Articles de revues sur le sujet « Proteins »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Proteins.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Proteins ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Boege, F. « Bence Jones-Proteine. Bence Jones Proteins ». LaboratoriumsMedizin 23, no 9 (janvier 1999) : 477–82. http://dx.doi.org/10.1515/labm.1999.23.9.477.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Thorp, H. Holden. « Proteins, proteins everywhere ». Science 374, no 6574 (17 décembre 2021) : 1415. http://dx.doi.org/10.1126/science.abn5795.

Texte intégral
Résumé :
The first protein structures were determined by x-ray crystallography in 1957 by John C. Kendrew and Max F. Perutz. As a bioinorganic chemist, I was delighted that the structures were myoglobin and hemoglobin, both heme proteins with big, beautiful iron atoms. It must have been an extraordinary experience to stare at a physical model of the structures and see something that had previously only been imagined. Not long afterward, Christian B. Anfinsen Jr. proposed that the structure of a protein was thermodynamically stable. It seemed possible that the three-dimensional structure of a protein could be predicted based on the sequence of its amino acids. This “protein-folding problem,” as it came to be known, baffled scientists until this year, when the papers we’ve deemed the 2021 Breakthrough of the Year were published.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Akhter, Tahmin, S. Kanamaru et F. Arisaka. « 2P043 Protein interactions among neck proteins, gp13/gp14, and the connector protein, gp15, of bacteriophage T4 ». Seibutsu Butsuri 45, supplement (2005) : S130. http://dx.doi.org/10.2142/biophys.45.s130_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Williams, R. J. P. « Synthetic Proteins : Designer proteins ». Current Biology 4, no 10 (octobre 1994) : 942–44. http://dx.doi.org/10.1016/s0960-9822(00)00213-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Töpfer-Petersen, E., D. Čechová, A. Henschen, M. Steinberger, A. E. Friess et A. Zucker. « Cell biology of acrosomal proteins : Zellbiologie akrosomaler Proteine ». Andrologia 22, S1 (27 avril 2009) : 110–21. http://dx.doi.org/10.1111/j.1439-0272.1990.tb02077.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Coleman, Joseph E. « Zinc Proteins : Enzymes, Storage Proteins, Transcription Factors, and Replication Proteins ». Annual Review of Biochemistry 61, no 1 (juin 1992) : 897–946. http://dx.doi.org/10.1146/annurev.bi.61.070192.004341.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Paape, M., S. Nell, S. von Bargen et J. W. Kellmann. « Identification and characterization of host proteins interacting with NSm, the Tomato spotted wilt virus movement protein ». Plant Protection Science 38, SI 1 - 6th Conf EFPP 2002 (1 janvier 2002) : S108—S111. http://dx.doi.org/10.17221/10331-pps.

Texte intégral
Résumé :
To search for host proteins involved in systemic spreading of Tomato spotted wilt virus (TSWV), the virus-encoded NSm movement protein has been utilized as a bait in yeast two-hybrid interaction trap assays. J-domain chaperones from different host species and a protein denominated At-4/1 from Arabidopsis thaliana showing homologies to myosins and kinesins were identified as NSm-interacting partners. In this communication we illustrate that following TSWV infection, J-domain proteins accumulated in systemically infected leaves of A. thaliana, whereas At-4/1 was constitutively detected in leaves of A. thaliana and Nicotiana rustica.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Doolittle, Russell F. « Proteins ». Scientific American 253, no 4 (octobre 1985) : 88–99. http://dx.doi.org/10.1038/scientificamerican1085-88.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Deisenhofer, J. « Proteins ». Current Opinion in Structural Biology 11, no 6 (1 décembre 2001) : 701–2. http://dx.doi.org/10.1016/s0959-440x(01)00273-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Brändén, Carl-Ivar, et Johann Deisenhofer. « Proteins ». Current Opinion in Structural Biology 7, no 6 (décembre 1997) : 819–20. http://dx.doi.org/10.1016/s0959-440x(97)80152-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Sleator, Roy D. « Proteins ». Bioengineered 3, no 2 (mars 2012) : 80–85. http://dx.doi.org/10.4161/bbug.18303.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Eklund, Hans, et T. Alwyn Jones. « Proteins ». Current Opinion in Structural Biology 5, no 6 (décembre 1995) : 719–20. http://dx.doi.org/10.1016/0959-440x(95)80002-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Stevens, Timothy J., et Isaiah T. Arkin. « Are membrane proteins ?inside-out ? proteins ? » Proteins : Structure, Function, and Genetics 36, no 1 (1 juillet 1999) : 135–43. http://dx.doi.org/10.1002/(sici)1097-0134(19990701)36:1<135 ::aid-prot11>3.0.co;2-i.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Jin, Wenzhen, et Syoji T. akada. « 1P103 Asymmetry in membrane protein sequence and structure : Glycine outside rule(Membrane proteins,Oral Presentations) ». Seibutsu Butsuri 47, supplement (2007) : S49. http://dx.doi.org/10.2142/biophys.47.s49_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Lan, Nan, Hanxing Zhang, Chengcheng Hu, Wenzhao Wang, Ana M. Calvo, Steven D. Harris, She Chen et Shaojie Li. « Coordinated and Distinct Functions of Velvet Proteins in Fusarium verticillioides ». Eukaryotic Cell 13, no 7 (2 mai 2014) : 909–18. http://dx.doi.org/10.1128/ec.00022-14.

Texte intégral
Résumé :
ABSTRACTVelvet-domain-containing proteins are broadly distributed within the fungal kingdom. In the corn pathogenFusarium verticillioides, previous studies showed that the velvet proteinF. verticillioidesVE1 (FvVE1) is critical for morphological development, colony hydrophobicity, toxin production, and pathogenicity. In this study, tandem affinity purification of FvVE1 revealed that FvVE1 can form a complex with the velvet proteinsF. verticillioidesVelB (FvVelB) and FvVelC. Phenotypic characterization of gene knockout mutants showed that, as in the case of FvVE1, FvVelB regulated conidial size, hyphal hydrophobicity, fumonisin production, and oxidant resistance, while FvVelC was dispensable for these biological processes. Comparative transcriptional analysis of eight genes involved in the ROS (reactive oxygen species) removal system revealed that both FvVE1 and FvVelB positively regulated the transcription of a catalase-encoding gene,F. verticillioidesCAT2(FvCAT2). Deletion ofFvCAT2resulted in reduced oxidant resistance, providing further explanation of the regulation of oxidant resistance by velvet proteins in the fungal kingdom.
Styles APA, Harvard, Vancouver, ISO, etc.
16

ISOBE, TAKASHI. « Amyloid proteins and amyloidosis.2 Amyloidosis of AA proteins and AL proteins. » Nihon Naika Gakkai Zasshi 82, no 9 (1993) : 1415–19. http://dx.doi.org/10.2169/naika.82.1415.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Jeffery, Constance J. « Moonlighting proteins : old proteins learning new tricks ». Trends in Genetics 19, no 8 (août 2003) : 415–17. http://dx.doi.org/10.1016/s0168-9525(03)00167-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Smith, Valerie J., et Elisabeth A. Dyrynda. « Antimicrobial proteins : From old proteins, new tricks ». Molecular Immunology 68, no 2 (décembre 2015) : 383–98. http://dx.doi.org/10.1016/j.molimm.2015.08.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

TSUGITA, AKIRA. « Ultramicroanalysis of proteins. 1. Purification of proteins. » Kagaku To Seibutsu 26, no 5 (1988) : 330–37. http://dx.doi.org/10.1271/kagakutoseibutsu1962.26.330.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Serdyuk, I. N. « Structured proteins and proteins with intrinsic disorder ». Molecular Biology 41, no 2 (avril 2007) : 262–77. http://dx.doi.org/10.1134/s0026893307020082.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Xu, Shengnan, et Hai-Yu Hu. « Fluorogen-activating proteins : beyond classical fluorescent proteins ». Acta Pharmaceutica Sinica B 8, no 3 (mai 2018) : 339–48. http://dx.doi.org/10.1016/j.apsb.2018.02.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Марьянович, Александр Тимурович, et Дмитрий Юрьевич Кормилец. « SARS CoV-2 PROTEINS AND HUMAN PROTEINS ». Russian Biomedical Research 9, no 1 (22 mai 2024) : 48–58. http://dx.doi.org/10.56871/rbr.2024.11.95.006.

Texte intégral
Résumé :
Белки SARS CoV-2 представляют собой молекулы с массой от нескольких десятков до нескольких тысяч аминокислотных остатков. Существуют структурные и неструктурные белки. К первым относятся шиповый гликопротеин, или S-белок (S), малый мембранный оболочечный белок (E), мембранный белок (M) и нуклеопротеин или нуклеокапсид (N). Вторая группа состоит из 16 неструктурных белков (Nsp1-16, включая полипротеины репликазы RPP 1a и 1ab) и 10 вспомогательных факторов или белков открытой рамки считывания (ORF3a, 3b, 6, 7a, 7b, 8, 9b, 9c, 10 и 14). Белки S, E и M, расположенные снаружи и в мембране вириона, участвуют в контакте вириона с клеткой и проникновении в нее. Другие белки участвуют в захвате внутриклеточных механизмов и их использовании в собственных интересах вируса. Большинство этих белков содержат многочисленные мотивы, гомологичные человеческим белкам, в том числе таким важным, как интерлейкин-7. Возможно, эта гомология является важным фактором, позволяющим «обмануть» иммунную систему на начальных стадиях инфекции и спровоцировать аутоиммунный ответ впоследствии. Гомология белков SARS CoV-2, с одной стороны, и белков вкусовых и обонятельных рецепторов — с другой, возможно, объясняетпричины нарушения восприятия вкусовых и обонятельных раздражителей, характерного для COVID-инфекции. SARS CoV-2 proteins are molecules with a mass of several tens to several thousand amino acid residues. There are structural and nonstructural proteins. The former include Spike glycoprotein (S), small membrane envelope protein (E), membrane protein (M), and nucleoprotein or nucleocapsid (N). The second group consists of 16 nonstructural proteins (Nsp1-16, including replicase&nbsp; polyproteins RPP 1a and 1ab) and 10 accessory factors or open reading frame proteins (ORF3a, 3b, 6, 7a, 7b, 8, 9b, 9c, 10 and 14). Proteins S, E and M, located outside and in the membrane of a virion, are involved in the contact of the virion with a cell and penetration into it. Other proteins are involved in the hijacking of intracellular mechanisms and their use in the virus’s own interests. Most of these proteins contain numerous motifs that are homologous to human proteins including such important ones as Interleukin-7. Perhaps this homology is an important factor in deceiving the immune system at the initial stages of infection and provoking an autoimmune response later. The homology of SARS CoV-2 proteins on the one hand and taste and olfactory receptor proteins on the other hand may possibly explain the causes of the impaired perception of taste and olfactory stimuli characteristic of COVID infection.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Pillai, Harikrishna, Harikumar, S. Harikumar, S, Pramod kumar, R. Pramod kumar, R et Anuraj, K. S. Anuraj, K.S. « Dna Mimicry by Proteins ». International Journal of Scientific Research 3, no 8 (1 juin 2012) : 471–72. http://dx.doi.org/10.15373/22778179/august2014/150.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Littler, Dene R., Stephen J. Harrop, Sophia C. Goodchild, Juanita M. Phang, Andrew V. Mynott, Lele Jiang, Stella M. Valenzuela et al. « The enigma of the CLIC proteins : Ion channels, redox proteins, enzymes, scaffolding proteins ? » FEBS Letters 584, no 10 (18 janvier 2010) : 2093–101. http://dx.doi.org/10.1016/j.febslet.2010.01.027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Chakraborty, Asit Kumar. « Multi-Alignment Comparison of Coronavirus Non-Structural Proteins Nsp13- Nsp16 with Ribosomal Proteins and other DNA/RNA Modifying Enzymes Suggested their Roles in the Regulation of Host Protein Synthesis ». International Journal of Clinical & ; Medical Informatics 3, no 1 (1 juin 2020) : 7–19. http://dx.doi.org/10.46619/ijcmi.2020.1024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Hung, Kuo-Wei, Chun-Chia Cheng, Yi-Chao Lin, Tsan-Hung Yu, Pei-Ju Fan, Chi-Fon Chang, Shih-Feng Tsai et Tai-Huang Huang. « 2P089 NMR Studies of Virulence-associated Proteins and Small Conserved Hypothetical Proteins in Klebsiella Pneumoniae(30. Protein function (II),Poster Session,Abstract,Meeting Program of EABS & ; BSJ 2006) ». Seibutsu Butsuri 46, supplement2 (2006) : S318. http://dx.doi.org/10.2142/biophys.46.s318_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Jeffery, Constance J. « An introduction to protein moonlighting ». Biochemical Society Transactions 42, no 6 (17 novembre 2014) : 1679–83. http://dx.doi.org/10.1042/bst20140226.

Texte intégral
Résumé :
Moonlighting proteins comprise a class of multifunctional proteins in which a single polypeptide chain performs multiple physiologically relevant biochemical or biophysical functions. Almost 300 proteins have been found to moonlight. The known examples of moonlighting proteins include diverse types of proteins, including receptors, enzymes, transcription factors, adhesins and scaffolds, and different combinations of functions are observed. Moonlighting proteins are expressed throughout the evolutionary tree and function in many different biochemical pathways. Some moonlighting proteins can perform both functions simultaneously, but for others, the protein's function changes in response to changes in the environment. The diverse examples of moonlighting proteins already identified, and the potential benefits moonlighting proteins might provide to the organism, such as through coordinating cellular activities, suggest that many more moonlighting proteins are likely to be found. Continuing studies of the structures and functions of moonlighting proteins will aid in predicting the functions of proteins identified through genome sequencing projects, in interpreting results from proteomics experiments, in understanding how different biochemical pathways interact in systems biology, in annotating protein sequence and structure databases, in studies of protein evolution and in the design of proteins with novel functions.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Ma, Yingxuan, et Kim Johnson. « Arabinogalactan-proteins ». WikiJournal of Science 4, no 1 (2021) : 2. http://dx.doi.org/10.15347/wjs/2021.002.

Texte intégral
Résumé :
Arabinogalactan-proteins (AGPs) are highly glycosylated proteins (glycoproteins) found in the cell walls of plants. AGPs account for only a small portion of the cell wall, usually no more than 1% of dry mass of the primary wall. AGPs are members of the hydroxyproline-rich glycoprotein (HRGP) superfamily that represent a large and diverse group of glycosylated wall proteins. AGPs have attracted considerable attention due to their highly complex structures and potential roles in signalling. In addition, they have industrial and health applications due to their chemical/physical properties (water-holding, adhesion and emulsification). Glycosylation can account for more than 90% of the total mass. AGPs have been reported in a wide range of higher plants in seeds, roots, stems, leaves and inflorescences. They have also been reported in secretions of cell culture medium of root, leaf, endosperm and embryo tissues, and some exudate producing cell types such as stylar canal cells are capable of producing lavish amounts of AGPs.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Löer, Birgit, et Michael Hoch. « Wech proteins ». Cell Adhesion & ; Migration 2, no 3 (juillet 2008) : 177–79. http://dx.doi.org/10.4161/cam.2.3.6579.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Yarotskyy, Viktor, et Robert T. Dirksen. « RGK proteins ». Channels 8, no 4 (juillet 2014) : 286–87. http://dx.doi.org/10.4161/chan.29982.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Flannery, Maura C. « Designing Proteins ». American Biology Teacher 48, no 2 (1 février 1986) : 112–14. http://dx.doi.org/10.2307/4448220.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Guo, Shiny Shengzhen, et Reinhard Fässler. « KANK proteins ». Current Biology 32, no 19 (octobre 2022) : R990—R992. http://dx.doi.org/10.1016/j.cub.2022.08.073.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

GÖKSEL, Şeyma, et Mustafa AKÇELİK. « Autotransporter Proteins ». Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi 13, no 3 (31 décembre 2021) : 49–57. http://dx.doi.org/10.29137/umagd.1037361.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Danilova, Lubov A. « Glycated proteins ». Pediatrician (St. Petersburg) 10, no 5 (28 janvier 2020) : 79–86. http://dx.doi.org/10.17816/ped10579-86.

Texte intégral
Résumé :
Glycation is a biological reaction that occurs in all proteins. Thisreaction proceeds more slowly in healthy subjects and more rapidly in patients suffering from a hyperglycemia. Glycated proteins cannot fulfill their functions that could lead to metabolic disorders. The process of glycation leads to building of advanced glycation end-products (AGEs). Thestructureof AGEs has not been fully researched yet. Glycated proteins have diagnostic meaning in different health conditions and not only in patients with diabetes mellitus. Determination of glycated proteins level (hemoglobin and plasma proteins) in diagnostics of diabetes mellitus and the effectiveness of its treatment; measurements of glycated proteins could be used as a predictor of different illnesses and their complications. Glycated hemoglobin was researched in children with diabetes mellitus of different severity. It has been shown that the level of glycated proteins does not always correlate with blood sugar level. Results of glycated proteins measurements in patients with thyroid disorders shows that the glycation takes place not only in patients with diabetes mellitus, but also with other illnesses without hyperglycemia. Our research in patients with diabetes mellitus has shown that the measured level of glycated proteins and plasma proteins could be more significant in the course of disease than the level of blood sugar. Compensation of diabetes mellitus in children in regard of the blood sugar level does not always correlate with the level of glycated proteins. This assumption could lead to the conclusion that only the combination of measurements like blood sugar, glycated hemoglobin and glycated proteins could give a full picture of disease compensation.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Mudgil, Yashwanti, et Alan M. Jones. « NDR proteins ». Plant Signaling & ; Behavior 5, no 8 (août 2010) : 1017–18. http://dx.doi.org/10.4161/psb.5.8.12290.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Thomas, Clément, Céline Hoffmann, Sabrina Gatti et André Steinmetz. « LIM Proteins ». Plant Signaling & ; Behavior 2, no 2 (mars 2007) : 99–100. http://dx.doi.org/10.4161/psb.2.2.3614.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Roterman, Irena, Mateusz Banach et Leszek Konieczny. « Antifreeze proteins ». Bioinformation 13, no 12 (31 décembre 2017) : 400–401. http://dx.doi.org/10.6026/97320630013400.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Glomset, John A., Michael H. Gelb et Christopher C. Farnsworth. « Geranylgeranylated proteins ». Biochemical Society Transactions 20, no 2 (1 mai 1992) : 479–84. http://dx.doi.org/10.1042/bst0200479.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

DECLERCQ, JEROEN, KAREN HENSEN, WIM J. VAN DE VEN et MARCELA CHAVEZ. « PLAG Proteins ». Annals of the New York Academy of Sciences 1010, no 1 (décembre 2003) : 264–65. http://dx.doi.org/10.1196/annals.1299.045.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Anderson, Alexandra, et Rachel McMullan. « G-proteins ». Worm 1, no 4 (octobre 2012) : 196–201. http://dx.doi.org/10.4161/worm.20466.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Demming, Anna. « Precision proteins ». Nanotechnology 21, no 23 (17 mai 2010) : 230201. http://dx.doi.org/10.1088/0957-4484/21/23/230201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

MACEK, F. « Microbial proteins. » Kvasny Prumysl 32, no 11 (1 novembre 1986) : 258–62. http://dx.doi.org/10.18832/kp1986072.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Gehring, W. J., M. Affolter et T. Burglin. « Homeodomain Proteins ». Annual Review of Biochemistry 63, no 1 (juin 1994) : 487–526. http://dx.doi.org/10.1146/annurev.bi.63.070194.002415.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Willert, K., et R. Nusse. « Wnt Proteins ». Cold Spring Harbor Perspectives in Biology 4, no 9 (1 septembre 2012) : a007864. http://dx.doi.org/10.1101/cshperspect.a007864.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Sansom, Clare. « Fluorescent proteins ». Biochemist 35, no 5 (1 octobre 2013) : 40–41. http://dx.doi.org/10.1042/bio03505040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Yost, C. Spencer. « G Proteins ». Anesthesia & ; Analgesia 77, no 4 (octobre 1993) : 822???834. http://dx.doi.org/10.1213/00000539-199310000-00029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Vale, Ronald D. « Aaa Proteins ». Journal of Cell Biology 150, no 1 (10 juillet 2000) : F13—F20. http://dx.doi.org/10.1083/jcb.150.1.f13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Fujiwara, Toru, Eiji Nambara, Kazutoshi Yamagishi, Derek B. Goto et Satoshi Naito. « Storage Proteins ». Arabidopsis Book 1 (janvier 2002) : e0020. http://dx.doi.org/10.1199/tab.0020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Bussell, Katrin. « Territorial proteins ». Nature Reviews Molecular Cell Biology 5, no 10 (octobre 2004) : 774. http://dx.doi.org/10.1038/nrm1514.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Brummer, Tilman, Carsten Schmitz-Peiffer et Roger J. Daly. « Docking proteins ». FEBS Journal 277, no 21 (30 septembre 2010) : 4356–69. http://dx.doi.org/10.1111/j.1742-4658.2010.07865.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie