Littérature scientifique sur le sujet « Processus stationnaire multivarié »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Processus stationnaire multivarié ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Processus stationnaire multivarié"

1

Harel, Michel, et Echarif Elharfaoui. « La convergence faible des U-statistiques multivariées pour des processus non stationnaires ». Comptes Rendus Mathematique 337, no 12 (décembre 2003) : 801–4. http://dx.doi.org/10.1016/j.crma.2003.09.034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Processus stationnaire multivarié"

1

Boulin, Alexis. « Partitionnement des variables de séries temporelles multivariées selon la dépendance de leurs extrêmes ». Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5039.

Texte intégral
Résumé :
Dans un grand éventail d'applications allant des sciences du climat à la finance, des événements extrêmes avec une probabilité loin d'être négligeable peuvent se produire, entraînant des conséquences désastreuses. Les extrêmes d'évènements climatiques tels que le vent, la température et les précipitations peuvent profondément affecter les êtres humains et les écosystèmes, entraînant des événements tels que des inondations, des glissements de terrain ou des vagues de chaleur. Lorsque l'emphase est mise sur l'étude de variables mesurées dans le temps sur un grand nombre de stations ayant une localisation spécifique, comme les variables mentionnées précédemment, le partitionnement de variables devient essentiel pour résumer et visualiser des tendances spatiales, ce qui est crucial dans l'étude des événements extrêmes. Cette thèse explore plusieurs modèles et méthodes pour partitionner les variables d'un processus stationnaire multivarié, en se concentrant sur les dépendances extrémales.Le chapitre 1 présente les concepts de modélisation de la dépendance via les copules, fondamentales pour la dépendance extrême. La notion de variation régulière est introduite, essentielle pour l'étude des extrêmes, et les processus faiblement dépendants sont abordés. Le partitionnement est discuté à travers les paradigmes de séparation-proximité et de partitionnement basé sur un modèle. Nous abordons aussi l'analyse non-asymptotique pour évaluer nos méthodes dans des dimensions fixes.Le chapitre 2 est à propos de la dépendance entre valeurs maximales est cruciale pour l'analyse des risques. Utilisant la fonction de copule de valeur extrême et le madogramme, ce chapitre se concentre sur l'estimation non paramétrique avec des données manquantes. Un théorème central limite fonctionnel est établi, démontrant la convergence du madogramme vers un processus Gaussien tendu. Des formules pour la variance asymptotique sont présentées, illustrées par une étude numérique.Le chapitre 3 propose les modèles asymptotiquement indépendants par blocs (AI-blocs) pour le partitionnement de variables, définissant des clusters basés sur l'indépendance des maxima. Un algorithme est introduit pour récupérer les clusters sans spécifier leur nombre à l'avance. L'efficacité théorique de l'algorithme est démontrée, et une méthode de sélection de paramètre basée sur les données est proposée. La méthode est appliquée à des données de neurosciences et environnementales, démontrant son potentiel.Le chapitre 4 adapte des techniques de partitionnement pour analyser des événements extrêmes composites sur des données climatiques européennes. Les sous-régions présentant une dépendance des extrêmes de précipitations et de vitesse du vent sont identifiées en utilisant des données ERA5 de 1979 à 2022. Les clusters obtenus sont spatialement concentrés, offrant une compréhension approfondie de la distribution régionale des extrêmes. Les méthodes proposées réduisent efficacement la taille des données tout en extrayant des informations cruciales sur les événements extrêmes.Le chapitre 5 propose une nouvelle méthode d'estimation pour les matrices dans un modèle linéaire à facteurs latents, où chaque composante d'un vecteur aléatoire est exprimée par une équation linéaire avec des facteurs et du bruit. Contrairement aux approches classiques basées sur la normalité conjointe, nous supposons que les facteurs sont distribués selon des distributions de Fréchet standards, ce qui permet une meilleure description de la dépendance extrémale. Une méthode d'estimation est proposée garantissant une solution unique sous certaines conditions. Une borne supérieure adaptative pour l'estimateur est fournie, adaptable à la dimension et au nombre de facteurs
In a wide range of applications, from climate science to finance, extreme events with a non-negligible probability can occur, leading to disastrous consequences. Extremes in climatic events such as wind, temperature, and precipitation can profoundly impact humans and ecosystems, resulting in events like floods, landslides, or heatwaves. When the focus is on studying variables measured over time at numerous specific locations, such as the previously mentioned variables, partitioning these variables becomes essential to summarize and visualize spatial trends, which is crucial in the study of extreme events. This thesis explores several models and methods for partitioning the variables of a multivariate stationary process, focusing on extreme dependencies.Chapter 1 introduces the concepts of modeling dependence through copulas, which are fundamental for extreme dependence. The notion of regular variation, essential for studying extremes, is introduced, and weakly dependent processes are discussed. Partitioning is examined through the paradigms of separation-proximity and model-based clustering. Non-asymptotic analysis is also addressed to evaluate our methods in fixed dimensions.Chapter 2 study the dependence between maximum values is crucial for risk analysis. Using the extreme value copula function and the madogram, this chapter focuses on non-parametric estimation with missing data. A functional central limit theorem is established, demonstrating the convergence of the madogram to a tight Gaussian process. Formulas for asymptotic variance are presented, illustrated by a numerical study.Chapter 3 proposes asymptotically independent block (AI-block) models for partitioning variables, defining clusters based on the independence of maxima. An algorithm is introduced to recover clusters without specifying their number in advance. Theoretical efficiency of the algorithm is demonstrated, and a data-driven parameter selection method is proposed. The method is applied to neuroscience and environmental data, showcasing its potential.Chapter 4 adapts partitioning techniques to analyze composite extreme events in European climate data. Sub-regions with dependencies in extreme precipitation and wind speed are identified using ERA5 data from 1979 to 2022. The obtained clusters are spatially concentrated, offering a deep understanding of the regional distribution of extremes. The proposed methods efficiently reduce data size while extracting critical information on extreme events.Chapter 5 proposes a new estimation method for matrices in a latent factor linear model, where each component of a random vector is expressed by a linear equation with factors and noise. Unlike classical approaches based on joint normality, we assume factors are distributed according to standard Fréchet distributions, allowing a better description of extreme dependence. An estimation method is proposed, ensuring a unique solution under certain conditions. An adaptive upper bound for the estimator is provided, adaptable to dimension and the number of factors
Styles APA, Harvard, Vancouver, ISO, etc.
2

Elharfaoui, Echarif. « La convergence faible des U-statistiques multivariées pour des processus non stationnaires dépendants ». Toulouse 3, 2003. http://www.theses.fr/2003TOU30144.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Poignard, Benjamin. « Approches nouvelles des modèles GARCH multivariés en grande dimension ». Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLED010/document.

Texte intégral
Résumé :
Ce document traite du problème de la grande dimension dans des processus GARCH multivariés. L'auteur propose une nouvelle dynamique vine-GARCH pour des processus de corrélation paramétrisés par un graphe non dirigé appelé "vine". Cette approche génère directement des matrices définies-positives et encourage la parcimonie. Après avoir établi des résultats d'existence et d'unicité pour les solutions stationnaires du modèle vine-GARCH, l'auteur analyse les propriétés asymptotiques du modèle. Il propose ensuite un cadre général de M-estimateurs pénalisés pour des processus dépendants et se concentre sur les propriétés asymptotiques de l'estimateur "adaptive Sparse Group Lasso". La grande dimension est traitée en considérant le cas où le nombre de paramètres diverge avec la taille de l'échantillon. Les résultats asymptotiques sont illustrés par des expériences simulées. Enfin dans ce cadre l'auteur propose de générer la sparsité pour des dynamiques de matrices de variance covariance. Pour ce faire, la classe des modèles ARCH multivariés est utilisée et les processus correspondants à celle-ci sont estimés par moindres carrés ordinaires pénalisés
This document contributes to high-dimensional statistics for multivariate GARCH processes. First, the author proposes a new dynamic called vine-GARCH for correlation processes parameterized by an undirected graph called vine. The proposed approach directly specifies positive definite matrices and fosters parsimony. The author provides results for the existence and uniqueness of stationary solution of the vine-GARCH model and studies its asymptotic properties. He then proposes a general framework for penalized M-estimators with dependent processes and focuses on the asymptotic properties of the adaptive Sparse Group Lasso regularizer. The high-dimensionality setting is studied when considering a diverging number of parameters with the sample size. The asymptotic properties are illustrated through simulation experiments. Finally, the author proposes to foster sparsity for multivariate variance covariance matrix processes within the latter framework. To do so, the multivariate ARCH family is considered and the corresponding parameterizations are estimated thanks to penalized ordinary least square procedures
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Processus stationnaire multivarié"

1

Benslama, Djaffar. Extrêmes de processus stationnaires gaussiens multivariés. Grenoble : A.N.R.T, Université Pierre Mendes France (Grenoble II), 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie