Thèses sur le sujet « Protein electroporation »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Protein electroporation.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 15 meilleures thèses pour votre recherche sur le sujet « Protein electroporation ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.

1

Chen, Zhiqiang. « NANOMETER-SCALE MEMBRANE ELECTRODE SYSTEMS FOR ACTIVE PROTEIN SEPARATION, ENZYME IMMOBILIZATION AND CELLULAR ELECTROPORATION ». UKnowledge, 2014. http://uknowledge.uky.edu/cme_etds/33.

Texte intégral
Résumé :
Automated and continuous processes are the future trends in downstream protein purification. A functionalized nanometer-scale membrane electrode system, mimicking the function of cell wall transporters, can selectively capture genetically modified proteins and subsequently pump them through the system under programmed voltage pulses. Numerical study of the two-step pulse pumping cycles coupled with experimental His-GFP releasing study reveals the optimal 14s/1s pumping/repel pulse pumping condition at 10 mM bulk imidazole concentration in the permeate side. A separation factor for GFP: BSA of 9.7 was achieved with observed GFP electrophoretic mobility of 3.1×10-6 cm2 s-1 V-1 at 10 mM bulk imidazole concentration and 14 s/1 s pumping/repel duration. The purification of His6-OleD Loki variant directly from crude E. coli extracts expression broth was demonstrated using the pulse pumping process, simplifying the separation process as well as reducing biopharmaceutical production costs. The enzymatic reactions showed that His6-OleD Loki was still active after purification. A nanoporous membrane/electrode system with directed flow carrying reagents to sequentially attached enzymes to mimic nature’s enzymes-complex system was demonstrated. The substrates residence time on the immobilized enzyme can be precisely controlled by changing the pumping rate and thereby prevent a secondary hydrolysis reaction. Immobilized enzyme showed long term storage longevity with activity half-life of 50 days at 4℃ and the ability to be regenerated. One-step immobilization and purification of His-tagged OleD Loki variant directly from expression broth, yielded 98% Uridine Diphosphate glycosylation and 80% 4-methylumbelliferone glycosylation conversion efficiency for the sequential reaction. A flow-through electroporation system, based on a novel membrane/electrode design, for the delivery of membrane-impermeant molecules into Model Leukocyte cells was demonstrated. The ability to apply low voltage between two short distance electrodes contributes to high cell viability. The flow-through system can be easily scaled-up by varying the micro-fluidic channel geometry and/or the applied voltage pulse frequency. More importantly, the system allows the electrophoretical pumping of molecules from the reservoir across the membrane/electrode system to the micro-fluidic channel for transfection, which reduces large amount of reagents used.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Schmotzer, Carolyn Anne. « Assessment of Murine Embryo Development Following Electroporation and Microinjection of a Green Fluorescent Protein DNA Construct ». Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/34369.

Texte intégral
Résumé :
Transgenic techniques have rapidly evolved in recent years. However, the efficiency of these techniques to produce viable offspring is still disappointingly low. The purpose of this study was to assess in vitro development, transgene expression, and integration following pronuclear or cytoplasmic microinjection of condensed or linear green fluorescent protein DNA into murine embryos using electroporation. In experiment 1, the effect of embryo orientation (group or linear) within the electroporation chamber on development was evaluated using zygotes which received one pulse duration (10 msec), and one of two voltages (250 or 400 V). Zygotes that received 400 V had the lowest development score (Group, 2.06 ? 0.12; Linear, 1.97 ? 0.13), irrespective of orientation. Embryos that received 250 V had the highest development of the voltage treated groups (Group 3.42 ? 0.12; Linear 3.32 ? 0.12), irrespective of orientation, and development was lower than the control embryos (Control 4.28 ? 0.12; Mannitol control 4.36 ? 0.18). In experiment 2, the efficiency of utilization of the prepared enhanced green fluorescent protein (EGFP) construct as a visual marker of protein expression was evaluated using pronuclear microinjection. Embryo development and fluorescence were evaluated following pronuclear injection of EGFP at a concentration of 3 μg/ml and compared to an uninjected control. Embryos injected with the EGFP had lower development scores (3.85 ± 0.15) than uninjected control embryos (5.72 ± 0.2). Of the embryos injected, 32.4% fluoresced due to expression of EGFP. Experiment 3 evaluated the effect of combining cytoplasmic injection of EGFP (425 μg/ml) with electroporation at 250 V on EGFP expression. The non-manipulated control embryos had significantly higher (P < 0.01) 4 d development scores (5.57 ± 0.11) than manipulated control embryos (4.6 ± 0.18), where the injection needle was inserted into the cytoplasm and no DNA was injected. Combining cytoplasmic DNA injection and electroporation caused a significant (P < 0.01) decrease in development scores, irrespective of DNA construct, when compared to embryos injected with a DNA construct alone. The mechanical effects of needle insertion combined with electroporation were not significantly different (P > 0.05) from embryos injected with DNA alone, irrespective of construct injected. Cytoplasmic injection of condensed DNA (0.38%), linear DNA (0.38%), and condensed DNA combined with electroporation (0.36%) resulted in one fluorescent embryo respectively. Cytoplasmic injection of linear DNA when combined with electroporation (3.57%) resulted in 13 fluorescent embryos. Pronuclear injection of the prepared EGFP construct results in lower development than control embryos. Electrical stimulation of zygotes reduces early embryo development. However, low amounts of electrical stimulation may allow for enhancement of gene integration in transgenic embryos.
Master of Science
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kawai, Mariko. « Ectopic bone formation by human bone morphogenetic protein-2 gene transfer to skeletal muscle using transcutaneous electroporation ». Kyoto University, 2004. http://hdl.handle.net/2433/147446.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

McCray, Andrea Nicole. « Electrogenetherapy of established B16 murine melanoma by using an expression plasmid for HIV-1 viral protein R ». [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001758.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hua, Ethan Wei. « Maturation of single retinogeniculate projections visualized by in vivo electroporation of fluorescent proteins ». Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2008. http://wwwlib.umi.com/cr/ucsd/fullcit?p1459290.

Texte intégral
Résumé :
Thesis (M.S.)--University of California, San Diego, 2008.
Title from first page of PDF file (viewed Nov. 10, 2008). Available via ProQuest Digital Dissertations. Includes bibliographical references.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Figueiredo, Lilybeth de Andrade. « Vacinas, novas perspectivas ». Master's thesis, [s.n.], 2014. http://hdl.handle.net/10284/4876.

Texte intégral
Résumé :
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
As vacinas são uma das maiores descobertas da medicina moderna e têm contribuído para salvar a vida de milhares de milhões de pessoas em cooperação com outras medidas de saúde pública (ao nível do saneamento básico, antibióticos, etc.). As vacinas tiveram um forte impacto no combate a muitas doenças, tendo sido a erradicação da varíola uma das maiores conquistas. No entanto, esta área enfrenta ainda desafios complexos, como são os casos do HIV, tuberculose e malária. Os benefícios das vacinas são elevados quando as mesmas são usadas amplamente, no entanto, os custos de produção, distribuição e preservação são elevados sendo dos principais problemas para os países em desenvolvimento, constituindo desta forma um dos principais obstáculos para alcançar uma cobertura vacinal global. Estas limitações levam à necessidade de torná-las mais eficazes, seguras, de produção mais rápida e eficientes, procurando evitar alguns dos seus maiores problemas como a refrigeração, doses múltiplas e injecções intramusculares. Nas últimas décadas foram pesquisadas e estudadas exaustivamente novas tecnologias associadas às vacinas, assim como, foram optimizadas novas formas de administrar e de apresentar os antigénios aos diversos componentes do sistema imunitário. Estas tecnologias incluem mecanismos de produção em que vacinas produzidas em culturas de células são mais rentáveis em comparação com as vacinas que recorrem a ovos. No entanto têm sido implementadas novas estratégias com o objectivo de aumentar a eficácia das vacinas, têm sido implementadas, como é o caso dos adjuvantes, da eletroporação, das vias de imunização e do prime-boost. Finalmente, tem-se tentado encontrar formas diferentes de activar o sistema imunitário através de; vacinas baseadas em proteínas recombinantes; vacinas de DNA; partículas semelhantes a vírus; vacinas universais; vacinas baseadas em vectores virais e vacinas baseadas em péptidos. Nesta área estão constantemente a surgir novas tecnologias de vacinas mais seguras eficazes e de baixo custo. Apesar de algumas estarem ainda em fase experimental, existe um enorme potencial para o surgimento de novas vacinas num futuro próximo, com produção em larga escala, mais eficazes e seguras. Vaccines are one of the greatest discoveries of modern medicine, they have saved the lives of billions of people in cooperation with other public health measures (sanitation, antibiotics, etc.). The vaccines had an impact in reducing many diseases, being the eradication of smallpox one of it's greatest achievements. However this area still faces difficult challenges, such as HIV, tuberculosis and malaria. The benefits of vaccines are high when used widely, however, the costs of manufacturing, distribution and preservation of vaccines are costly and major impediments to developing countries themselves, and represents a major obstacle to achieving global immunization coverage. These limitations lead to the need of improving vaccines to be more effective, safer, faster and more efficient production thus avoiding some of their biggest problems, such as refrigeration, multiple doses and intramuscular injections. In recent decades there have been exhaustively studied and researched new technologies associated with vaccines, as well as new forms were optimised to manage and present the antigens to the various components of the immune system. These technologies include mechanisms that vaccines produced in cell culture are more cost effective in comparison with the vaccine produced in eggs. Strategies for the purpose of increasing the effectiveness of vaccines such as adjuvants, electroporation, routes of immunisation, and the prime-boost. Finally, find different ways to activate the immune system such as vaccines based on recombinant proteins; DNA vaccines; virus-like particles; universal vaccines; vaccines based on viral vectors and vaccines based on peptide. In this area, there are constantly arising new technologies of safer vaccines,effective and inexpensive. Although some of the technologies are still in experimental stages, there is huge potential for the emergence of new vaccines, with large-scale production, effective and safe in the near future.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Grognot, Marianne. « Imagerie térahertz par réflexion interne totale pour la biologie. : Application à l'étude de la perméabilisation cellulaire ». Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX068/document.

