Articles de revues sur le sujet « Protein Conformation - Air/Water Interface »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Protein Conformation - Air/Water Interface.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Protein Conformation - Air/Water Interface ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Han, Fei, Qian Shen, Wei Zheng, Jingnan Zuo, Xinyu Zhu, Jingwen Li, Chao Peng, Bin Li et Yijie Chen. « The Conformational Changes of Bovine Serum Albumin at the Air/Water Interface : HDX-MS and Interfacial Rheology Analysis ». Foods 12, no 8 (10 avril 2023) : 1601. http://dx.doi.org/10.3390/foods12081601.

Texte intégral
Résumé :
The characterization and dynamics of protein structures upon adsorption at the air/water interface are important for understanding the mechanism of the foamability of proteins. Hydrogen–deuterium exchange, coupled with mass spectrometry (HDX-MS), is an advantageous technique for providing conformational information for proteins. In this work, an air/water interface, HDX-MS, for the adsorbed proteins at the interface was developed. The model protein bovine serum albumin (BSA) was deuterium-labeled at the air/water interface in situ for different predetermined times (10 min and 4 h), and then the resulting mass shifts were analyzed by MS. The results indicated that peptides 54–63, 227–236, and 355–366 of BSA might be involved in the adsorption to the air/water interface. Moreover, the residues L55, H63, R232, A233, L234, K235, A236, R359, and V366 of these peptides might interact with the air/water interface through hydrophobic and electrostatic interactions. Meanwhile, the results showed that conformational changes of peptides 54–63, 227–236, and 355–366 could lead to structural changes in their surrounding peptides, 204–208 and 349–354, which could cause the reduction of the content of helical structures in the rearrangement process of interfacial proteins. Therefore, our air/water interface HDX-MS method could provide new and meaningful insights into the spatial conformational changes of proteins at the air/water interface, which could help us to further understand the mechanism of protein foaming properties.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Yano, Yohko F., Etsuo Arakawa, Wolfgang Voegeli, Chika Kamezawa et Tadashi Matsushita. « Initial Conformation of Adsorbed Proteins at an Air–Water Interface ». Journal of Physical Chemistry B 122, no 17 (9 avril 2018) : 4662–66. http://dx.doi.org/10.1021/acs.jpcb.8b01039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lad, Mitaben D., Fabrice Birembaut, Joanna M. Matthew, Richard A. Frazier et Rebecca J. Green. « The adsorbed conformation of globular proteins at the air/water interface ». Physical Chemistry Chemical Physics 8, no 18 (2006) : 2179. http://dx.doi.org/10.1039/b515934b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Belem-Gonçalves, Silvia, Pascale Tsan, Jean-Marc Lancelin, Tito L. M. Alves, Vera M. Salim et Françoise Besson. « Interfacial behaviour of bovine testis hyaluronidase ». Biochemical Journal 398, no 3 (29 août 2006) : 569–76. http://dx.doi.org/10.1042/bj20060485.

Texte intégral
Résumé :
The interfacial properties of bovine testicular hyaluronidase were investigated by demonstrating the association of hyaluronidase activity with membranes prepared from bovine testis. Protein adsorption to the air/water interface was investigated using surface pressure-area isotherms. In whichever way the interfacial films were obtained (protein injection or deposition), the hyaluronidase exhibited a significant affinity for the air/water interface. The isotherm obtained 180 min after protein injection into a pH 5.3 subphase was similar to the isotherm obtained after spreading the same amount of protein onto the same subphase, indicating that bovine testicular hyaluronidase molecules adopted a similar arrangement and/or conformation at the interface. Increasing the subphase pH from 5.3 to 8 resulted in changes of the protein isotherms. These modifications, which could correspond to the small pH-induced conformational changes observed by Fourier-transform IR spectroscopy, were discussed in relation to the pH influence on the hyaluronidase activity. Adding hyaluronic acid, the enzyme substrate, to the subphase tested the stability of the interfacial properties of hyaluronidase. The presence of hyaluronic acid in the subphase did not modify the protein adsorption and allowed substrate binding to a preformed film of hyaluronidase at pH 5.3, the optimal pH for the enzyme activity. Such effects of hyaluronic acid were not observed when the subphase was constituted of pure water, a medium where the enzyme activity was negligible. These influences of hyaluronic acid were discussed in relation to the modelled structure of bovine testis hyaluronidase where a hydrophobic region was proposed to be opposite of the catalytic site.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Bhuvanesh, Thanga, Rainhard Machatschek, Yue Liu, Nan Ma et Andreas Lendlein. « Self-stabilized fibronectin films at the air/water interface ». MRS Advances 5, no 12-13 (4 novembre 2019) : 609–20. http://dx.doi.org/10.1557/adv.2019.401.

Texte intégral
Résumé :
ABSTRACTFibronectin (FN) is a mediator molecule, which can connect cell receptors to the extracellular matrix (ECM) in tissues. This function is highly desirable for biomaterial surfaces in order to support cell adhesion. Controlling the fibronectin adsorption profile on substrates is challenging because of possible conformational changes after deposition, or due to displacement by secondary proteins from the culture medium. Here, we aim to develop a method to realize self-stabilized ECM glycoprotein layers with preserved native secondary structure on substrates. Our concept is the assembly of FN layers at the air-water (A-W) interface by spreading FN solution as droplets on the interface and transfer of the layer by the Langmuir-Schäfer (LS) method onto a substrate. It is hypothesized that 2D confinement and high local concentration at A-W interface supports FN self-interlinking to form cohesive films. Rising surface pressure with time, plateauing at 10.5 mN·m-1 (after 10 hrs), indicated that FN was self-assembling at the A-W interface. In situ polarization-modulation infrared reflection absorption spectroscopy of the layer revealed that FN maintained its native anti-parallel β-sheet structure after adsorption at the A-W interface. FN self-interlinking and elasticity was shown by the increase in elastic modulus and loss modulus with time using interfacial rheology. A network-like structure of FN films formed at the A-W interface was confirmed by atomic force microscopy after LS transfer onto Si-wafer. FN films consisted of native, globular FN molecules self-stabilized by intermolecular interactions at the A-W interface. Therefore, the facile FN self-stabilized network-like films with native anti-parallel β-sheet structure produced here, could serve as stable ECM protein coatings to enhance cell attachment on in vitro cell culture substrates and planar implant materials.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Guo, Dashan, Yuwei Hou, Hongshan Liang, Lingyu Han, Bin Li et Bin Zhou. « Mechanism of Reduced Glutathione Induced Lysozyme Defolding and Molecular Self-Assembly ». Foods 12, no 10 (9 mai 2023) : 1931. http://dx.doi.org/10.3390/foods12101931.

Texte intégral
Résumé :
The distinctive assembly behaviors of lysozyme (Lys) feature prominently in food, materials, biomedicine, and other fields and have intrigued many scholars. Although our previous work suggested that reduced glutathione (GSH) could induce lysozyme to form interfacial films at the air/water interface, the underlying mechanism is still obscure. In the present study, the effects of GSH on the disulfide bond and protein conformation of lysozyme were investigated by fluorescence spectroscopy, circular dichroism spectroscopy, and infrared spectroscopy. The findings demonstrated that GSH was able to break the disulfide bond in lysozyme molecules through the sulfhydryl/disulfide bond exchange reaction, thereby unraveling the lysozyme. The β-sheet structure of lysozyme expanded significantly, while the contents of α-helix and β-turn decreased. Furthermore, the interfacial tension and morphology analysis supported that the unfolded lysozyme tended to arrange macroscopic interfacial films at the air/water interface. It was found that pH and GSH concentrations had an impact on the aforementioned processes, with higher pH or GSH levels having a positive effect. This paper on the exploration of the mechanism of GSH-induced lysozyme interface assembly and the development of lysozyme-based green coatings has better instructive significance.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Renault, Anne, Jean-François Rioux-Dubé, Thierry Lefèvre, Stéphane Pezennec, Sylvie Beaufils, Véronique Vié, Mélanie Tremblay et Michel Pézolet*. « Surface Properties and Conformation of Nephila clavipes Spider Recombinant Silk Proteins at the Air−Water Interface ». Langmuir 25, no 14 (21 juillet 2009) : 8170–80. http://dx.doi.org/10.1021/la900475q.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Han, Meng-huai, et Chi-cheng Chiu. « Fast estimation of protein conformational preference at air/water interface via molecular dynamics simulations ». Journal of the Taiwan Institute of Chemical Engineers 92 (novembre 2018) : 42–49. http://dx.doi.org/10.1016/j.jtice.2018.02.026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Flach, Carol R., Joseph W. Brauner et Richard Mendelsohn. « Coupled External Reflectance FT-IR/Miniaturized Surface Film Apparatus for Biophysical Studies ». Applied Spectroscopy 47, no 7 (juillet 1993) : 982–85. http://dx.doi.org/10.1366/0003702934415147.

Texte intégral
Résumé :
An FT-IR spectrophotometer has been interfaced to a miniaturized surface film apparatus for external reflection studies of insoluble monolayers in situ at the air/water interface. Signal-to-noise ratios of 200:1 were routinely achieved for the CH2 stretching vibrations of phospholipids. We have monitored, using the acyl chain symmetric CH2 stretching frequency near 2850 cm−1 as a structural probe, lipid conformational order changes that occur during the surface pressure-induced two-dimensional phase transition in monolayers of 1,2-dipalmitoylphosphatidylserine. In addition, the small volume of the miniaturized film apparatus (30 mL) permitted replacement of H2O with D2O in the subphase. This capability, in turn, permits the acquisition of spectral data in the amide I region of proteins. We report the first external reflection FT-IR spectrum of an insoluble protein monolayer. The protein studied is pulmonary surfactant SP-C.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Tanaka, Takumi, Yuki Terauchi, Akira Yoshimi et Keietsu Abe. « Aspergillus Hydrophobins : Physicochemical Properties, Biochemical Properties, and Functions in Solid Polymer Degradation ». Microorganisms 10, no 8 (25 juillet 2022) : 1498. http://dx.doi.org/10.3390/microorganisms10081498.

Texte intégral
Résumé :
Hydrophobins are small amphipathic proteins conserved in filamentous fungi. In this review, the properties and functions of Aspergillus hydrophobins are comprehensively discussed on the basis of recent findings. Multiple Aspergillus hydrophobins have been identified and categorized in conventional class I and two non-conventional classes. Some Aspergillus hydrophobins can be purified in a water phase without organic solvents. Class I hydrophobins of Aspergilli self-assemble to form amphipathic membranes. At the air–liquid interface, RolA of Aspergillus oryzae self-assembles via four stages, and its self-assembled films consist of two layers, a rodlet membrane facing air and rod-like structures facing liquid. The self-assembly depends mainly on hydrophobin conformation and solution pH. Cys4–Cys5 and Cys7–Cys8 loops, disulfide bonds, and conserved Cys residues of RodA-like hydrophobins are necessary for self-assembly at the interface and for adsorption to solid surfaces. AfRodA helps Aspergillus fumigatus to evade recognition by the host immune system. RodA-like hydrophobins recruit cutinases to promote the hydrolysis of aliphatic polyesters. This mechanism appears to be conserved in Aspergillus and other filamentous fungi, and may be beneficial for their growth. Aspergilli produce various small secreted proteins (SSPs) including hydrophobins, hydrophobic surface–binding proteins, and effector proteins. Aspergilli may use a wide variety of SSPs to decompose solid polymers.
Styles APA, Harvard, Vancouver, ISO, etc.
11

LARVOR, Marie-Pierre, Rachel CERDAN, Catherine GUMILA, Luc MAURIN, Patrick SETA, Claude ROUSTAN et Henri VIAL. « Characterization of the lipid-binding domain of the Plasmodium falciparum CTP:phosphocholine cytidylyltransferase through synthetic-peptide studies ». Biochemical Journal 375, no 3 (1 novembre 2003) : 653–61. http://dx.doi.org/10.1042/bj20031011.

