Littérature scientifique sur le sujet « Protein N-terminal modifications »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Protein N-terminal modifications ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Protein N-terminal modifications"
Lai, Zon W., Agnese Petrera et Oliver Schilling. « Protein amino-terminal modifications and proteomic approaches for N-terminal profiling ». Current Opinion in Chemical Biology 24 (février 2015) : 71–79. http://dx.doi.org/10.1016/j.cbpa.2014.10.026.
Texte intégralVoronina, A. I., Yu V. Miroshnichenko et V. S. Skvortsov. « Bioinformatic identification of proteins with altered PTM levels in a mouse line established to study the mechanisms of the development of fibromuscular dysplasia ». Biomeditsinskaya Khimiya 70, no 4 (2024) : 248–55. http://dx.doi.org/10.18097/pbmc20247004248.
Texte intégralYu, Guann-Yi, Ki-Jeong Lee, Lu Gao et Michael M. C. Lai. « Palmitoylation and Polymerization of Hepatitis C Virus NS4B Protein ». Journal of Virology 80, no 12 (15 juin 2006) : 6013–23. http://dx.doi.org/10.1128/jvi.00053-06.
Texte intégralDissmeyer, Nico. « Conditional Protein Function via N-Degron Pathway–Mediated Proteostasis in Stress Physiology ». Annual Review of Plant Biology 70, no 1 (29 avril 2019) : 83–117. http://dx.doi.org/10.1146/annurev-arplant-050718-095937.
Texte intégralMeinnel, Thierry, et Carmela Giglione. « Tools for analyzing and predicting N-terminal protein modifications ». PROTEOMICS 8, no 4 (février 2008) : 626–49. http://dx.doi.org/10.1002/pmic.200700592.
Texte intégralRose, K., P. O. Regamey, R. Anderegg, T. N. C. Wells et A. E. I. Proudfoot. « Human interleukin-5 expressed in Escherichia coli has N-terminal modifications ». Biochemical Journal 286, no 3 (15 septembre 1992) : 825–28. http://dx.doi.org/10.1042/bj2860825.
Texte intégralLee, Seon Hwa, et Tomoyuki Oe. « Oxidative stress-mediated N-terminal protein modifications and MS-based approaches for N-terminal proteomics ». Drug Metabolism and Pharmacokinetics 31, no 1 (février 2016) : 27–34. http://dx.doi.org/10.1016/j.dmpk.2015.12.002.
Texte intégralOuidir, Tassadit, Frédérique Jarnier, Pascal Cosette, Thierry Jouenne et Julie Hardouin. « Characterization of N-terminal protein modifications in Pseudomonas aeruginosa PA14 ». Journal of Proteomics 114 (janvier 2015) : 214–25. http://dx.doi.org/10.1016/j.jprot.2014.11.006.
Texte intégralGiglione, Carmela, Sonia Fieulaine et Thierry Meinnel. « N-terminal protein modifications : Bringing back into play the ribosome ». Biochimie 114 (juillet 2015) : 134–46. http://dx.doi.org/10.1016/j.biochi.2014.11.008.
Texte intégralVan Damme, Petra. « Charting the N-Terminal Acetylome : A Comprehensive Map of Human NatA Substrates ». International Journal of Molecular Sciences 22, no 19 (2 octobre 2021) : 10692. http://dx.doi.org/10.3390/ijms221910692.
Texte intégralThèses sur le sujet "Protein N-terminal modifications"
Xie, Dong. « Uncovering the maturation pathway of plant Rubisco ». Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL080.
Texte intégralDuring photosynthesis, atmospheric carbon dioxide (CO₂), the prevalent anthropogenic greenhouse gas, is assimilated into carbohydrates by the enzyme Rubisco, the most abundant protein on earth. The large subunit of Rubisco (RbcL) undergoes a unique maturation pathway leading to unusual N-terminal modifications. This mechanism is conserved in plants, resulting in an N-terminal acetylated proline at position 3. Unravelling the maturation pathway of Rubisco is therefore a key challenge for CO₂ fixation in the context of climate change and global warming. My PhD project aimed at discovering the machinery leading to Pro3 acetylation and unmasking the associated functional relevance. First, two open reading frames (ORFs) in Arabidopsis thaliana were identified as putative candidates that might contribute to the proteolytic part of this process. The functions of two conserved aminopeptidases were challenged in vitro assay and in knockout Arabidopsis thaliana lines. I showed that one protease is specifically in charge of residue 2 release, while the second does not contribute to N-terminal protein maturation in the plastid. In addition, my data demonstrates that Pro3 acetylation is catalysed by only one acetyltransferase isoform occurring in the plastid. Together, the unique N-terminal modification machinery involved in RbcL processing relies on two enzymes that are dedicated to RbcL processing. I could reconstitute the maturation pathway in E. coli. Finally, I have investigated how the N-terminal modifications of RbcL affect Rubisco assembly, activity, and accumulation
Connor, Rebecca E. Barton Jacqueline K. Tirrell David A. « N-terminal modification and codon reassignment with non-canonical amino acids in proteins / ». Diss., Pasadena, Calif. : California Institute of Technology, 2008. http://resolver.caltech.edu/CaltechETD:etd-03052008-065324.
Texte intégralLiu, Li. « Purification and characterization of a protein palmitoyltransferase that acts on H-Ras protein and on a C-terminal N-Ras peptide / ». Thesis, Connect to this title online ; UW restricted, 1996. http://hdl.handle.net/1773/8664.
Texte intégralLavecchia, Francesco. « Integrative Approaches to Decode the Co-translational Role of the Phage Vp16 Peptide Deformylase and how it Compromises Host Viability ». Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS004/document.
Texte intégralN-terminal Methionine Excision (NME) is the first occurring N-terminal Protein Modification (NPMs). Peptide deformylases (PDFs) are the enzymes involved in this essential and conserved co-translational process. PDFs remove the formyl group bound to the iMet present at the beginning of all prokaryotic nascent chains. PDFs act on the nascent chain at the level of the ribosome exit tunnel, a central hub for a number of Ribosome-associated Protein Biogenesis factors (RPBs) involved not only on NPMs but also in protein folding and translocation. Deformylation involves 95% of bacterial proteome and it is suggested to directly contribute to protein stability. Recent high-throughput sequencing of thousands of genomes has strongly contributed to revolutionizing our perception of the distribution of PDFs among kingdoms, revealing putative PDFs in all organisms, including viruses. In particular, studies of viruses within oceanic microbial samples retrieved unusual PDFs genes as the most abundant family in most of phage genomes. Sequence comparisons reveal that viral PDFs show high conservation in the three motifs that build the catalytic site; however, viral PDFs do not display a C-terminal extension when compared to the different active PDFs from other organisms. Since this C-terminal extension was shown to be important for PDF-ribosome binding and is required for the in vivo deformylase activity of E. coli PDF, it was unclear whether the discovered phage PDFs might support a classical deformylase activity. Thus, the discovery of these viral PDFs raises a number of questions among which: a) Have these viral PDFs a classical deformylase activity? b) Are these PDFs able to still bind to the ribosomes? c) Why so many viruses carry a peptide deformylase? In this context, the objective of my thesis was to undertake the characterization of these marine phage PDFs and particularly Vp16 PDF derived from the bacteriophages originally isolated from Vibrio Parahaemolyticus strain 16. Our studies reveal that phage PDFs display deformylase activity both in vitro and in vivo with a substrate specificity similar to that of other bacterial PDFs. On the other hand, we showed by biochemical and structural data, combined with site-directed mutagenesis analyses, that Vp16 PDF significantly differs from previously characterized PDFs in terms of their properties, which can be related to its few uncommon peculiarities. Interestingly, expression of Vp16 PDF in E. coli strains, even at low concentrations, exhibited a severe bactericidal effect at temperature lower than 37 °C. This bactericidal effect of Vp16 PDF was independent of the presence of the bacterial endogenous PDF and strictly relied on its PDF activity. Characterization of this phenotype revealed that Vp16 PDF-induced lethality showed a strong genetic link with genes encoding cellular factors involved in nascent pre-secretory protein targeting and folding (Trigger Factor and Sec). Differently from bacterial PDF, I could show that Vp16 PDF has strong affinity for ribosomes with a specific nascent chain, interacting with a ribosomal region overlapping that of factors involved in pre-secretory protein targeting. A competition between Vp16 PDF and these RPBs at the level of the ribosome may contribute to the host lysis, revealing a possible new unrecognized mechanism developed by viruses to control host viability
Kshetri, Man B. « N-TERMINAL DOMAIN OF rRNA METHYLTRANSFERASE ENZYME RsmC IS IMPORTANT FOR ITS BINDING TO RNA AND RNA CHAPERON ACTIVITY ». Kent State University Honors College / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ksuhonors1621007414429417.
Texte intégralEl, Barbry Houssam. « Découverte du rôle crucial du résidu en position 2 des séquences MTS d’adressage mitochondrial ». Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS035.
Texte intégralMitochondria are complex organelles involving a thousand proteins, most of which are encoded in the nuclear genome. Their biogenesis has required the evolutionary development of efficient protein addressing and import systems, and failures of these systems are associated with serious pathologies, neuropathies, cardiovascular disorders, myopathies, neurodegenerative diseases and cancers.Many mitochondrial proteins have an N-terminal addressing sequence called MTS (Mitochondrial Targeting Sequence) which forms an amphiphilic alpha helix essential for their mitochondrial import. However, the sequence of the various MTSs is highly variable and their critical characteristics are not yet well understood. The starting point of my thesis was the discovery in yeast of an overrepresentation of 4 hydrophobic amino acids (F, L, I, W) at position 2 of the MTSs sequences. During my thesis, I was able to confirm the critical role of the nature of the residue in position 2 of the MTSs through directed mutagenesis experiments. Indeed, thanks to the development of an innovative system for screening import defects based on the functional rescue of the toxicity of a mitochondrial protein, I was able to observe that only residues overrepresented at position 2 of mitochondrial proteins allowed efficient import. My work has thus demonstrated the existence of strong evolutionary constraints at position 2 of MTSs, the understanding of which could ultimately be useful for optimising the mitochondrial addressing of therapeutic proteins in patients suffering from mitochondrial diseases
Zákoucká, Eva. « Proteomická a bioinformatická charakterizace N-terminálních sekvencí proteinů modifikovaných po importu do hydrogenosomu Trichomonas vaginalis ». Master's thesis, 2014. http://www.nusl.cz/ntk/nusl-337356.
Texte intégralConnor, Rebecca Elizabeth. « N-Terminal Modification and Codon Reassignment with Non-Canonical Amino Acids in Proteins ». Thesis, 2008. https://thesis.library.caltech.edu/878/8/ConnorTOC.pdf.
Texte intégralLivres sur le sujet "Protein N-terminal modifications"
Wetzel, Ronald, et Rakesh Mishra. Structural Biology. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199929146.003.0012.
Texte intégralChapitres de livres sur le sujet "Protein N-terminal modifications"
Ciechanover, Aaron. « N-terminal Ubiquitination : No Longer Such a Rare Modification ». Dans Protein Degradation, 10–20. Weinheim, FRG : Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/352760586x.ch2.
Texte intégralAcikalin Coskun, Kubra, Nazlıcan Yurekli, Elif Cansu Abay, Merve Tutar, Mervenur Al et Yusuf Tutar. « Structure- and Design-Based Difficulties in Recombinant Protein Purification in Bacterial Expression ». Dans Protein Detection [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.103958.
Texte intégralArnesen, Thomas. « Preface – The impact of protein N- and C-terminal modifications ». Dans Methods in Enzymology, xv—xviii. Elsevier, 2023. http://dx.doi.org/10.1016/s0076-6879(23)00248-3.
Texte intégralBarlowe, Charles, Randy Schekman et Aki Nakano. « Sarlp ». Dans Guidebook to the Sinall GTPases, 450–51. Oxford University PressOxford, 1995. http://dx.doi.org/10.1093/oso/9780198599456.003.0150.
Texte intégralLahnstein, Jelle, Shanny L. Dyer, Neil H. Goss, Mark Duncan et Raymond S. Norton. « N-TERMINAL MODIFICATION OF MALARIAL ANTIGENS FROM E. coli ». Dans Techniques in Protein Chemistry IV, 83–90. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-12-058757-5.50014-7.
Texte intégralWu, Pengguang, et Ludwig Brand. « [15] N-terminal modification of proteins for fluorescence measurements ». Dans Methods in Enzymology, 321–30. Elsevier, 1997. http://dx.doi.org/10.1016/s0076-6879(97)78017-0.
Texte intégralRapports d'organisations sur le sujet "Protein N-terminal modifications"
Ehrlich, Marcelo, John S. Parker et Terence S. Dermody. Development of a Plasmid-Based Reverse Genetics System for the Bluetongue and Epizootic Hemorrhagic Disease Viruses to Allow a Comparative Characterization of the Function of the NS3 Viroporin in Viral Egress. United States Department of Agriculture, septembre 2013. http://dx.doi.org/10.32747/2013.7699840.bard.
Texte intégral