Littérature scientifique sur le sujet « Protein-Antibody recognition »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Protein-Antibody recognition ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Protein-Antibody recognition"
Addis, Philip W., Catherine J. Hall, Shaun Bruton, Vaclav Veverka, Ian C. Wilkinson, Frederick W. Muskett, Philip S. Renshaw et al. « Conformational Heterogeneity in Antibody-Protein Antigen Recognition ». Journal of Biological Chemistry 289, no 10 (16 janvier 2014) : 7200–7210. http://dx.doi.org/10.1074/jbc.m113.492215.
Texte intégralFerrigno, Paul Ko. « Non-antibody protein-based biosensors ». Essays in Biochemistry 60, no 1 (30 juin 2016) : 19–25. http://dx.doi.org/10.1042/ebc20150003.
Texte intégralPierce, Brian G., Zhen-Yong Keck, Patrick Lau, Catherine Fauvelle, Ragul Gowthaman, Thomas F. Baumert, Thomas R. Fuerst, Roy A. Mariuzza et Steven K. H. Foung. « Global mapping of antibody recognition of the hepatitis C virus E2 glycoprotein : Implications for vaccine design ». Proceedings of the National Academy of Sciences 113, no 45 (26 octobre 2016) : E6946—E6954. http://dx.doi.org/10.1073/pnas.1614942113.
Texte intégralHuang, Jiachen, Darren Diaz et Jarrod J. Mousa. « Antibody recognition of the Pneumovirus fusion protein trimer interface ». PLOS Pathogens 16, no 10 (9 octobre 2020) : e1008942. http://dx.doi.org/10.1371/journal.ppat.1008942.
Texte intégralWang, Meryl, David Zhu, Jianwei Zhu, Ruth Nussinov et Buyong Ma. « Local and global anatomy of antibody-protein antigen recognition ». Journal of Molecular Recognition 31, no 5 (8 décembre 2017) : e2693. http://dx.doi.org/10.1002/jmr.2693.
Texte intégralMargulies, David, et Andrew D. Hamilton. « Combinatorial protein recognition as an alternative approach to antibody-mimetics ». Current Opinion in Chemical Biology 14, no 6 (décembre 2010) : 705–12. http://dx.doi.org/10.1016/j.cbpa.2010.07.017.
Texte intégralKanaujia, G. V., S. Motzel, M. A. Garcia, P. Andersen et M. L. Gennaro. « Recognition of ESAT-6 Sequences by Antibodies in Sera of Tuberculous Nonhuman Primates ». Clinical Diagnostic Laboratory Immunology 11, no 1 (janvier 2004) : 222–26. http://dx.doi.org/10.1128/cdli.11.1.222-226.2004.
Texte intégralFuchs, Stephen M., Krzysztof Krajewski, Richard W. Baker, Victoria L. Miller et Brian D. Strahl. « Influence of Combinatorial Histone Modifications on Antibody and Effector Protein Recognition ». Current Biology 21, no 1 (janvier 2011) : 53–58. http://dx.doi.org/10.1016/j.cub.2010.11.058.
Texte intégralLak, Parnian, Spandana Makeneni, Robert J. Woods et Todd L. Lowary. « Specificity of Furanoside-Protein Recognition through Antibody Engineering and Molecular Modeling ». Chemistry - A European Journal 21, no 3 (20 novembre 2014) : 1138–48. http://dx.doi.org/10.1002/chem.201405259.
Texte intégralOtlewski, J., et W. Apostoluk. « Structural and energetic aspects of protein-protein recognition. » Acta Biochimica Polonica 44, no 3 (30 septembre 1997) : 367–87. http://dx.doi.org/10.18388/abp.1997_4392.
Texte intégralThèses sur le sujet "Protein-Antibody recognition"
Scherer, Erin M. « Antibody recognition of a protein epitope close to a membrane : a novel solution ». Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.510216.
Texte intégralTopping, Katherine P. « Structural studies on serotype-specific opsonic antibody recognition of protective streptococcal M protein epitopes ». Thesis, University of Newcastle Upon Tyne, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294877.
Texte intégralEaston, Donna Meredith, et n/a. « Functional and Antigenic Characterisation of the Moraxella catarrhalis protein M35 ». University of Canberra. n/a, 2008. http://erl.canberra.edu.au./public/adt-AUC20081217.083105.
Texte intégralAl, Qaraghuli Mohammed. « Investigating the antibody recognition of different hapten classes using a combination of phage display and protein modelling ». Thesis, University of Aberdeen, 2014. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=214816.
Texte intégralTing, Joy Holtvluwer. « Molecular ecology of mate recognition in the harpacticoid copepod Tigriopus : antibody production, protein purification, and fitness consequences ». Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/25202.
Texte intégralDiestel, Uschi [Verfasser], et Yves A. [Akademischer Betreuer] Muller. « Structural Basis for TGF-β-Receptor Interaction and Antibody Recognition of HCMV Envelope Protein gB / Uschi Diestel. Gutachter : Yves A. Muller ». Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2014. http://d-nb.info/1075832683/34.
Texte intégralJoel, Smita. « ENGINEERING PROTEINS WITH UNIQUE CHARACTERISTICS FOR DIAGNOSTICS AND BIOSENSORS ». UKnowledge, 2011. http://uknowledge.uky.edu/gradschool_diss/180.
Texte intégralSIRONI, LAURA. « Nanoparticles for in-vitro and in-vivo biosensing and imaging ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/19278.
Texte intégralAgnew, Heather Dawn. « Rapid Construction of Protein Capture Agents with Chemically Designed Stability and Antibody-Like Recognition Properties ». Thesis, 2010. https://thesis.library.caltech.edu/5583/11/Thesis.pdf.
Texte intégralThis thesis describes technologies for the rapid and scalable production of high-affinity, high-specificity protein capture agents which possess the affinities and specificities of antibodies, but also exhibit improved chemical, biochemical, and physical stability. I will discuss how the chemical flexibility of comprehensive, one-bead-one-compound (OBOC) libraries of oligopeptides may be combined with iterative in situ click chemistry to select multi-ligand capture agents. Large OBOC libraries form the basis of individual peptide ligands, and also permit chemically designed stability through the incorporation of artificial (azide or acetylene) and non-natural amino acid building blocks. The in situ click chemistry method then utilizes the target protein as the catalyst, or template, for assembling its own biligand via formation of a 1,2,3-triazole linkage between two individual ligands (azide and acetylene). This process can be repeated to produce triligands, tetraligands, and other higher-order multi-ligands with an accompanying increase in affinity and specificity through cooperative interactions. Once found, multi-ligand capture agents can be produced in gram amounts via conventional synthetic methods such as the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). This is a general and robust strategy for the inexpensive, high-throughput construction of protein capture agents that can be exploited to detect protein biomarkers in multi-parameter clinical diagnostic assays.
While high-affinity protein capture agents represent a significant technology advance, they are just one component of what is necessary for highly multiplexed measurements of protein biomarkers. It is also important to develop or optimize the actual assay platforms that can enable sensitive multi-parameter protein measurements using these capture agents. Silicon nanowire (SiNW) nanoelectronic sensors can provide quantitative, label-free multi-parameter measurements of protein biomarkers in real time. However, SiNW sensors can be challenging to deploy because unprotected Si forms a native oxide layer that can significantly reduce the detection sensitivity of the nanowire sensors via dielectric shielding. Another technical challenge is the development of chemistries which allow for the selective encoding of nanowire surfaces with the capture agents. To overcome these challenges, the final part of this thesis presents a general method to functionalize organic and biological molecules on highly passivated Si(111) surfaces with minimal surface oxidation.
Kuo, Ting Yu, et 郭庭佑. « A study of antibody X in the recognition of Helicobacter pylori neutrophil-activating protein as a new antigen ». Thesis, 2016. http://ndltd.ncl.edu.tw/handle/15235655246083217830.
Texte intégral國立清華大學
分子與細胞生物研究所
104
Helicobacter pylori (H. pylori) is a major pathogen involved in gastritis, peptic ulcer disease, and gastric cancer. Helicobacter pylori neutrophil-activating protein (HP-NAP) is an important virulence factor of H. pylori. The inflammation of the gastric mucosa caused by H. pylori infection might be resulted from the cytokines and reactive oxygen species (ROS) produced by HP-NAP-stimulated human leukocytes. Thus, H. pylori-induced inflammation of the gastric mucosa could be attenuated by blocking the activity of HP-NAP. Here, I found that antibody X not only detected their target protein but also detected recombinant HP-NAP. By western-blot, enzyme linked immunosorbent assay (ELISA) and native western-blot analyses, the antibody X detects denatured and native form recombinant HP-NAP of H. pylori 26695 strain. To determine the epitope sequence of the antibody X on HP-NAP, HP-NAP mutants were generated by using the modified PCR-based site-directed mutagenesis method and then purified by one-step DEAE anion-exchange chromatography. The antibody X is able to recognize HP-NAP through a new set of epitope sequence which is different from the original epitope of antibody X. The epitope sequence is conserved in all H. pylori strains. The non-identical amino acid residues which nearby the epitope sequence of HP-NAP in various H. pylori strains were then subjected to site-directed mutagenesis. I found that the antibody X could detect these mutated HP-NAP, indicating that antibody X is able to detect HP-NAP of various H. pylori strains. Furthermore, antibody X is able to inhibit HP-NAP-stimulated ROS production by human neutrophils. Thus, antibody X is able to detect HP-NAP and block its activity through the new epitope sequence of HP-NAP.
Livres sur le sujet "Protein-Antibody recognition"
1929-, Laver William Graeme, Air Gillian et Cold Spring Harbor Laboratory, dir. Immune recognition of protein antigens. Cold Spring Harbor, N.Y : Cold Spring Harbor Laboratory, 1985.
Trouver le texte intégralAdler, M. Properties and potential of protein–DNA conjugates for analytic applications. Sous la direction de A. V. Narlikar et Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.25.
Texte intégralChapitres de livres sur le sujet "Protein-Antibody recognition"
Janin, Joël, Jacqueline Cherfils et Stéphane Duquerroy. « Principles of Protein — Protein Recognition in Protease-Inhibitor and Antigen-Antibody Complexes ». Dans Computation of Biomolecular Structures, 103–14. Berlin, Heidelberg : Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77798-1_9.
Texte intégral« Macromolecule-Imprinted Polymers : Antibody/Receptor Mimics for Protein Recognition and Catalysis ». Dans Biomedical Nanosensors, 35–72. Jenny Stanford Publishing, 2012. http://dx.doi.org/10.1201/b13721-4.
Texte intégralLAVER, W. G., P. M. COLMAN, G. M. AIR, R. G. WEBSTER, J. N. VARGHESE, A. T. BAKER, P. A. TULLOCH et W. R. TULIP. « Recognition of Protein Antigens by Antibodies : Crystal Structure of Antibody Fab Fragments Complexed with Influenza Virus Neuraminidase ». Dans Immune Recognition and Evasion : Molecular Aspects of Host�parasite Interaction, 77–86. Elsevier, 1990. http://dx.doi.org/10.1016/b978-0-12-711710-2.50010-8.
Texte intégralSundberg, Eric J., et Roy A. Mariuzza. « Molecular recognition in antibody-antigen complexes ». Dans Advances in Protein Chemistry, 119–60. Elsevier, 2002. http://dx.doi.org/10.1016/s0065-3233(02)61004-6.
Texte intégralActes de conférences sur le sujet "Protein-Antibody recognition"
Lord, S. T. « DIRECTED MUTAGENESIS OF HUMAN FIBRINOGEN : Aα CHAIN SUBSTITUTIONS THAT ALTER THROMBIN CLEAVAGE AND ANTIBODY RECOGNITION ». Dans XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1642887.
Texte intégralWhite, Mitch, James Head, Grith Sorensen, Uffe Holmskov, Erika Crouch et Kevan L. Hartshorn. « Monoclonal Antibody Assisted Structure-function Analysis Of The Carbohydrate Recognition Domain Of Surfactant Protein D ». Dans American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a4973.
Texte intégralPancham, N., M. Dumas, J. Brown, T. C. Michaud et W. J. Knowles. « SYNTHETIC PEPTIDE ANTIBODIES RECOGNIZE PLASMA AND RECOMBINANT FVIII ». Dans XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644027.
Texte intégralTorres-Almonacid, Jorge, David Medina-Ortiz, Diego Alvarez-Saravia, Julio Aguila-Guerrero, Alvaro Olivera-Nappa et Marcelo Navarrete. « Pattern recognition on antigen-antibody interactions from protein microarrays based on data mining and bioinformatics analysis ». Dans 2019 38th International Conference of the Chilean Computer Science Society (SCCC). IEEE, 2019. http://dx.doi.org/10.1109/sccc49216.2019.8966421.
Texte intégralVermeer, C., BA M. Soute et MM W. Ulrich. « IN VITRO CARBOXYLATION OF EXOGENOUS PROTEIN SUBSTRATES BY VITAMIN K-DEPENDENT CARBOXYLASE ». Dans XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643994.
Texte intégralLima, Beatriz Alves, Andressa da Silva Pereira, Bruna Alves Lima, Diana Gonçalves Lima, Leonardo Ferreira Pucci, Renato Moraes Ferreira, Tiago Castro Ferreira et Henrique Ferreira Pucci. « PREDICTORS OF BREAST CANCER PROGNOSIS BASED ON TUMOR BIOMARKERS ». Dans Abstracts from the Brazilian Breast Cancer Symposium - BBCS 2021. Mastology, 2021. http://dx.doi.org/10.29289/259453942021v31s2022.
Texte intégralRapports d'organisations sur le sujet "Protein-Antibody recognition"
Spiegel, Yitzhak, Michael McClure, Itzhak Kahane et B. M. Zuckerman. Characterization of the Phytophagous Nematode Surface Coat to Provide New Strategies for Biocontrol. United States Department of Agriculture, novembre 1995. http://dx.doi.org/10.32747/1995.7613015.bard.
Texte intégral