Texte intégral
Résumé :
Les ondes térahertz s’étendent de 0.1 à 10x1012 Hz, à la frontière entre les domaines de l’optique et des radiofréquences. Cette position intermédiaire originale en a longtemps rendu l’accès difficile : les technologies térahertz n’ont pris leur essor qu’au cours des années 90. Le domaine n’a pas encore atteint la maturité des domaines des microondes ou de l’infrarouge qui le jouxtent. Cependant, les motivations exploratoires sont fortes, de par la sensibilité spectroscopique du térahertz aux états moléculaires (rotationnels, vibrationnels..) et aux liaisons faibles établies dans et entre les molécules. Dans le cas des objets biologiques, le térahertz est particulièrement sensible à l’eau : sa quantité, son état physico-chimique et ses solutés.Nous avons mis en œuvre un montage d’imagerie en réflexion interne totale atténuée (ATR) pour pouvoir distinguer des cellules vivantes de leur milieu physiologique. Au cours de ce travail, le montage d’imagerie ATR a été caractérisé théoriquement, puis expérimentalement. La première démonstration de l’origine du contraste sur ces images térahertz a été réalisée. Il provient du contenu intracellulaire, plus spécifiquement des protéines et peptides dissouts dans le cytoplasme.Une analyse fine des mécanismes sous-jacents à la nature protéique du contraste térahertz a également été développée. Elle donne accès à des informations spectroscopiques inédites sur l’eau, les protéines dissoutes et la couche de solvatation les entourant.Mettant à profit cette compréhension de notre montage térahertz, nous l’avons proposé comme outil non invasif de suivi quantitatif de la perméabilisation de cellules en conditions physiologiques. Lors de la perméabilisation, augmentation des transferts moléculaires à travers la membrane, notre outil permet de quantifier le passage des peptides et protéines. La perméabilisation de cellules vivantes a une gamme d’application vaste, de l’entrée de fluorochromes pour l’imagerie ou de médicaments à la thérapie génique. Afin d’assurer ces passages à travers la membrane des cellules, il est nécessaire d’altérer ses propriétés, sans pour autant compromettre la viabilité cellulaire. L’étude de deux types de perméabilisation avec notre outil térahertz est proposée : la perméabilisation chimique et l’électroporation. Dans les deux cas, des mécanismes d’effet dose ont été caractérisés quantitativement. Notre outil térahertz a démontré de grands avantages devant les méthodes actuellement utilisées pour quantifier ces dynamiques de perméabilisation et en caractériser la réversibilité
Lying between 0.1 to 10x1012 Hz, the terahertz radiation occupies a middle ground between microwaves and infrared light waves, sometimes named “the terahertz gap” for technologies relevant to generation and detection have only risen at the beginning of the 90’s and aren’t fully developed yet. Nevertheless, there are strong exploratory incentives because of terahertz spectroscopic sensitivity to molecular states (rotational, vibrational…) and weak bounds in and between molecules. In the case of biological object, terahertz waves are especially sensitive to water: its quantity, physico-chemical state and solutes. We implemented an Attenuated Total internal Reflection (ATR) imaging setup in order to distinguish live cells from their physiological bathing medium. Throughout this work, we characterized both experimentally and experimentally the ATR setup. The first demonstration of the contrast origin in the terahertz images obtained was done. It arises from the intracellular content, more specifically the proteins and peptides dissolved in the cytoplasm.A precise analysis of the underlying mechanism of this proteinaceous terahertz contrast has also been developed. It gives access to original spectroscopic information about water, dissolved proteins and the hydration shell around them.Taking advantage of our whole setup comprehension, we proposed it as a non-invasive tool for quantitative live-cell permeabilization assessment in physiological conditions. During permeabilization, aka increased molecular transfers through the cell membrane, our tool allows to quantify the transfer of peptides and proteins. Live-cell permeabilization has a large application range, from fluorochrome entry in imaging, to drugs or gene therapy. In order to ensure molecules crossing the cell membrane, it’s necessary to alter its properties without compromising cell viability.A study of two permeabilization methods is proposed: chemical permeabilization and electroporation. In both cases dose effect mechanisms were quantitatively characterized. Our terahertz tool demonstrated great advantages over classical permeabilization quantification methods and permeabilization reversibility assessment methods
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ferraro, Bernadette. « Intradermal Delivery of Plasmids Encoding Angiogenic Growth Factors by Electroporation Promotes Wound Healing and Neovascularization ». [Tampa, Fla] : University of South Florida, 2009. http://purl.fcla.edu/usf/dc/et/SFE0002823.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Walker, Tara L. « The Development Of Microalgae As A Bioreactor System For The Production Of Recombinant Proteins ». Thesis, Queensland University of Technology, 2004. https://eprints.qut.edu.au/15905/1/Tara_Walker_Thesis.pdf.

Texte intégral
Résumé :
Dunaliella, a genus of unicellular, biflagellate green algae, is one of the most studied microalgae for mass culture and is of commercial importance as a source of natural -carotene. Dunaliella species have the desirable properties of halotolerance and photoautotrophy that makes their large-scale culture simple and cheap using resources unsuitable for conventional agriculture. The ease and cost-effectiveness of culture makes Dunaliella a desirable target for increased production of natural compounds by metabolic engineering or for exploitation as biological factories for the synthesis of novel high-value compounds. However, the lack of efficient genetic transformation systems has been a major limitation in the manipulation of these microalgae. In chapter four we describe the development of a nuclear transformation system for Dunaliella tertiolecta. The gene encoding the phleomycin-binding protein from Streptoalloteichus hindustanus, was chosen as the selectable marker as this protein retains activity at high salt concentrations. To drive expression of the chosen selectable marker, two highly expressed Dunaliella tertiolecta RbcS genes and their associated 5' and 3' regulatory regions were isolated and characterised (chapter three). Dunaliella transformation cassettes containing the RbcS promoter and terminator regions flanking the ble antibiotic resistance gene were constructed. These expression cassettes were tested in Chlamydomonas reinhardtii cells and found to drive expression of the ble gene in this heterologous system. This study also demonstrated that truncation of both the D. tertiolecta RbcS1 and RbcS2 regulatory regions significantly increases the expression of the ble gene in C. reinhardtii cells. To determine if the foreign DNA could stably integrate into the Dunaliella genome, four transformation methods: microprojectile bombardment, glass bead-mediated transformation, PEG-mediated transformation and electroporation were tested and a number of parameters varied. Southern blot analysis revealed that the plasmid DNA transiently entered the Dunaliella cells following electroporation but was rapidly degraded. Following electroporation, one stably transformed Dunaliella line was recovered. This is the first demonstration of the stable transformation of this alga. Chloroplast transformation is becoming a favoured method for the production of recombinant proteins in plants, as levels of heterologous protein are often higher than those achieved by transforming the nucleus. The Dunaliella chloroplast genome has not been genetically characterised, and thus there were no existing promoter and terminator sequences or sequences of intergenic regions that could be used for vectors in transformation of the chloroplast. Therefore, this study aimed to isolate and characterise promoters of highly expressed genes and matching terminators capable of driving transgene expression, and also to characterise intergenic regions that would be suitable insertion sites for the vector construct (chapter five). The complete gene sequence of two highly expressed Dunaliella chloroplast genes psbB and rbcL including the promoter and terminator regions as well as the coding sequence of the psbA gene were cloned and sequenced. In addition, the psbA gene is useful as a selectable marker as introduced mutations confer resistance to the herbicide 3-(3,4-Dichlorophenyl)-1,1-Dimethylurea (DCMU). Two homologous transformation constructs based on mutated psbA genes were developed and tested using microprojectile bombardment. A number of parameters were tested including: the size of the gold microprojectile particle, the distance of the plates from the point of discharge, plating onto membranes or filter paper, helium pressure, addition of an osmoticum to the medium and recovery time. Although no chloroplast transformants were recovered in this study, these homologous recombination constructs should prove useful in the development of a chloroplast transformation protocol. The other major component of this study was to investigate the use of microalgae as an expression system for the production of recombinant proteins. Transformation of Chlamydomonas reinhardtii, a species related to Dunaliella, is well developed. In chapter six, this study examined the expression of two human proteins, -lactalbumin and IGF-1 in Chlamydomonas reinhardtii. Plasmids containing the C. reinhardtii RbcS2 promoter upstream of the cDNAs of these two proteins were introduced into C. reinhardtii cells using glass-bead mediated transformation. Transgenic C. reinhardtii lines were generated and shown to contain the transgenes by PCR and Southern hybridisation. RT- PCR and northern hybridisation were subsequently used to demonstrate that the transgenes were transcriptionally active. The transcripts however, could only be detected by RT-PCR indicating that the genes were transcribed at low levels. Accumulation of the -lactalbumin protein could not be demonstrated, suggesting that although the transgenes were transcribed, they were either not translated or translated at levels below the sensitivity of western blot analysis or that any protein produced was rapidly degraded. Previous studies have indicated that in microalgae codon usage is vital in translation of the foreign protein. Codon modification of the IGF-I and -lactalbumin genes should lead to higher levels of protein accumulation. This study reports the first successful stable nuclear transformation of Dunaliella tertiolecta. Therefore it is now feasible that Dunaliella can be examined as a bioreactor for the expression of recombinant proteins. In addition, two chloroplast genes (psbB and rbcL) and their corresponding promoters and terminators have been characterised and a selectable marker cassette based on the mutated psbA gene constructed.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Walker, Tara L. « The Development Of Microalgae As A Bioreactor System For The Production Of Recombinant Proteins ». Queensland University of Technology, 2004. http://eprints.qut.edu.au/15905/.

Texte intégral
Résumé :
Dunaliella, a genus of unicellular, biflagellate green algae, is one of the most studied microalgae for mass culture and is of commercial importance as a source of natural -carotene. Dunaliella species have the desirable properties of halotolerance and photoautotrophy that makes their large-scale culture simple and cheap using resources unsuitable for conventional agriculture. The ease and cost-effectiveness of culture makes Dunaliella a desirable target for increased production of natural compounds by metabolic engineering or for exploitation as biological factories for the synthesis of novel high-value compounds. However, the lack of efficient genetic transformation systems has been a major limitation in the manipulation of these microalgae. In chapter four we describe the development of a nuclear transformation system for Dunaliella tertiolecta. The gene encoding the phleomycin-binding protein from Streptoalloteichus hindustanus, was chosen as the selectable marker as this protein retains activity at high salt concentrations. To drive expression of the chosen selectable marker, two highly expressed Dunaliella tertiolecta RbcS genes and their associated 5' and 3' regulatory regions were isolated and characterised (chapter three). Dunaliella transformation cassettes containing the RbcS promoter and terminator regions flanking the ble antibiotic resistance gene were constructed. These expression cassettes were tested in Chlamydomonas reinhardtii cells and found to drive expression of the ble gene in this heterologous system. This study also demonstrated that truncation of both the D. tertiolecta RbcS1 and RbcS2 regulatory regions significantly increases the expression of the ble gene in C. reinhardtii cells. To determine if the foreign DNA could stably integrate into the Dunaliella genome, four transformation methods: microprojectile bombardment, glass bead-mediated transformation, PEG-mediated transformation and electroporation were tested and a number of parameters varied. Southern blot analysis revealed that the plasmid DNA transiently entered the Dunaliella cells following electroporation but was rapidly degraded. Following electroporation, one stably transformed Dunaliella line was recovered. This is the first demonstration of the stable transformation of this alga. Chloroplast transformation is becoming a favoured method for the production of recombinant proteins in plants, as levels of heterologous protein are often higher than those achieved by transforming the nucleus. The Dunaliella chloroplast genome has not been genetically characterised, and thus there were no existing promoter and terminator sequences or sequences of intergenic regions that could be used for vectors in transformation of the chloroplast. Therefore, this study aimed to isolate and characterise promoters of highly expressed genes and matching terminators capable of driving transgene expression, and also to characterise intergenic regions that would be suitable insertion sites for the vector construct (chapter five). The complete gene sequence of two highly expressed Dunaliella chloroplast genes psbB and rbcL including the promoter and terminator regions as well as the coding sequence of the psbA gene were cloned and sequenced. In addition, the psbA gene is useful as a selectable marker as introduced mutations confer resistance to the herbicide 3-(3,4-Dichlorophenyl)-1,1-Dimethylurea (DCMU). Two homologous transformation constructs based on mutated psbA genes were developed and tested using microprojectile bombardment. A number of parameters were tested including: the size of the gold microprojectile particle, the distance of the plates from the point of discharge, plating onto membranes or filter paper, helium pressure, addition of an osmoticum to the medium and recovery time. Although no chloroplast transformants were recovered in this study, these homologous recombination constructs should prove useful in the development of a chloroplast transformation protocol. The other major component of this study was to investigate the use of microalgae as an expression system for the production of recombinant proteins. Transformation of Chlamydomonas reinhardtii, a species related to Dunaliella, is well developed. In chapter six, this study examined the expression of two human proteins, -lactalbumin and IGF-1 in Chlamydomonas reinhardtii. Plasmids containing the C. reinhardtii RbcS2 promoter upstream of the cDNAs of these two proteins were introduced into C. reinhardtii cells using glass-bead mediated transformation. Transgenic C. reinhardtii lines were generated and shown to contain the transgenes by PCR and Southern hybridisation. RT- PCR and northern hybridisation were subsequently used to demonstrate that the transgenes were transcriptionally active. The transcripts however, could only be detected by RT-PCR indicating that the genes were transcribed at low levels. Accumulation of the -lactalbumin protein could not be demonstrated, suggesting that although the transgenes were transcribed, they were either not translated or translated at levels below the sensitivity of western blot analysis or that any protein produced was rapidly degraded. Previous studies have indicated that in microalgae codon usage is vital in translation of the foreign protein. Codon modification of the IGF-I and -lactalbumin genes should lead to higher levels of protein accumulation. This study reports the first successful stable nuclear transformation of Dunaliella tertiolecta. Therefore it is now feasible that Dunaliella can be examined as a bioreactor for the expression of recombinant proteins. In addition, two chloroplast genes (psbB and rbcL) and their corresponding promoters and terminators have been characterised and a selectable marker cassette based on the mutated psbA gene constructed.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Svoboda, Devon. « The Role of Pocket Proteins pRb and p107 in Radial Migration and Axon Guidance through Cell Cycle Independent Mechanisms ». Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32954.

Texte intégral
Résumé :
Pocket proteins (pRb, p107 and p130) are well studied in the role of regulating cell proliferation by controlling progression through the G1/S phase of the cell cycle. Increasing genetic and anatomical evidence suggests that these proteins also control early differentiation and even later stages of cell maturation including neural migration. However, the multifaceted functions of pocket proteins in the regulation of cell proliferation and cell death has complicated our interpretation of their role during development. As a result, the mechanisms through which pocket proteins regulate neuronal migration and neural maturation remain unknown. Using a pRb and p107 double knock out model, we show that a population of upper layer cortical neurons fails to pass through the intermediate zone into the cortical plate. Importantly, these neurons are born at the appropriate time and have exited the cell cycle. In addition, the role of pocket proteins in radial migration is independent cell death, since this migration defect cannot be rescued by eliminating ectopic cell death through Bax deletion. We also show a novel role of pRb and p107 in development of the dorsal midline and guidance of callosal axons. In the absence of pRb and p107, the structures of the commissural plate are highly disorganized and the callosal axons fail to cross the midline. We identify primary defects in axon extension and expression of multiple guidance cues, which can be observed prior to the disorganization of the midline axon guidance structures. Through the use of in vitro cortical explants and in utero electroporation, we identify defects in the rate of axon extension and directional guidance independent from the midline. In addition, protein levels of Netrin and Neuropilin-1 are decreased in the absence of pRb and p107, which could mediate the function of pocket proteins in guiding callosal axons. Indeed, we identify a previously undescribed population of Netrin expressing cells in the cingulate cortex of control embryos which is lost in the pRb/p107 deficient littermates. We propose that these cells play a significant role in callosal axon guidance during normal development. The results presented in this dissertation define multiple novel roles of pRb and p107 in the regulation of radial migration and axon guidance, independent from the role of these pocket proteins in cell death and proliferation.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Fouquet, Claire. « Effect of adjacent satellite DNA on the electroporation efficiency and on the stability of the TK+ phenotype, of neo and HSV-1 tk containing plasmids, and detection of satellite DNA-binding proteins ». Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60703.

Texte intégral
Résumé :
A 1797 bp human EcoRI satellite II DNA sequence was cloned in vectors containing the thymidine kinase gene (HSV-1 tk) and the neomycin resistance gene, and introduced in a cell line deficient for these genes. We have observed that the electroporation efficiency of these plasmids depends on the location and/or the orientation of the satellite sequences within the transfected plasmid. Only one plasmid, pCFD1 containing one satellite fragment close to the neo gene, inhibited the formation of TK$ sp+$/NEO$ sp+$ transfectants. We have also shown that the instability of the TK$ sp+$ phenotype which was observed did not correlate with the presence of adjacent satellite DNA. In contrast, satellite DNA sequences within the transfected plasmid somehow interfered with the generation of stable TK$ sp+$ transfectants.
Moreover, we have detected (both in nuclear and partially purified HeLa whole cell extracts) the presence of proteins that specifically bind the human 1797 bp satellite II DNA sequence. Four proteins with molecular weights of 100, 93, 77 and 34 kDa were identified and named Satellite DNA-binding protein, Sbp-1, -2, -3 and -4, respectively. The function of these proteins is, as yet, unknown.
Styles APA, Harvard, Vancouver, ISO, etc.
13

PILLAI, Vinoshene. « Intravital two photon clcium imaging of glioblastoma mouse models ». Doctoral thesis, Scuola Normale Superiore, 2021. http://hdl.handle.net/11384/109211.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Mercatelli, Eleonora. « Development of novel sample preparation strategies for in-cell NMR ». Doctoral thesis, 2017. http://hdl.handle.net/2158/1114729.

Texte intégral
Résumé :
NMR spectroscopy is offering increasing possibilities to obtain structural and dynamic information about macromolecules at atomic resolution. In recent years, it has been extended to the investigation of biological macromolecules in their physiological environment. In-cell NMR spectroscopy allows obtaining physiologically relevant structural and functional information inside living cells through the direct observation of several processes such as protein folding and interaction, metal ion binding, and drugs screening. This thesis aims to widen the application of in-cell NMR for the characterization of the structural and functional properties of proteins as well as their interactions. In a first study, we investigated the folding and the redox state of three human disulphidecontaining proteins (Mia40, Cox17, and SOD1) in the cytoplasm of human and bacterial cells. We successfully determined their redox-state distribution in isolation and with cofactors or redox partners, and found that it is controlled by specific proteins and pathways. In a second study, we employed in vitro and in-cell NMR to characterize the effect of a potential drug (ebselen) on SOD1 mutants. The results revealed that ebselen promotes the correct folding of destabilized SOD1 mutants in cells, and restores their dimerization towards the proper maturation pathway in vitro. Finally, we worked on sample preparation to increase the range of applications of in-cell NMR. On the one hand, we studied several protein systems (CytC, PFN1 and MNK6) in bacterial cells through MAS solid state NMR in order to detect intracellular soluble proteins that are not detectable with canonical experiments of solution NMR. On the other hand, we sought to expand the existing methods of solution in-cell NMR in order to study protein-protein interactions in human cells. In particular, we worked to combine DNA transfection and the delivery of an isotope-labelled recombinant protein to maximize the selectivity of protein labelling inside cells, and minimize the signals of cellular background in the NMR spectra.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Mühlfriedel, Sven. « Mechanismen der Entwicklung des zerebralen Kortex ». Doctoral thesis, 2004. http://hdl.handle.net/11858/00-1735-0000-0006-AC7F-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie