Littérature scientifique sur le sujet « Proteine antigelo »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Proteine antigelo ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Proteine antigelo"
Fernández-Quintero, Monica L., Johannes R. Loeffler, Franz Waibl, Anna S. Kamenik, Florian Hofer et Klaus R. Liedl. « Conformational selection of allergen-antibody complexes—surface plasticity of paratopes and epitopes ». Protein Engineering, Design and Selection 32, no 11 (novembre 2019) : 513–23. http://dx.doi.org/10.1093/protein/gzaa014.
Texte intégralMavenyengwa, Rooyen T., Johan A. Maeland et Sylvester R. Moyo. « Putative Novel Surface-Exposed Streptococcus agalactiae Protein Frequently Expressed by the Group B Streptococcus from Zimbabwe ». Clinical and Vaccine Immunology 16, no 9 (8 juillet 2009) : 1302–8. http://dx.doi.org/10.1128/cvi.00133-09.
Texte intégralElkon, K. B., et P. W. Jankowski. « Fine specificities of autoantibodies directed against the Ro, La, Sm, RNP, and Jo-1 proteins defined by two-dimensional gel electrophoresis and immunoblotting. » Journal of Immunology 134, no 6 (1 juin 1985) : 3819–24. http://dx.doi.org/10.4049/jimmunol.134.6.3819.
Texte intégralDelaney, Kristen N., et Steven B. Mizel. « A vaccine containing recombinant poxvirus proteins and flagellin promotes protective immunity against vaccinia virus (132.17) ». Journal of Immunology 182, no 1_Supplement (1 avril 2009) : 132.17. http://dx.doi.org/10.4049/jimmunol.182.supp.132.17.
Texte intégralLichtenwalner, Anne B., Dorothy L. Patton, Wesley C. Van Voorhis, Yvonne T. Cosgrove Sweeney et Cho-Chou Kuo. « Heat Shock Protein 60 Is the Major Antigen Which Stimulates Delayed-Type Hypersensitivity Reaction in the Macaque Model of Chlamydia trachomatis Salpingitis ». Infection and Immunity 72, no 2 (février 2004) : 1159–61. http://dx.doi.org/10.1128/iai.72.2.1159-1161.2004.
Texte intégralYu, Hong, Karuna P. Karunakaran, Xiaozhou Jiang, Caixia Shen, Peter Andersen et Robert C. Brunham. « Chlamydia muridarum T Cell Antigens and Adjuvants That Induce Protective Immunity in Mice ». Infection and Immunity 80, no 4 (30 janvier 2012) : 1510–18. http://dx.doi.org/10.1128/iai.06338-11.
Texte intégralRennert, Paul, Lan Wu, Lihe Su, Roy Lobb et Christine Ambrose. « 160 Evaluation and development of dual and triple antigen targeting CAR-T Engager proteins for Her2-positive CNS metastases and solid tumors ». Journal for ImmunoTherapy of Cancer 9, Suppl 2 (novembre 2021) : A170. http://dx.doi.org/10.1136/jitc-2021-sitc2021.160.
Texte intégralKim, Ae, Isamu Hartman et Scheherazade Sadegh-Nasseri. « A cell free antigen processing system identifies immunodominant epitopes (78.19) ». Journal of Immunology 182, no 1_Supplement (1 avril 2009) : 78.19. http://dx.doi.org/10.4049/jimmunol.182.supp.78.19.
Texte intégralZou, Jin-Tao, Hai-Ming Jing, Yue Yuan, Lang-Huan Lei, Zhi-Fu Chen, Qiang Gou, Qing-Shan Xiong et al. « Pore-forming alpha-hemolysin efficiently improves the immunogenicity and protective efficacy of protein antigens ». PLOS Pathogens 17, no 7 (21 juillet 2021) : e1009752. http://dx.doi.org/10.1371/journal.ppat.1009752.
Texte intégralArribillaga, Laura, Maika Durantez, Teresa Lozano, Francesc Rudilla, Federico Rehberger, Noelia Casares, Lorea Villanueva et al. « A Fusion Protein between Streptavidin and the Endogenous TLR4 Ligand EDA Targets Biotinylated Antigens to Dendritic Cells and Induces T Cell ResponsesIn Vivo ». BioMed Research International 2013 (2013) : 1–9. http://dx.doi.org/10.1155/2013/864720.
Texte intégralThèses sur le sujet "Proteine antigelo"
MANGIAGALLI, MARCO. « Structural and functional analyses of an ice-binding protein from an Antarctic bacterium ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241269.
Texte intégralIce-binding proteins (IBPs) are characterized by the ability to control the growth of ice crystals. IBPs are active in increasing thermal hysteresis (TH) gap as they decrease the freezing point of water. On the other hand, IBPs can inhibit ice recrystallization (IRI) and stabilize small ice crystals at the expense of the harmful, large ones. IBPs have been identified in several organisms including higher Eukaryotes and microorganisms such as bacteria, yeasts and algae. Although IBPs share the ability to bind ice crystals, proteins from different sources present different 3D structures, from α-helix to β-solenoid proteins. This thesis is focused on the structural and functional characterization of EfcIBP, a bacterial IBP identified by metagenomic analysis of the Antarctic ciliate Euplotes focardii and the associated consortium of non-cultivable bacteria. The 3D structure of EfcIBP, solved by X-ray crystallography, consists in a β-solenoid with an α-helix aligned along the axis of the β-helix. It is possible to distinguish three different faces: A, B and C. Docking simulations suggest that B and C faces are involved in ice binding. This hypothesis was tested by the rational design of six variants that were produced and assayed for their activity. Overall, these experiments indicate that both solenoid faces contribute to the activity of EfcIBP. EfcIBP displays remarkable IRI activity at nanomolar concentration and a TH activity of 0.53°C at the concentration of 50 μM. The atypical combination between these two activities could stem from the ability of this protein to bind ice crystals through two faces of the solenoid. In the presence of EfcIBP, ice crystals show a hexagonal trapezohedron shape within the TH gap, and a unique “Saturn-shape” below the freezing point. A chimeric protein consisting of the fusion between EfcIBP and the green fluorescent protein was used to deeper investigate on this aspects by analyses of fluorescence ice plane affinity and binding kinetics. Overall, experimental data suggest that the EfcIBP unique pattern of ice growth and burst are due to its high rate of binding at the basal and the pyramidal near-basal planes of ice crystals. These data, together with the signal sequence for the secretion, suggest that EfcIBP is secreted in local environment where it becomes active in increasing the habitable space. In conclusion, EfcIBP is a new type of IBP with unusual properties of ice shaping and IRI activity. This study opens new scenarios in the field of IBPs by contributing to identify a new class of moderate IBPs potentially exploitable as cryoprotectants in several fields, such as cryobiology and food science.
Varelias, Antiopi. « Studies of CD44 variant isoform expression and function on activated human peripheral blood mononuclear cells and in renal transplantation ». Title page, summary and contents only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phv293.pdf.
Texte intégralWinchester, Christopher Charles. « The roles of Hsp70 proteins in antigen processing and presentation ». Thesis, University of Oxford, 1997. http://ora.ox.ac.uk/objects/uuid:567dff45-08ce-43b4-b011-d08afea42f76.
Texte intégralMalhotra, Shikha. « B-cell-antigen receptor endocytosis uses a distinct signaling pathway, involving LAB, Vav, dynamin and Grb2 ». Oklahoma City : [s.n.], 2009.
Trouver le texte intégralMENTO, ALFREDO. « Unconventional purification and labelling strategies of bioreagents for immunodiagnostic assays ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/309986.
Texte intégralAntigens and antibodies are key reagents for the development of accurate, reproducible and sensible immunodiagnostic assays, which are widely used for the detection of infectious diseases (HIV,HBV, HCV, etc.) and the determination of biological markers (vitamins, hormones, etc.). These bioreagents need to be produced at a high purity degree, in stable formulations and with sufficient reproducibility over time (lot to lot consistency). An aspect often overlooked in the production of these reagents is their cost, which must be low enough to not have a significant impact on the final price of the immunochemical assays. The purification and labeling steps of these bioreagents mainly affect the overall cost of them since costly reagents and instrumentations and complex and time-consuming protocols are used.For all these reasons it is important to seek new purification strategies that allow the development of simpler processes, with less use of reagents and shorter protocol times, and at the end minor costs. Therefore, it is necessary to develop innovative purifications and site-specific labelling protocols. In the first part of this project we exploited the ELP-intein system. This method is based on the combination of two technological tools, the Elastin-like-polypeptides (ELPs) (a physico-chemical tool) and the MxeGyrA intein activity (a biochemical tool), belonging to the cis intein family. We focused on the purification and labelling of the C33 antigen from Hepatitis C Virus (HCV). The C33 antigen, which is currently used in the Diasorin LIAISON® XL Murex HCV assay for the detection of human antibodies against the Hepatitis C Virus, was purified using a not conventional purification method without chromatographic steps. Moreover, we realized a site-specific biotinylation of C33 antigen at its C-terminus during the purification exploiting the MxeGyrA intein biological activity. Two different protocols were developed; both of them brought to the obtainment of a biotinylated C33 antigen with high purity and a comparable immunoreactivity with the one currently used in the Diasorin LIAISON® XL Murex HCV assay. In light of these good results, in the second part of the project, we investigated the possibility to apply the Protein Trans Splicing (PTS) technology to perform site-specific labelling of bioreagents. PTS technology exploits the split intein activity. In particular, in our experiments we used the Cfa split-intein which derives from a mutagenesis process of the natural Npu split-intein that significantly improved its kinetic of PTS, thermal stability and tolerance at the chaotropic agents. This new technique allowed us to set up a site-specific labelling protocol for the production of biotinylated bioreagents. Two model protein were used: the same C33 antigen and a recombinant human IgG. Also the use of PTS technique permitted to obtain for both of two proteins a high purity and a comparable performance in the immunoassays. In summary, the ELP-intein system allowed to purify the C33 antigen without chromatographic steps and then to site-specific label the same protein at the C-terminus. Moreover, through the use of the Cfa split-intein system we obtained the site-specific biotinylation of the C33 antigen and the recombinant IgG. A very relevant aspects is that all these proteins are functional in the LIAISON platform. In the future, these protocols could be used for the purification and-or the site-specific labelling of new bioreagents useful for the development of immunodiagnostic assays.
Lot, Perrine. « Les protéines antigel ». Paris 5, 1988. http://www.theses.fr/1988PA05P219.
Texte intégralSchumacher, Dominik. « Site-specific functionalization of antigen binding proteins for cellular delivery, imaging and target modulation ». Doctoral thesis, Humboldt-Universität zu Berlin, 2017. http://dx.doi.org/10.18452/18547.
Texte intégralAntibodies and antigen binding proteins conjugated to fluorophores, tracers and drugs are powerful molecules that enabled the development of valuable diagnostic and therapeutic tools. However, the conjugation itself is highly challenging and despite intense research efforts remains a severe bottleneck. In addition to that, antibodies and antigen binding proteins are often not functional within cellular environments and unable to penetrate the cellular membrane. Therefore, their use is limited to extracellular targets leaving out a vast number of important antigens. Both limitations are core aspects of the presented thesis. With Tub-tag labeling, a novel and versatile method for the site-specific functionalization of biomolecules and antigen binding proteins was developed expanding the toolbox of protein functionalization. The method is based on the microtubule enzyme tubulin tyrosine ligase. Tub-tag labeling was successfully applied for the site-specific functionalization of different proteins including antigen binding nanobodies which enabled confocal microscopy, protein enrichment and super-resolution microscopy. In addition to that, cell permeable antigen binding nanobodies have been generated constituting a long thought goal of tracking and manipulating intracellular targets by in vitro functionalized antigen binding proteins. To achieve this goal, two different nanobodies were functionalized at their C-terminus with linear and cyclic cell-penetrating peptides using expressed protein ligation. These peptides triggered the endocytosis independent uptake of the nanobodies with immediate bioavailability. Taken together, Tub-tag labeling and the generation of cell-permeable antigen binding nanobodies strongly add to the functionalization of antibodies and their use in biochemistry, cell biology and beyond.
Heinrich, Garrett. « A role for CEACAM proteins in energy balance and peripheral insulin action ». Toledo, Ohio : University of Toledo, 2010. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=mco1272976279.
Texte intégral"Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Sciences." Title from title page of PDF document. "A Dissertation entitled"--at head of file. Bibliography: p. 37-41, 77-82, 102-107, 124-125, 153-160, 195-199, 221-254.
Eynon, Elizabeth E. « Small B Cells as Antigen Presenting Cells in the Induction of Tolerance to Soluble Protein Antigens : A Dissertation ». eScholarship@UMMS, 1991. https://escholarship.umassmed.edu/gsbs_diss/185.
Texte intégralScott, Carol Elizabeth DeWeese. « Molecular modeling and experimental characterization of HLA-DQ proteins and protein/peptide complexes : correlation with insulin-dependent diabetes mellitus (IDDM) / ». Thesis, Connect to this title online ; UW restricted, 1997. http://hdl.handle.net/1773/8089.
Texte intégralLivres sur le sujet "Proteine antigelo"
1929-, Laver William Graeme, Air Gillian et Cold Spring Harbor Laboratory, dir. Immune recognition of protein antigens. Cold Spring Harbor, N.Y : Cold Spring Harbor Laboratory, 1985.
Trouver le texte intégralZ, Atassi M., et Abbott Laboratories, dir. Immunobiology of proteins and peptides IV : T-cell recognition and antigen presentation. New York : Plenum Press, 1987.
Trouver le texte intégralLee, Hoyun. Proliferating cell nuclear antigen (PCNA). Trivandrum, Kerala, India : Research Signpost, 2006.
Trouver le texte intégralInternational Symposium on the Immunobiology of Proteins and Peptides (3rd 1984 Tahoe City, Calif.). Immunobiology of proteins and peptides III : Viral and bacterial antigens. New York : Plenum Press, 1985.
Trouver le texte intégralAdhesion-GPCRs structure to function. New York, N.Y : Springer Science+Business Media, 2010.
Trouver le texte intégralVan Regenmortel, M. H. V., dir. Structure of antigens. Boca Raton, Fla : CRC Press, 1992.
Trouver le texte intégralNitsche, Fiona. Studies on the Epstein-Barr virus antigen leader protein. Birmingham : University of Birmingham, 1998.
Trouver le texte intégralShand, Geoffrey Harold. Antibiotic resistance and outer membrane protein antigens of Pseudomonas aeruginasa. Birmingham : University of Aston. Department of Pharmaceutical Sciences, 1985.
Trouver le texte intégralBerezin, V. A. Spet͡s︡ificheskie belki nervnoĭ tkani. Kiev : Nauk. dumka, 1990.
Trouver le texte intégral1932-, Haber Edgar, dir. Antigen binding molecules : Antibodies and T-cell receptors. San Diego : Academic Press, 1996.
Trouver le texte intégralChapitres de livres sur le sujet "Proteine antigelo"
Palacio-Castañeda, Valentina, Roland Brock et Wouter P. R. Verdurmen. « Generation of Protein-Phosphorodiamidate Morpholino Oligomer Conjugates for Efficient Cellular Delivery via Anthrax Protective Antigen ». Dans Methods in Molecular Biology, 129–41. New York, NY : Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2010-6_8.
Texte intégralPaxton, Raymond J., et John E. Shively. « Structural Analysis of Carcinoembryonic Antigen (CEA) and a Related Tumor-Associated Antigen (TEX) ». Dans Proteins, 699–710. Boston, MA : Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1787-6_71.
Texte intégralReiss, Errol, et Sandra L. Bragg. « Immunochemical Analysis of Histoplasmin Proteins and Polysaccharide ». Dans Fungal Antigens, 417–30. Boston, MA : Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0773-0_65.
Texte intégralBertina, R. M. « Protein S antigen ». Dans ECAT Assay Procedures A Manual of Laboratory Techniques, 99–108. Dordrecht : Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2992-3_12.
Texte intégralBertina, R. M. « Protein S antigen ». Dans Laboratory Techniques in Thrombosis - a Manual, 141–51. Dordrecht : Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4722-4_15.
Texte intégralKuroda, Daisuke, et Kouhei Tsumoto. « Structural Classification of CDR-H3 in Single-Domain VHH Antibodies ». Dans Computer-Aided Antibody Design, 61–79. New York, NY : Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2609-2_2.
Texte intégralWard, Tony Milford. « Carcinoembryonic Antigen ». Dans Proteins and Tumour Markers May 1995, 973–98. Dordrecht : Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0681-8_22.
Texte intégralVigneron, Nathalie, Wenbin Ma, Alexandre Michaux et Benoît J. Van den Eynde. « Identifying Source Proteins for MHC Class I-Presented Peptides ». Dans Antigen Processing, 187–207. Totowa, NJ : Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-218-6_16.
Texte intégralBricker, Betsy J., Robert R. Wagner et Jay W. Fox. « Immunoprotection — A Novel Approach for Mapping Epitopes on an Antigen ». Dans Proteins, 479–86. Boston, MA : Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1787-6_48.
Texte intégralWalseng, Even, et Paul A. Roche. « Monitoring Protein Endocytosis and Recycling Using FACS-Based Assays ». Dans Antigen Processing, 279–88. New York, NY : Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9450-2_20.
Texte intégralActes de conférences sur le sujet "Proteine antigelo"
Beardsley, D. S. « IMMUNE THROMBOCYTOPENIA (ITP) : PLATELET TARGET ANTIGENS OF THE ANTIBODIES IN DIFFERENT CLINICAL SETTINGS ». Dans XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644757.
Texte intégralChurch, W., T. Messier, P. Howard, J. Amiral, D. Meyer et K. Mam. « A SHARED EPITOPE ON HUMAN PROTEIN C, FACTOR X, FACTOR VII, AND PROTTOBIN DEFINED BY A MONOCLONAL ANTIBODY ». Dans XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643937.
Texte intégralHopmeier, P., M. Halbmayer, H. P. Schwarz, F. Heuss et M. Fischer. « PROTEIN C AND PROTEIN S IN MILD AND MODERATE PREECLAMPSIA ». Dans XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644285.
Texte intégralVigano D'Angelo, S., F. Gilardoni, M. P. Seveso, A. Marassi, G. Mari et A. D'Angelo. « REDUCTION OF THE ANTICOAGULANT ACTIVITY OF PROTEIN C AND PROTEIN S DURING THE POSTOPERATIVE PERIOD ». Dans XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644287.
Texte intégralD'Angelo, A., F. Gilardoni, M. P. Seveso, P. Poli, R. Quintavalle et C. Manotti. « ANTICOAGULANT AND ANTIGENIC LEVELS OF PROTEIN C AND PROTEIN S IN PATIENTS ON STABILIZED ORAL ANTICOAGULANT TREATMENT ». Dans XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644286.
Texte intégralComp, P. C., et C. T. Esmon. « Defects in the protein C pathway ». Dans XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643715.
Texte intégralKlein, Kevin M., Gregory T. Ostrowicki, Andrew Gerwitz et Suresh K. Sitaraman. « Micro and Nano Thin Film Devices as Bio-Assays for Cancer Diagnosis ». Dans ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15581.
Texte intégralNovikova, L. I., S. S. Bochkareva, A. V. Aleshkin, S. IU Kombarova, O. E. Karpov, A. A. Pulin, O. A. Orlova, IU S. Lebedin, A. M. Vorobev et E. R. Mekhtiev. « DYNAMICS OF ANTIBODIES TO VARIOUS ANTIGENS OF THE SARS-COV-2 CORONAVIRUS IN PATIENTS WITH CONFIRMED COVID-19 INFECTION ». Dans Molecular Diagnostics and Biosafety. Federal Budget Institute of Science 'Central Research Institute for Epidemiology', 2020. http://dx.doi.org/10.36233/978-5-9900432-9-9-159.
Texte intégralSugo, T., S. Tanabe, K. Shinoda et M. Matsuda. « MONOCLONAL ANTIBODIES THAT RECOGNIZE Ca2+-INDUCED CONFORMER OF PROTEIN C, INDEPENDENT OF GLA RESIDUES ». Dans XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643644.
Texte intégralMallakin, Ali, Kazushi Inoue et Martin Guthold. « In-Situ Quantitative Analysis of Tumor Suppressor Protein (hDMP1) Using a Nanomechanical Cantilever Beam ». Dans ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84503.
Texte intégralRapports d'organisations sur le sujet "Proteine antigelo"
Bercovier, Herve, Raul Barletta et Shlomo Sela. Characterization and Immunogenicity of Mycobacterium paratuberculosis Secreted and Cellular Proteins. United States Department of Agriculture, janvier 1996. http://dx.doi.org/10.32747/1996.7573078.bard.
Texte intégralBecker, Yechiel, Richard Witter et Mertyn Malkinson. Studies on Marek's Disease Virus Antigen B Proteins and Gene. United States Department of Agriculture, mai 1992. http://dx.doi.org/10.32747/1992.7599674.bard.
Texte intégralVakharia, Vikram, Shoshana Arad, Yonathan Zohar, Yacob Weinstein, Shamila Yusuff et Arun Ammayappan. Development of Fish Edible Vaccines on the Yeast and Redmicroalgae Platforms. United States Department of Agriculture, février 2013. http://dx.doi.org/10.32747/2013.7699839.bard.
Texte intégralOldstone, Michael B. Proteins of Human Immunodeficiency Virus that Cross-React with Human 'Self' Antigens. Fort Belvoir, VA : Defense Technical Information Center, novembre 1991. http://dx.doi.org/10.21236/ada246936.
Texte intégralMcElwain, Terry F., Eugene Pipano, Guy H. Palmer, Varda Shkap, Stephn A. Hines et Wendy C. Brown. Protection of Cattle against Babesiosis : Immunization against Babesia bovis with an Optimized RAP-1/Apical Complex Construct. United States Department of Agriculture, septembre 1999. http://dx.doi.org/10.32747/1999.7573063.bard.
Texte intégralLillehoj, Hyun, Dan Heller et Mark Jenkins. Cellular and molecular identification of Eimeria Acervulina Merozoite Antigens eliciting protective immunity. United States Department of Agriculture, novembre 1992. http://dx.doi.org/10.32747/1992.7561056.bard.
Texte intégralMcClure, Michael A., Yitzhak Spiegel, David M. Bird, R. Salomon et R. H. C. Curtis. Functional Analysis of Root-Knot Nematode Surface Coat Proteins to Develop Rational Targets for Plantibodies. United States Department of Agriculture, octobre 2001. http://dx.doi.org/10.32747/2001.7575284.bard.
Texte intégralPleva, Christina M., Tracey A. Hamilton, John P. Petrali et Robert K. Kan. Determining Optimal Microwave Antigen Retrieval Conditions for Microtubule-Associated Protein 2 Immunohistochemistry in the Guinea Pig Brain. Fort Belvoir, VA : Defense Technical Information Center, décembre 2002. http://dx.doi.org/10.21236/ada417833.
Texte intégralGershoni, Jonathan M., David E. Swayne, Tal Pupko, Shimon Perk, Alexander Panshin, Avishai Lublin et Natalia Golander. Discovery and reconstitution of cross-reactive vaccine targets for H5 and H9 avian influenza. United States Department of Agriculture, janvier 2015. http://dx.doi.org/10.32747/2015.7699854.bard.
Texte intégralBrayton, Kelly A., Varda Shkap, Guy H. Palmer, Wendy C. Brown et Thea Molad. Control of Bovine Anaplasmosis : Protective Capacity of the MSP2 Allelic Repertoire. United States Department of Agriculture, janvier 2014. http://dx.doi.org/10.32747/2014.7699838.bard.
Texte intégral