tions (PUFs) as setup assumption for achieving UC-secure computa- tions. PUF are physical noisy source of randomness. The use of PUFs in the UC-framework has been proposed already in [14]. However, this work assumes that all PUFs in the system are trusted. This means that, each party has to trust the PUFs generated by the other parties. In this thesis we focus on reducing the trust involved in the use of such PUFs and we introduce the Malicious PUFs model in which only PUFs generated by honest parties are assumed to be trusted. Thus the secu- rity of each party relies on its own PUF only and holds regardless of the goodness of the PUFs generated/used by the adversary. We are able to show that, under this more realistic assumption, one can achieve UC- secure computation, under computational assumptions. Moreover, we show how to achieve unconditional UC-secure commitments with (ma- licious) PUFs and with stateless tamper-proof hardware tokens. We discuss our contribution on this matter in Part I. These results are contained in papers [80] and [28]. In the second part of the thesis we focus on the concurrent setting, and we investigate on protocols achieving round optimality and black- box access to a cryptographic primitive. We study two fundamental functionalities: commitment scheme and zero knowledge, and we focus on some of the round-optimal constructions and lower bounds con- cerning both functionalities. We nd that such constructions present subtle issues. Hence, we provide new protocols that actually achieve the security guarantee promised by previous results. Concerning physical attacks, we consider adversaries able to re- set the machine of the honest party. In a reset attack a machine is forced to run a protocol several times using the same randomness. In this thesis we provide the rst construction of a witness indistinguish- able argument system that is simultaneous resettable and argument of knowledge. We discuss about this contribution in Part III, which is the content of the paper. [edited by author]
XI n.s.
Challa, Rohith Prasad. « SR Flip-Flop Based Physically Unclonable Function (PUF) for Hardware Security ». Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7669.
Texte intégralHashemian, MaryamSadat. « A Robust Authentication Methodology Using Physically Unclonable Functions in DRAM Arrays ». Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1595351647711957.
Texte intégralSchaub, Alexander. « Méthodes formelles pour l'analyse de fuites cache-timing et la génération de clés dans les implémentations cryptographiques ». Electronic Thesis or Diss., Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAT044.
Texte intégralCryptography is ubiquitous in today's interconnected world, protecting our communications, securing our payment systems. While the cryptographic algorithms are generally well understood, their implementations have been less subject to formal verification. This has lead to successful breakages of implementions of most modern primitives: AES, RSA, ECDSA... In general, cryptographic implementations would benefit from stronger theoretical guarantees.In this thesis, we apply this line of reasoning to two different topics, one in software security, and the other in hardware security. The first half of this thesis explores cache-timing side channel vulnerabilities that arise when the time taken by a cryptographic operation, or the cache state after this operation, depends on sensitive information. This occurs if any branching operation depends on secret information such as a private key, or if memory is accessed at an address that depends on that secret.We developed a tool to detect and prevent such leaks in programs written in the C programming language. This tool is applied on most candidates of NIST's post-quantum standardization process in order to find cache-timing leakages. This process aims at replacing traditional cryptographic primitives such as RSA or ECDSA, broken by quantum computers, by safer alternatives. The development of such primitives is on the way, but the security of their implementations has received less scrutiny. We show how our tool is able to detect potential cache-timing leaks in a majority of the implementations and what mitigations are possible.The subject of the second half of this thesis are the so-called physically unclonable functions, or PUFs: elementary circuits from which stable but unpredictable identifiers can be extracted. They rely on small, uncontrollable changes in the semiconductor properties to exhibit unpredictable behavior. Theoretical guarantees concerning two fundamental characteristics of PUFs are derived in this thesis, for a large family of PUFs: the stability of the identifier, related to circuit noise, and the exploitable entropy, derived from the mathematical PUF model
Chapitres de livres sur le sujet "PUF Physically imcloneable function"
Cherif, Zouha, Jean-Luc Danger, Florent Lozac’h et Philippe Nguyen. « Physically Unclonable Function : Principle, Design and Characterization of the Loop PUF ». Dans Trusted Computing for Embedded Systems, 115–33. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09420-5_6.
Texte intégralReymond, Guillaume, et Jacques J. A. Fournier. « Physically Unclonable Function : Design of a Silicon Arbiter-PUF on CMOS 65nm ». Dans Trusted Computing for Embedded Systems, 135–42. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09420-5_7.
Texte intégralSrilakshmi, BVDN, Kiran Mannem, K. Jamal et Manchalla O. V. P. Kumar. « Designing a Strong Physically Unclonable Function Using Low Power LFSR ». Dans Advances in Transdisciplinary Engineering. IOS Press, 2023. http://dx.doi.org/10.3233/atde221237.
Texte intégralLaurenţiu Ţiplea, Ferucio, Cristian Andriesei et Cristian Hristea. « Security and Privacy of PUF-Based RFID Systems ». Dans Cryptography - Recent Advances and Future Developments [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.94018.
Texte intégralActes de conférences sur le sujet "PUF Physically imcloneable function"
Wang, D. Y., Y. C. Hsin, K. Y. Lee, G. L. Chen, S. Y. Yang, H. H. Lee, Y. J. Chang et al. « Hardware implementation of physically unclonable function (puf) in perpendicular STT MRAM ». Dans 2017 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA). IEEE, 2017. http://dx.doi.org/10.1109/vlsi-tsa.2017.7942497.
Texte intégralLoong, Julius Teo Han, Noor Alia Nor Hashim, Muhammad Saiful Hamid et Fazrena Azlee Hamid. « Performance analysis of CMOS-memristor hybrid ring oscillator Physically Unclonable Function (RO-PUF) ». Dans 2016 IEEE International Conference on Semiconductor Electronics (ICSE). IEEE, 2016. http://dx.doi.org/10.1109/smelec.2016.7573652.
Texte intégralNiewenhuis, Ben, R. D. Blanton, Mudit Bhargava et Ken Mai. « SCAN-PUF : A low overhead Physically Unclonable Function from scan chain power-up states ». Dans 2013 IEEE International Test Conference (ITC). IEEE, 2013. http://dx.doi.org/10.1109/test.2013.6651904.
Texte intégralYang, Kaiyuan, Qing Dong, David Blaauw et Dennis Sylvester. « 8.3 A 553F2 2-transistor amplifier-based Physically Unclonable Function (PUF) with 1.67% native instability ». Dans 2017 IEEE International Solid- State Circuits Conference - (ISSCC). IEEE, 2017. http://dx.doi.org/10.1109/isscc.2017.7870303.
Texte intégralKorenda, Ashwija Reddy, Fatemeh Afghah, Bertrand Cambou et Christopher Philabaum. « A Proof of Concept SRAM-based Physically Unclonable Function (PUF) Key Generation Mechanism for IoT Devices ». Dans 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). IEEE, 2019. http://dx.doi.org/10.1109/sahcn.2019.8824887.
Texte intégralTseng, P. H. « Error Free Physically Unclonable Function (PUF) with Programmed ReRAM using Reliable Resistance States by Novel ID-Generation Method ». Dans 2017 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2017. http://dx.doi.org/10.7567/ssdm.2017.a-7-03.
Texte intégralHe, Yan, Dai Li, Zhanghao Yu et Kaiyuan Yang. « 36.5 An Automatic Self-Checking and Healing Physically Unclonable Function (PUF) with <3×10-8 Bit Error Rate ». Dans 2021 IEEE International Solid- State Circuits Conference (ISSCC). IEEE, 2021. http://dx.doi.org/10.1109/isscc42613.2021.9365741.
Texte intégralIyengar, Anirudh, Nareen Vobilisetti et Swaroop Ghosh. « Authentication of Printed Circuit Boards ». Dans ISTFA 2016. ASM International, 2016. http://dx.doi.org/10.31399/asm.cp.istfa2016p0605.
Texte intégral