Texte intégral
Résumé :
Phospholipid biosynthesis plays a key role in malarial infection and is regulated by CCT (CTP:phosphocholine cytidylyltransferase). This enzyme belongs to the group of amphitropic proteins which are regulated by reversible membrane interaction. To assess the role of the putative membrane-binding domain of Plasmodium falciparum CCT (PfCCT), we synthesized three peptides, K21, V20 and K54 corresponding to residues 274–294, 308–327 and 274–327 of PfCCT respectively. Conformational behaviour of the peptides, their ability to bind to liposomes and to destabilize lipid bilayers, and their insertion properties were investigated by different biophysical techniques. The intercalation mechanisms of the peptides were refined further by using surface-pressure measurements on various monolayers at the air/water interface. In the present study, we show that the three studied peptides are able to bind to anionic and neutral phospholipids, and that they present an α-helical conformation upon lipid binding. Peptides V20 and the full-length K54 intercalate their hydrophobic parts into an anionic bilayer and, to a lesser extent, a neutral one for V20. Peptide K21 interacts only superficially with both types of phospholipid vesicles. Adsorption experiments performed at the air/water interface revealed that peptide K54 is strongly surface-active in the absence of lipid. Peptide V20 presents an atypical behaviour in the presence of phosphatidylserine. Whatever the initial surface pressure of a phosphatidylserine film, peptide V20 and phosphatidylserine entities seem linked together in a special organization involving electrostatic and hydrophobic interactions. We showed that PfCCT presents different lipid-dependence properties from other studied CCTs. Although the lipid-binding domain seems to be located in the C-terminal region of the enzyme, as with the mammalian counterpart, the membrane anchorage, which plays a key role in the enzyme regulation, is driven by two α-helices, which behave differently from one another.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Alamdari, Sarah, Steven J. Roeters, Thaddeus W. Golbek, Lars Schmüser, Tobias Weidner et Jim Pfaendtner. « Orientation and Conformation of Proteins at the Air–Water Interface Determined from Integrative Molecular Dynamics Simulations and Sum Frequency Generation Spectroscopy ». Langmuir 36, no 40 (12 septembre 2020) : 11855–65. http://dx.doi.org/10.1021/acs.langmuir.0c01881.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Kennedy, Malcolm W. « Latherin and other biocompatible surfactant proteins ». Biochemical Society Transactions 39, no 4 (20 juillet 2011) : 1017–22. http://dx.doi.org/10.1042/bst0391017.

Texte intégral
Résumé :
Horses and other equids are unusual in producing protein-rich sweat for thermoregulation, a major component of which is latherin, a highly surface-active, non-glycosylated protein that is a member of the PLUNC (palate, lung and nasal epithelium clone) family. Latherin produces a significant reduction in water surface tension at low concentrations (≤1 mg/ml), and probably acts as a wetting agent to facilitate evaporative cooling through a thick, waterproofed pelt. Latherin binds temporarily to hydrophobic surfaces, and so may also have a disruptive effect on microbial biofilms. It may consequently have a dual role in horse sweat in both evaporative cooling and controlling microbial growth in the pelt that would otherwise be resourced by nutrients in sweat. Latherin is also present at high levels in horse saliva, where its role could be to improve mastication of the fibrous diet of equids, and also to reduce microbial adherence to teeth and oral surfaces. Neutron reflection experiments indicate that latherin adsorbs to the air/water interface, and that the protein undergoes significant conformational change and/or partial unfolding during incorporation into the interfacial layer.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Dai, Guoliang, Jinru Li et Long Jiang. « Conformation change of glucose oxidase at the water–air interface ». Colloids and Surfaces B : Biointerfaces 13, no 2 (mars 1999) : 105–11. http://dx.doi.org/10.1016/s0927-7765(98)00113-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Wren, Sumi N., Brittany P. Gordon, Nicholas A. Valley, Laura E. McWilliams et Geraldine L. Richmond. « Hydration, Orientation, and Conformation of Methylglyoxal at the Air–Water Interface ». Journal of Physical Chemistry A 119, no 24 (juin 2015) : 6391–403. http://dx.doi.org/10.1021/acs.jpca.5b03555.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Shibata, Akira, Takashi Kai, Shinsuke Yamashita, Yoshihiro Itoh et Takuya Yamashita. « Conformation of poly(l-glutamic acid) at the air/water interface ». Biochimica et Biophysica Acta (BBA) - Biomembranes 812, no 2 (janvier 1985) : 587–90. http://dx.doi.org/10.1016/0005-2736(85)90334-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Ishikawa, Daisuke, Taizo Mori, Yusuke Yonamine, Waka Nakanishi, David L. Cheung, Jonathan P. Hill et Katsuhiko Ariga. « Mechanochemical Tuning of the Binaphthyl Conformation at the Air-Water Interface ». Angewandte Chemie International Edition 54, no 31 (12 juin 2015) : 8988–91. http://dx.doi.org/10.1002/anie.201503363.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Ishikawa, Daisuke, Taizo Mori, Yusuke Yonamine, Waka Nakanishi, David L. Cheung, Jonathan P. Hill et Katsuhiko Ariga. « Mechanochemical Tuning of the Binaphthyl Conformation at the Air-Water Interface ». Angewandte Chemie 127, no 31 (12 juin 2015) : 9116–19. http://dx.doi.org/10.1002/ange.201503363.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Lad, Mitaben D., Fabrice Birembaut, Richard A. Frazier et Rebecca J. Green. « Protein–lipid interactions at the air/water interface ». Physical Chemistry Chemical Physics 7, no 19 (2005) : 3478. http://dx.doi.org/10.1039/b506558p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Junghans, Ann, Chlóe Champagne, Philippe Cayot, Camille Loupiac et Ingo Köper. « Protein−Lipid Interactions at the Air−Water Interface ». Langmuir 26, no 14 (20 juillet 2010) : 12049–53. http://dx.doi.org/10.1021/la100036v.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Rodrı́guez Patino, Juan M., M. Rosario Rodrı́guez Niño et Cecilio Carrera Sánchez. « Protein–emulsifier interactions at the air–water interface ». Current Opinion in Colloid & ; Interface Science 8, no 4-5 (novembre 2003) : 387–95. http://dx.doi.org/10.1016/s1359-0294(03)00095-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Samantray, Suman, et David L. Cheung. « Effect of the air–water interface on the conformation of amyloid beta ». Biointerphases 15, no 6 (novembre 2020) : 061011. http://dx.doi.org/10.1116/6.0000620.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

O'Driscoll, Benjamin M. D., Jeremy L. Ruggles, Garry J. Foran et Ian R. Gentle. « Thin Films of a Tetracationic Porphyrin ». Australian Journal of Chemistry 56, no 10 (2003) : 1059. http://dx.doi.org/10.1071/ch03123.

Texte intégral
Résumé :
Langmuir–Blodgett films of the tetracationic porphyrin tetrakis(octadecyl-4-pyridinium)porphinatozinc(II) bromide transferred from subphases containing different salts were studied using X-ray photoelectron spectroscopy (XPS) and X-ray reflectometry. In contrast to previous results at the air/water interface, we found that the porphyrin adopted a fixed conformation at the air/solid interface regardless of composition of the subphase or whether the films were transferred above or below the primary phase transition. This conformation was assigned to the formation of an interdigitated bilayer structure.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Liao, Yi-Ting, Anthony C. Manson, Michael R. DeLyser, William G. Noid et Paul S. Cremer. « TrimethylamineN-oxide stabilizes proteins via a distinct mechanism compared with betaine and glycine ». Proceedings of the National Academy of Sciences 114, no 10 (22 février 2017) : 2479–84. http://dx.doi.org/10.1073/pnas.1614609114.

Texte intégral
Résumé :
We report experimental and computational studies investigating the effects of three osmolytes, trimethylamineN-oxide (TMAO), betaine, and glycine, on the hydrophobic collapse of an elastin-like polypeptide (ELP). All three osmolytes stabilize collapsed conformations of the ELP and reduce the lower critical solution temperature (LSCT) linearly with osmolyte concentration. As expected from conventional preferential solvation arguments, betaine and glycine both increase the surface tension at the air–water interface. TMAO, however, reduces the surface tension. Atomically detailed molecular dynamics (MD) simulations suggest that TMAO also slightly accumulates at the polymer–water interface, whereas glycine and betaine are strongly depleted. To investigate alternative mechanisms for osmolyte effects, we performed FTIR experiments that characterized the impact of each cosolvent on the bulk water structure. These experiments showed that TMAO red-shifts the OH stretch of the IR spectrum via a mechanism that was very sensitive to the protonation state of the NO moiety. Glycine also caused a red shift in the OH stretch region, whereas betaine minimally impacted this region. Thus, the effects of osmolytes on the OH spectrum appear uncorrelated with their effects upon hydrophobic collapse. Similarly, MD simulations suggested that TMAO disrupts the water structure to the least extent, whereas glycine exerts the greatest influence on the water structure. These results suggest that TMAO stabilizes collapsed conformations via a mechanism that is distinct from glycine and betaine. In particular, we propose that TMAO stabilizes proteins by acting as a surfactant for the heterogeneous surfaces of folded proteins.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Martin, Anneke H., Marcel B. J. Meinders, Martin A. Bos, Martien A. Cohen Stuart et Ton van Vliet. « Conformational Aspects of Proteins at the Air/Water Interface Studied by Infrared Reflection−Absorption Spectroscopy ». Langmuir 19, no 7 (avril 2003) : 2922–28. http://dx.doi.org/10.1021/la0208629.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Dalgicdir, Cahit, et Mehmet Sayar. « Conformation and Aggregation of LKα14 Peptide in Bulk Water and at the Air/Water Interface ». Journal of Physical Chemistry B 119, no 49 (24 novembre 2015) : 15164–75. http://dx.doi.org/10.1021/acs.jpcb.5b08871.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Chang, Su-Hwa, Liang-Yu Chen et Wen-Yih Chen. « The effects of denaturants on protein conformation and behavior at air/solution interface ». Colloids and Surfaces B : Biointerfaces 41, no 1 (mars 2005) : 1–6. http://dx.doi.org/10.1016/j.colsurfb.2004.10.015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Yano, Yohko F., Tomoya Uruga, Hajime Tanida, Yasuko Terada et Hironari Yamada. « Protein Salting Out Observed at an Air−Water Interface ». Journal of Physical Chemistry Letters 2, no 9 (11 avril 2011) : 995–99. http://dx.doi.org/10.1021/jz200111q.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Yang, Yuhong, Cedric Dicko, Colin D. Bain, Zuguang Gong, Robert M. J. Jacobs, Zhengzhong Shao, Ann E. Terry et Fritz Vollrath. « Behavior of silk protein at the air–water interface ». Soft Matter 8, no 37 (2012) : 9705. http://dx.doi.org/10.1039/c2sm26054a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

MARTINEZ, K., C. CARRERASANCHEZ, V. PIZONESRUIZHENESTROSA, J. RODRIGUEZPATINO et A. PILOSOF. « Soy protein–polysaccharides interactions at the air–water interface ». Food Hydrocolloids 21, no 5-6 (juillet 2007) : 804–12. http://dx.doi.org/10.1016/j.foodhyd.2006.11.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Diamant, Haim, et David Andelman. « Dimeric Surfactants : Spacer Chain Conformation and Specific Area at the Air/Water Interface ». Langmuir 10, no 9 (septembre 1994) : 2910–16. http://dx.doi.org/10.1021/la00021a012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Lu, J. R., T. J. Su, R. K. Thomas, J. Penfold et J. Webster. « Structural conformation of lysozyme layers at the air/water interface studied by neutron reflection ». Journal of the Chemical Society, Faraday Transactions 94, no 21 (1998) : 3279–87. http://dx.doi.org/10.1039/a805731a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Mohwald, H. « Phospholipid and Phospholipid-Protein Monolayers at the Air/Water Interface ». Annual Review of Physical Chemistry 41, no 1 (octobre 1990) : 441–76. http://dx.doi.org/10.1146/annurev.pc.41.100190.002301.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Niño, M. Rosario Rodríguez, Cecilio Carrera Sánchez, Marta Cejudo Fernández et Juan M. Rodríguez Patino. « Protein and lipid films at equilibrium at air-water interface ». Journal of the American Oil Chemists' Society 78, no 9 (septembre 2001) : 873–79. http://dx.doi.org/10.1007/s11746-001-0358-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

RODRIGUEZNINO, M., C. SANCHEZ, V. RUIZHENESTROSA et J. PATINO. « Milk and soy protein films at the air?water interface ». Food Hydrocolloids 19, no 3 (mai 2005) : 417–28. http://dx.doi.org/10.1016/j.foodhyd.2004.10.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Gálvez-Ruiz, María José. « Different approaches to study protein films at air/water interface ». Advances in Colloid and Interface Science 247 (septembre 2017) : 533–42. http://dx.doi.org/10.1016/j.cis.2017.07.015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Dutka, Volodymyr, Olena Aksimentyeva, Yaroslav Kovalskyi et Natalya Oshchapovska. « Monomolecular Films of Organic Diacyl Diperoxides on the Interface of the Phases Water–Air ». Chemistry & ; Chemical Technology 15, no 4 (25 novembre 2021) : 536–42. http://dx.doi.org/10.23939/chcht15.04.536.

Texte intégral
Résumé :
Monomolecular films of diacyl diperoxides at the water–air phase interface have been studied. Their behaviour is influenced by the structure of the molecule and the solvent. The numerical values of the areas of molecules that are extrapolated to zero pressure are different, which indicates a different conformation of the molecules in the monolayer. The conformational states of diperoxides were calculated by quantum chemical methods. Experimental data and quantum chemical calculations are consistent with each other.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Ozgur, Beytullah, Cahit Dalgicdir et Mehmet Sayar. « Correction to “Conformation and Aggregation of LKα14 Peptide in Bulk Water and at the Air/Water Interface” ». Journal of Physical Chemistry B 123, no 10 (5 mars 2019) : 2463–65. http://dx.doi.org/10.1021/acs.jpcb.9b01566.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Terme, Nolwenn, Alicia Jacquemet, Thierry Benvegnu, Véronique Vié et Loïc Lemiègre. « Modification of bipolar lipid conformation at the air/water interface by a single stereochemical variation ». Chemistry and Physics of Lipids 183 (octobre 2014) : 9–17. http://dx.doi.org/10.1016/j.chemphyslip.2014.04.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Kim, Chanjoong, Marc C. Gurau, Paul S. Cremer et Hyuk Yu. « Chain Conformation of Poly(dimethyl siloxane) at the Air/Water Interface by Sum Frequency Generation ». Langmuir 24, no 18 (16 septembre 2008) : 10155–60. http://dx.doi.org/10.1021/la800349q.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Zhu, Yang-Ming, Zu-Hong Lu et Yu Wei. « Surface-pressure-induced conformation changes of a polymer liquid crystal at the air-water interface ». Physical Review E 49, no 6 (1 juin 1994) : 5316–18. http://dx.doi.org/10.1103/physreve.49.5316.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Wang, Chengshan, Nilam Shah, Garima Thakur, Feimeng Zhou et Roger M. Leblanc. « α-Synuclein in α-helical conformation at air–water interface : implication of conformation and orientation changes during its accumulation/aggregation ». Chemical Communications 46, no 36 (2010) : 6702. http://dx.doi.org/10.1039/c0cc02098b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Martini, Silvia, Claudia Bonechi, Alberto Foletti et Claudio Rossi. « Water-Protein Interactions : The Secret of Protein Dynamics ». Scientific World Journal 2013 (2013) : 1–6. http://dx.doi.org/10.1155/2013/138916.

Texte intégral
Résumé :
Water-protein interactions help to maintain flexible conformation conditions which are required for multifunctional protein recognition processes. The intimate relationship between the protein surface and hydration water can be analyzed by studying experimental water properties measured in protein systems in solution. In particular, proteins in solution modify the structure and the dynamics of the bulk water at the solute-solvent interface. The ordering effects of proteins on hydration water are extended for several angstroms. In this paper we propose a method for analyzing the dynamical properties of the water molecules present in the hydration shells of proteins. The approach is based on the analysis of the effects of protein-solvent interactions on water protons NMR relaxation parameters. NMR relaxation parameters, especially the nonselective (R1NS) and selective (R1SE) spin-lattice relaxation rates of water protons, are useful for investigating the solvent dynamics at the macromolecule-solvent interfaces as well as the perturbation effects caused by the water-macromolecule interactions on the solvent dynamical properties. In this paper we demonstrate that Nuclear Magnetic Resonance Spectroscopy can be used to determine the dynamical contributions of proteins to the water molecules belonging to their hydration shells.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Rabe, Martin, Andreas Kerth, Alfred Blume et Patrick Garidel. « Albumin displacement at the air–water interface by Tween (Polysorbate) surfactants ». European Biophysics Journal 49, no 7 (11 septembre 2020) : 533–47. http://dx.doi.org/10.1007/s00249-020-01459-4.

Texte intégral
Résumé :
AbstractTween (polysorbate) 20 and 80 are surfactants used for the development of parenteral protein drugs, due to their beneficial safety profile and stabilisation properties. To elucidate the mechanism by which Tween 20 and 80 stabilise proteins in aqueous solutions, either by a “direct” protein to surfactant interaction and/or by an interaction with the protein film at the air–water interface, we used spectroscopic (Infrared Reflection Absorption Spectroscopy, IRRAS) and microscopic techniques (Brewster Angle Microscopy, BAM) in combination with surface pressure measurements. To this end, the impact of both types of Tweens with regard to the displacement of the protein from the air–water interface was studied. As a model protein, human serum albumin (HSA) was used. The results for the displacement of the adsorbed HSA films by Tweens 20 and 80 can partially be understood on the basis of an orogenic displacement mechanism, which depends on the critical surface pressure of the adsorbed protein film. With increasing concentration of Tween in the sub-phase, BAM images showed the formation of different domain morphologies. IRRA-spectra supported the finding that at high protein concentration in the sub-phase, the protein film could not be completely displaced by the surfactants. Comparing the impact of both surfactants, we found that Tween 20 adsorbed faster to the protein film than Tween 80. The adsorption kinetics of both Tweens and the speed of protein displacement increased with rising surfactant concentration. Tween 80 reached significant lower surface pressures than Tween 20, which led to an incomplete displacement of the observed HSA film.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Wang, Lei, Fredrik G. Bäcklund, Yusheng Yuan, Selvakumaran Nagamani, Piotr Hanczyc, Lech Sznitko et Niclas Solin. « Air–Water Interface Assembly of Protein Nanofibrils Promoted by Hydrophobic Additives ». ACS Sustainable Chemistry & ; Engineering 9, no 28 (2 juillet 2021) : 9289–99. http://dx.doi.org/10.1021/acssuschemeng.1c01901.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Liao, Zhengzheng, Joshua W. Lampe, Portonovo S. Ayyaswamy, David M. Eckmann et Ivan J. Dmochowski. « Protein Assembly at the Air–Water Interface Studied by Fluorescence Microscopy ». Langmuir 27, no 21 (novembre 2011) : 12775–81. http://dx.doi.org/10.1021/la203053g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Saint-Pierre-Chazalet, M., C. Fressigné, F. Billoudet et M. P. Pileni. « Phospholipid-protein interactions at the air-water interface : a monolayer study ». Thin Solid Films 210-211 (avril 1992) : 743–46. http://dx.doi.org/10.1016/0040-6090(92)90391-n.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Tronin, Andrey, Timothy Dubrovsky, Svetlana Dubrovskaya, Giuliano Radicchi et Claudio Nicolini. « Role of Protein Unfolding in Monolayer Formation on Air−Water Interface ». Langmuir 12, no 13 (janvier 1996) : 3272–75. http://dx.doi.org/10.1021/la950879+.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Yano, Yohko F., Yuki Kobayashi, Toshiaki Ina, Kiyofumi Nitta et Tomoya Uruga. « Hofmeister Anion Effects on Protein Adsorption at an Air–Water Interface ». Langmuir 32, no 38 (12 septembre 2016) : 9892–98. http://dx.doi.org/10.1021/acs.langmuir.6b02352.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Kundu, Sarathi, H. Matsuoka et H. Seto. « Zwitterionic lipid (DPPC)–protein (BSA) complexes at the air–water interface ». Colloids and Surfaces B : Biointerfaces 93 (mai 2012) : 215–18. http://dx.doi.org/10.1016/j.colsurfb.2012.01.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie