Articles de revues sur le sujet « Problème de Convection-diffusion »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Problème de Convection-diffusion.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Problème de Convection-diffusion ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Gaultier, Maurice, et Mikel Lezaun. « Un problème de convection-diffusion avec réaction chimique ». Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 324, no 2 (janvier 1997) : 159–64. http://dx.doi.org/10.1016/s0764-4442(99)80336-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ben-Abdallah, Philippe, Hamou Sadat et Vital Le Dez. « Résolution d'un problème inverse de convection–diffusion par une méthode de perturbation singulière ». International Journal of Thermal Sciences 39, no 7 (juillet 2000) : 742–52. http://dx.doi.org/10.1016/s1290-0729(00)00279-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Dalík, Josef. « A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems ». Applications of Mathematics 36, no 5 (1991) : 329–54. http://dx.doi.org/10.21136/am.1991.104471.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Martynova, T. S., G. V. Muratova, I. N. Shabas et V. V. Bavin. « Многосеточные методы с косо-эрмитовыми сглаживателями для задач конвекции–диффузии с преобладающей конвекцией ». Numerical Methods and Programming (Vychislitel'nye Metody i Programmirovanie), no 1 (31 janvier 2022) : 46–59. http://dx.doi.org/10.26089/nummet.v23r104.

Texte intégral
Résumé :
The convection–diffusion equation with dominant convection is considered on a uniform grid of central difference scheme. The multigrid method is used for solving the strongly nonsymmetric systems of linear algebraic equations with positive definite coefficient matrices. Two-step skew-Hermitian iterative methods are utilized for the first time as a smoothing procedure. It is demonstrated that using the proper smoothers enables to improve the convergence of the multigrid method. The robustness of the smoothers with respect to variation of the Peclet number is shown by local Fourier analysis and numerical experiments. Уравнение конвекции–диффузии с преобладающей конвекцией рассматривается на равномерной сетке центрально-разностной схемы. Многосеточный метод используется длярешения сильно несимметричных систем линейных алгебраических уравнений с положительно определенными матрицами коэффициентов. Двухшаговые косоэрмитовы итерационные методы впервые используются в качестве сглаживающей процедуры. Демонстрируется, что надлежащий выбор сглаживателей позволяет улучшить сходимость многосеточного метода. Локальный фурье-анализ и численные эксперименты приводят к выводу об устойчивости сглаживателей по отношению к изменению числа Пекле.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Dalík, Josef, et Helena Růžičková. « An explicit modified method of characteristics for the one-dimensional nonstationary convection-diffusion problem with dominating convection ». Applications of Mathematics 40, no 5 (1995) : 367–80. http://dx.doi.org/10.21136/am.1995.134300.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Dolejší, V., M. Feistauer et C. Schwab. « On discontinuous Galerkin methods for nonlinear convection-diffusion problems and compressible flow ». Mathematica Bohemica 127, no 2 (2002) : 163–79. http://dx.doi.org/10.21136/mb.2002.134171.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Goldstein, C. I. « Preconditioning convection dominated convection‐diffusion problems ». International Journal of Numerical Methods for Heat & ; Fluid Flow 5, no 2 (février 1995) : 99–119. http://dx.doi.org/10.1108/eum0000000004059.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Stynes, Martin. « Steady-state convection-diffusion problems ». Acta Numerica 14 (19 avril 2005) : 445–508. http://dx.doi.org/10.1017/s0962492904000261.

Texte intégral
Résumé :
In convection-diffusion problems, transport processes dominate while diffusion effects are confined to a relatively small part of the domain. This state of affairs means that one cannot rely on the formal ellipticity of the differential operator to ensure the convergence of standard numerical algorithms. Thus new ideas and approaches are required.The survey begins by examining the asymptotic nature of solutions to stationary convection-diffusion problems. This provides a suitable framework for the understanding of these solutions and the difficulties that numerical techniques will face. Various numerical methods expressly designed for convection-diffusion problems are then presented and extensively discussed. These include finite difference and finite element methods and the use of special meshes.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kashyap, Pradeep. « Convection Diffusion Problems Solved by Fractional Variational Iteration Method ». RESEARCH HUB International Multidisciplinary Research Journal 9, no 3 (23 mars 2022) : 01–07. http://dx.doi.org/10.53573/rhimrj.2022.v09i03.001.

Texte intégral
Résumé :
The paper considers the application of FVIM. The method is exploited explaining convection diffusion problems in different physical situations. These physical situations include energy, particles, etc., are transmitted inside the system owed to diffusion-convection.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Roos, Hans-Görg, et Martin Stynes. « Necessary conditions for uniform convergence of finite difference schemes for convection-diffusion problems with exponential and parabolic layers ». Applications of Mathematics 41, no 4 (1996) : 269–80. http://dx.doi.org/10.21136/am.1996.134326.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Shih, Yin-Tzer, et Howard C. Elman. « Modified streamline diffusion schemes for convection-diffusion problems ». Computer Methods in Applied Mechanics and Engineering 174, no 1-2 (mai 1999) : 137–51. http://dx.doi.org/10.1016/s0045-7825(98)00283-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Chang, Jen-Yi, Ru-Yun Chen et Chia-Cheng Tsai. « Hermite Method of Approximate Particular Solutions for Solving Time-Dependent Convection-Diffusion-Reaction Problems ». Mathematics 10, no 2 (7 janvier 2022) : 188. http://dx.doi.org/10.3390/math10020188.

Texte intégral
Résumé :
This article describes the development of the Hermite method of approximate particular solutions (MAPS) to solve time-dependent convection-diffusion-reaction problems. Using the Crank-Nicholson or the Adams-Moulton method, the time-dependent convection-diffusion-reaction problem is converted into time-independent convection-diffusion-reaction problems for consequent time steps. At each time step, the source term of the time-independent convection-diffusion-reaction problem is approximated by the multiquadric (MQ) particular solution of the biharmonic operator. This is inspired by the Hermite radial basis function collocation method (RBFCM) and traditional MAPS. Therefore, the resultant system matrix is symmetric. Comparisons are made for the solutions of the traditional/Hermite MAPS and RBFCM. The results demonstrate that the Hermite MAPS is the most accurate and stable one for the shape parameter. Finally, the proposed method is applied for solving a nonlinear time-dependent convection-diffusion-reaction problem.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Axelsson, O., et W. Layton. « Defect correction methods for convection dominated convection-diffusion problems ». ESAIM : Mathematical Modelling and Numerical Analysis 24, no 4 (1990) : 423–55. http://dx.doi.org/10.1051/m2an/1990240404231.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Borne, Sabine Le. « ℋ-matrices for Convection-diffusion Problems with Constant Convection ». Computing 70, no 3 (juin 2003) : 261–74. http://dx.doi.org/10.1007/s00607-003-1474-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Kim, Yon-Chol. « A Compact Higher-Order Scheme for Two-Dimensional Unsteady Convection–Diffusion Equations ». International Journal of Computational Methods 17, no 07 (15 août 2019) : 1950025. http://dx.doi.org/10.1142/s0219876219500257.

Texte intégral
Résumé :
In this paper, we study a compact higher-order scheme for the two-dimensional unsteady convection–diffusion problems using the nearly analytic discrete method (NADM), especially, focusing on the convection dominated-diffusion problems. The numerical scheme is constructed and the stability analysis is implemented. We find the order of accuracy of scheme is [Formula: see text], where [Formula: see text] is the size of time steps and [Formula: see text] the size of spacial steps, especially, making clear the relation between [Formula: see text] and [Formula: see text] is according to the different values of diffusion parameter [Formula: see text] through von Neumann stability analysis. The obtained numerical results for several benchmark problems show that our method makes progress in the numerical study of NADM for convection–diffusion equation and is to be effective and helpful particularly in computations for the convection dominated-diffusion equations and, furthermore, valuable in the numerical treatment of many real-world problems such as MHD natural convection flow.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Tawil, Magdy A. El. « Stochastic Diffusion-Convection Boundary Value Problems ». Chaos, Solitons & ; Fractals 9, no 12 (décembre 1998) : 1945–54. http://dx.doi.org/10.1016/s0960-0779(98)00007-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Zhang, Yang. « AD–FDSD for convection–diffusion problems ». Applied Mathematics and Computation 206, no 1 (décembre 2008) : 257–71. http://dx.doi.org/10.1016/j.amc.2008.02.025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Shi, Feng, Guoping Liang, Yubo Zhao et Jun Zou. « New Splitting Methods for Convection-Dominated Diffusion Problems and Navier-Stokes Equations ». Communications in Computational Physics 16, no 5 (novembre 2014) : 1239–62. http://dx.doi.org/10.4208/cicp.031013.030614a.

Texte intégral
Résumé :
AbstractWe present a new splitting method for time-dependent convention-dominated diffusion problems. The original convention diffusion system is split into two sub-systems: a pure convection system and a diffusion system. At each time step, a convection problem and a diffusion problem are solved successively. A few important features of the scheme lie in the facts that the convection subproblem is solved explicitly and multistep techniques can be used to essentially enlarge the stability region so that the resulting scheme behaves like an unconditionally stable scheme; while the diffusion subproblem is always self-adjoint and coercive so that they can be solved efficiently using many existing optimal preconditioned iterative solvers. The scheme can be extended for solving the Navier-Stokes equations, where the nonlinearity is resolved by a linear explicit multistep scheme at the convection step, while only a generalized Stokes problem is needed to solve at the diffusion step and the major stiffness matrix stays invariant in the time marching process. Numerical simulations are presented to demonstrate the stability, convergence and performance of the single-step and multistep variants of the new scheme.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Geng, Fazhan, Suping Qian et Shuai Li. « Numerical solutions of singularly perturbed convection-diffusion problems ». International Journal of Numerical Methods for Heat & ; Fluid Flow 24, no 6 (29 juillet 2014) : 1268–74. http://dx.doi.org/10.1108/hff-01-2013-0033.

Texte intégral
Résumé :
Purpose – The purpose of this paper is to find an effective numerical method for solving singularly perturbed convection-diffusion problems. Design/methodology/approach – The present method is based on the asymptotic expansion method and the variational iteration method (VIM). First a zeroth order asymptotic expansion for the solution of the given singularly perturbed convection-diffusion problem is constructed. Then the reduced terminal value problem is solved by using the VIM. Findings – Two numerical examples are introduced to show the validity of the present method. Obtained numerical results show that the present method can provide very accurate analytical approximate solutions not only in the boundary layer, but also away from the layer. Originality/value – The combination of the asymptotic expansion method and the VIM is applied to singularly perturbed convection-diffusion problems.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Hansbo, Peter. « The characteristic streamline diffusion method for convection-diffusion problems ». Computer Methods in Applied Mechanics and Engineering 96, no 2 (avril 1992) : 239–53. http://dx.doi.org/10.1016/0045-7825(92)90134-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Phongthanapanich, Sutthisak, et Pramote Dechaumphai. « A CHARACTERISTIC-BASED FINITE VOLUME ELEMENT METHOD FOR CONVECTION-DIFFUSION-REACTION EQUATION ». Transactions of the Canadian Society for Mechanical Engineering 32, no 3-4 (septembre 2008) : 549–60. http://dx.doi.org/10.1139/tcsme-2008-0037.

Texte intégral
Résumé :
A two-dimensional convection-diffusion-reaction equation is discretized by the finite volume element method on triangular meshes. Time-dependent convection-diffusion-reaction equation is developed along the characteristic path using the characteristic-based scheme, while the finite volume method is employed for deriving the discretized equations. The concept of the finite element technique is applied to estimate the gradient quantities at the cell faces of the finite volume. Numerical test cases have shown that the method does not require any artificial diffusion to improve the solution stability. The robustness and the accuracy of the method have been evaluated by using available analytical and numerical solutions of the pure-convection, convection-diffusion and convection-diffusion-reaction problems.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Cawood, M. E., V. J. Ervin, W. J. Layton et J. M. Maubach. « Adaptive defect correction methods for convection dominated, convection diffusion problems ». Journal of Computational and Applied Mathematics 116, no 1 (avril 2000) : 1–21. http://dx.doi.org/10.1016/s0377-0427(99)00278-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Muratova, Galina V., et Evgeniya M. Andreeva. « Multigrid method for solving convection-diffusion problems with dominant convection ». Journal of Computational and Applied Mathematics 226, no 1 (avril 2009) : 77–83. http://dx.doi.org/10.1016/j.cam.2008.05.055.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Afanas'eva, Nadyezhda M., Alexander G. Churbanov et Petr N. Vabishchevich. « Unconditionally Monotone Schemes for Unsteady Convection-Diffusion Problems ». Computational Methods in Applied Mathematics 13, no 2 (1 avril 2013) : 185–205. http://dx.doi.org/10.1515/cmam-2013-0002.

Texte intégral
Résumé :
Abstract. This paper deals with constructing monotone schemes of the second-order accuracy in space for transient convection-diffusion problems. They are based on a reformulation of the convective and diffusive transport terms using the convective terms in the divergent and nondivergent forms. The stability of the difference schemes is established in the uniform and L1 norm. For 2D problems, unconditionally monotone schemes of splitting with respect to spatial variables are developed. Unconditionally stable schemes for problems of convection-diffusion-reaction are proposed, too.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Afanas’eva, N. M., P. N. Vabishchevich et M. V. Vasil’eva. « Unconditionally stable schemes for convection-diffusion problems ». Russian Mathematics 57, no 3 (27 février 2013) : 1–11. http://dx.doi.org/10.3103/s1066369x13030018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Stynes, M. « Finite volume methods for convection-diffusion problems ». Irish Mathematical Society Bulletin 0034 (1995) : 49. http://dx.doi.org/10.33232/bims.0034.49.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Dautov, R. Z., et E. M. Fedotov. « HDG schemes for stationary convection-diffusion problems ». IOP Conference Series : Materials Science and Engineering 158 (novembre 2016) : 012028. http://dx.doi.org/10.1088/1757-899x/158/1/012028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

CHEN, Zhiming. « Adaptive computation for convection dominated diffusion problems ». Science in China Series A 47, no 7 (2004) : 22. http://dx.doi.org/10.1360/04za0002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Bertoluzza, S., C. Canuto et A. Tabacco. « Negative norm stabilization of convection-diffusion problems ». Applied Mathematics Letters 13, no 4 (mai 2000) : 121–27. http://dx.doi.org/10.1016/s0893-9659(99)00221-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Dolejší, Vít. « hp-DGFEM for nonlinear convection-diffusion problems ». Mathematics and Computers in Simulation 87 (janvier 2013) : 87–118. http://dx.doi.org/10.1016/j.matcom.2013.03.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Vabishchevich, P. N., et P. E. Zakharov. « Alternating triangular schemes for convection–diffusion problems ». Computational Mathematics and Mathematical Physics 56, no 4 (avril 2016) : 576–92. http://dx.doi.org/10.1134/s096554251604014x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Pyatkov, S. G., et E. I. Safonov. « Some Inverse Problems for Convection-Diffusion Equations ». Bulletin of the South Ural State University. Series "Mathematical Modelling, Programming and Computer Software" 7, no 4 (2014) : 36–50. http://dx.doi.org/10.14529/mmp140403.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Mužík, Juraj. « Boundary Knot Method for Convection-diffusion Problems ». Procedia Engineering 111 (2015) : 582–88. http://dx.doi.org/10.1016/j.proeng.2015.07.048.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Linß, Torsten. « Layer-adapted meshes for convection–diffusion problems ». Computer Methods in Applied Mechanics and Engineering 192, no 9-10 (février 2003) : 1061–105. http://dx.doi.org/10.1016/s0045-7825(02)00630-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Lazarov, R. D., Ilya D. Mishev et P. S. Vassilevski. « Finite Volume Methods for Convection-Diffusion Problems ». SIAM Journal on Numerical Analysis 33, no 1 (février 1996) : 31–55. http://dx.doi.org/10.1137/0733003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Blanchard, D., et A. Porretta. « Stefan problems with nonlinear diffusion and convection ». Journal of Differential Equations 210, no 2 (mars 2005) : 383–428. http://dx.doi.org/10.1016/j.jde.2004.06.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Linß, Torsten. « Solution Decompositions for Linear Convection-Diffusion Problems ». Zeitschrift für Analysis und ihre Anwendungen 21, no 1 (2002) : 209–14. http://dx.doi.org/10.4171/zaa/1073.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Ortiz, M. « A variational formulation for convection-diffusion problems ». International Journal of Engineering Science 23, no 7 (janvier 1985) : 717–31. http://dx.doi.org/10.1016/0020-7225(85)90004-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Stynes, Martin. « Finite volume methods for convection-diffusion problems ». Journal of Computational and Applied Mathematics 63, no 1-3 (novembre 1995) : 83–90. http://dx.doi.org/10.1016/0377-0427(95)00056-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Murphy, J. D., et P. M. Prenter. « Higher order methods for convection-diffusion problems ». Computers & ; Fluids 13, no 2 (janvier 1985) : 157–76. http://dx.doi.org/10.1016/0045-7930(85)90023-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Luo, C., B. Z. Dlugogorski, B. Moghtaderi et E. M. Kennedy. « Modified exponential schemes for convection–diffusion problems ». Communications in Nonlinear Science and Numerical Simulation 13, no 2 (mars 2008) : 369–79. http://dx.doi.org/10.1016/j.cnsns.2006.03.014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Li, Yuxia. « Streamline Diffusion Virtual Element Method for Convection-Dominated Diffusion Problems ». East Asian Journal on Applied Mathematics 10, no 1 (juin 2020) : 158–80. http://dx.doi.org/10.4208/eajam.231118.240619.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Patel, M. K., N. C. Markatos et M. Cross. « Method of reducing false-diffusion errors in convection—diffusion problems ». Applied Mathematical Modelling 9, no 4 (août 1985) : 302–6. http://dx.doi.org/10.1016/0307-904x(85)90069-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

John, V., J. M. Maubach et L. Tobiska. « Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems ». Numerische Mathematik 78, no 2 (1 décembre 1997) : 165–88. http://dx.doi.org/10.1007/s002110050309.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Linß, Torsten. « Anisotropic meshes and streamline-diffusion stabilization for convection-diffusion problems ». Communications in Numerical Methods in Engineering 21, no 10 (19 avril 2005) : 515–25. http://dx.doi.org/10.1002/cnm.764.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Unno, Wasaburo. « Problems of Solar Convection ». Symposium - International Astronomical Union 142 (1990) : 39–44. http://dx.doi.org/10.1017/s0074180900087672.

Texte intégral
Résumé :
Kinetic energy of convection is transported inwards in the main body of convection zone. The temperature gradient becomes super-radiative at the top of the overshooting zone. These two effects make the solar equilibrium model much less sensitive to the assumed mixing length in Xiong's eddy diffusion theory. Observed brightening of downflow at high level in the surface region over intergranular lanes seems to be consistent with the overshooting model. Momentum transport by convective motion is shown to be crucial in pushing down magnetic flux tubes against buoyancy. Also, subadiabatic layers are possibly formed temporarily in the middle of the convection zone, exciting oscillations and generating chaotic motions.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Wang, Jufeng, et Fengxin Sun. « A Hybrid Variational Multiscale Element-Free Galerkin Method for Convection-Diffusion Problems ». International Journal of Applied Mechanics 11, no 07 (août 2019) : 1950063. http://dx.doi.org/10.1142/s1758825119500637.

Texte intégral
Résumé :
By coupling the dimension splitting method (DSM) and the variational multiscale element-free Galerkin (VMEFG) method, a hybrid variational multiscale element-free Galerkin (HVMEFG) method is developed for the two-dimensional convection-diffusion problems. In the HVMEFG method, the two-dimensional problem is converted into a battery of one-dimensional problems by the DSM. Combining the non-singular improved interpolating moving least-squares (IIMLS) method, the VMEFG method is used to obtain the discrete equations of the one-dimensional problems on the splitting plane. Then, final discretized equations of the entire convection-diffusion problems are assembled by the IIMLS method. The HVMEFG method has high accuracy and efficiency. Numerical examples show that the HVMEFG method can obtain non-oscillating solutions and has higher efficiency and accuracy than the EFG and VMEFG methods for convection-diffusion problems.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Nguyen, Tran Ba Dinh, Hoang Son Nguyen et Duc-Huynh Phan. « A Novel Least-Squares Level Set Method by Using Polygonal Elements ». Journal of Technical Education Science, no 72A (28 octobre 2022) : 45–53. http://dx.doi.org/10.54644/jte.72a.2022.1232.

Texte intégral
Résumé :
In this study, we apply an artificial viscosity method to convert an unsteady level set (LS) convection equation into an unsteady LS convection-diffusion transport equation to stabilize the numerical solution of the convection term. Then a novel least-square polygonal finite element method is used to solve an unsteady LS convection-diffusion problem. The least-squares method provided good mathematical properties such as natural numerical diffusion and the positive definite symmetry of the resulting algebraic systems for the convection-diffusion and re-initialization equations. The proposed method is evaluated numerically in two different benchmark problems: a rigid body rotation of Zalesak’s disk, and a time-reversed single-vortex flow. In comparison with conventional triangular (T3) and quadrilateral (Q4) elements, polygonal elements are capable of providing greater flexibility in mesh generation for complicated problems as well as more accurate in solving the LS equations. In addition, the numerical results are also compared with the results which obtained from essentially non-oscillatory type formulations and particle LS methods. The results show that the proposed method completely matches the previously published results.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Llorente, Ignacio M., Manuel Prieto-Matı́as et Boris Diskin. « A parallel multigrid solver for 3D convection and convection–diffusion problems ». Parallel Computing 27, no 13 (décembre 2001) : 1715–41. http://dx.doi.org/10.1016/s0167-8191(01)00115-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

He, Qian, Wenxin Du, Feng Shi et Jiaping Yu. « A fast method for solving time-dependent nonlinear convection diffusion problems ». Electronic Research Archive 30, no 6 (2022) : 2165–82. http://dx.doi.org/10.3934/era.2022109.

Texte intégral
Résumé :
<abstract><p>In this paper, a fast scheme for solving unsteady nonlinear convection diffusion problems is proposed and analyzed. At each step, we firstly isolate a nonlinear convection subproblem and a linear diffusion subproblem from the original problem by utilizing operator splitting. By Taylor expansion, we explicitly transform the nonlinear convection one into a linear problem with artificial inflow boundary conditions associated with the nonlinear flux. Then a multistep technique is provided to relax the possible stability requirement, which is due to the explicit processing of the convection problem. Since the self-adjointness and coerciveness of diffusion subproblems, there are so many preconditioned iterative solvers to get them solved with high efficiency at each time step. When using the finite element method to discretize all the resulting subproblems, the major stiffness matrices are same at each step, that is the reason why the unsteady nonlinear systems can be computed extremely fast with the present method. Finally, in order to validate the effectiveness of the present scheme, several numerical examples including the Burgers type and Buckley-Leverett type equations, are chosen as the numerical study.</p></abstract>
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie