Thèses sur le sujet « Pro-p groups »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 27 meilleures thèses pour votre recherche sur le sujet « Pro-p groups ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Iniguez-Goizueta, Ainhoa. « Word fibres in finite p-groups and pro-p groups ». Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:3a9cfc11-d171-4876-82b3-7dff012c3a70.
Texte intégralSnopçe, Ilir. « Lie methods in pro-p groups ». Diss., Online access via UMI:, 2009.
Trouver le texte intégralMartin, Maria Eugenia. « Propriedades homologicas de grupos pro-p ». [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306927.
Texte intégralDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-13T12:02:14Z (GMT). No. of bitstreams: 1 Martin_MariaEugenia_M.pdf: 974097 bytes, checksum: 862be4d1ac3b05cc1a28ba59cf6c0460 (MD5) Previous issue date: 2009
Resumo: Nesta dissertação discutimos propriedades homológicas de grupos discretos e grupos pro-p. Em particular trabalhamos com grupos abstratos de dualidade de Poincaré orientáveis de dimensão três e seu completamento pro-p. Os primeiros capítulos da dissertação incluem uma exposição sobre as propriedades homológicas básicas de grupos abstratos e grupos pro-p. Finalmente, descrevemos um resultado recente de [KZ], publicado em Transactions MAS ( 2008), que clássica quando o completamento pro-p de um grupo de dualidade de Poincaré orientável de dimensão três de um grupo pro-p de dualidade de Poincaré orientável de dimensão três
Abstract: In this dissertation we discuss homological properties of discrete groups and pro-p groups. In particular we work with groups of abstract of Poincaré duality of dimension three steerable and its pro-p completion. The first chapters of the dissertation include a presentation on the basic homological properties of abstract groups and pro-p groups. Finally, we describe a recent result of [KZ], published in Transactions AMS (2008), which ranks as the pro-p completion of a group of Poincare-steerable dual dimension of three is a group of pro-p duality of Poincare -steerable in three dimensions
Mestrado
Mestre em Matemática
Pinto, Aline Gomes da Silva. « Propriedades homologicas de grupos pro-p ». [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306931.
Texte intégralTese (doutorado) - Universidade Estadual de Campinas. Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-04T14:37:32Z (GMT). No. of bitstreams: 1 Pinto_AlineGomesdaSilva_D.pdf: 2789516 bytes, checksum: 20f42bafb2b08678ceb88f751e8b275e (MD5) Previous issue date: 2005
Resumo: Neste trabalho, provamos dois resultados sobre propriedades homológicas de grupos pro-p. O primeiro responde positivamente à conjectura de J. King que afirma que, se G é um grupo pro-p metabeliano finitamente gerado e m um inteiro positivo, então G mergulha como subgrupo fechado em um grupo pro-p metabeliano de tipo homológico F Pm. O segundo resultado caracteriza módulos pro-p B de tipo homológico F P m sobre [[ZpG]], onde G é um grupo pro-p metabeliano topologicamente finitamente gerado, dado pela extensão de um grupo pro-p abeliano A por um grupo pro-p abeliano Q, e B é um [[ZpQ]]-módulo pro-p finitamente gerado que é visto como um [[ZpG]]-módulo pro-p via a projeção de G -t Q. A caracterização é dada em termos do invariante para grupos pro-p metabelianos introduzido por J. King [15] e é uma generalização do caso onde B = Zp é o anel de inteiros p-ádicos considerado como G-módulo trivial, que dá a classificação dos grupos pro-p metabelianos de tipo homológico FPm, provado por D. Kochloukova [18]
Abstract: In this work, we prove two results about homological properties of metabelian pro-p groups. The first one answers positively a conjecture suggested by J. King that, if G is a finitely generated metabelian pro-p group and m a positive integer, G embeds in a metabelian pro-p group of homological type F P m. The second result caracterize the modules B of homological type F P mover [[ZpG]], where G is a topologically finitely generated metabelian pro-p group that is an extension of A by Q, with A and Q abelian, and B is a finitely generated pro-p [[ZpQ]]-module that is viewed as a pro-p [[ZpG]]-module via the projection G -f Q. The characterization is given in terms of the invariant introduced by J. King [15] and is a generalization of the case when B = Zp is considered as a trivial [[ZpG]]-module, that gives the classification of metabelian pro-p groups of type FPm, proved by D. Kochloukova [18]
Doutorado
Matematica
Doutor em Matemática
Rêgo, Yuri Santos 1989. « A desigualdade de Golod-Safarevic para grupos pro-p e grupos abstratos ». [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306920.
Texte intégralDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-25T09:13:05Z (GMT). No. of bitstreams: 1 Rego_YuriSantos_M.pdf: 1142010 bytes, checksum: 548d8ef6ff2800026c8cd65783b81a9f (MD5) Previous issue date: 2014
Resumo: Neste trabalho estuda-se os principais resultados dados por J. Wilson no artigo "Finite Presentations of Pro-p Groups and Discrete Groups", relacionados à Desigualdade de Golod-¿afarevi? para uma ampla classe de grupos pro-p e abstratos infinitos. Apresentamos a teoria básica de grupos livres abstratos, levando à noção de apresentação de grupos, com foco em apresentações finitas. É feito um estudo sobre grupos profinitos, particularmente no caso pro-p. Abrange-se definições, propriedades algébricas e topológicas básicas, bem como o caso de finitos geradores com o subgrupo de Frattini, e conceitos de completamentos, de grupos pro-p livres, de apresentações de grupos pro-p e de álgebras de grupo completas. No capítulo final estudamos os resultados principais para grupos pro-p e abstratos finitamente apresentáveis, que incluem grupos solúveis e implicações na estrutura de certos grupos satisfazendo a Desigualdade. Os anexos relacionam a teoria aqui apresentada a grupos pro-p de posto finito e homologia e cohomologia de grupos pro-p
Abstract: In this work we study the main results presented by J. Wilson in his paper "Finite Presentations of Pro-p Groups and Discrete Groups", which extend the Golod-¿afarevi? Inequality to a large class of infinite pro-p and abstract groups. In the first chapter we present the basic theory of abstract free groups, focusing on finite presentations. Next we study profinite groups, with focus on pro-p groups. This study ranges from definitions to basic algebraic and topological properties, as well as the cases of finitely generated groups and the Frattini subgroup, and notions of completion, free pro-p groups, presentations of pro-p groups and completed group algebras. In the last chapter we study the main results regarding finite presentations of pro-p and abstract groups, which include soluble groups and implications on the structure of certain groups for which the Inequality holds. In the appendixes we briefly relate the presented theory to pro-p groups of finite rank and homology and cohomology of pro-p groups
Mestrado
Matematica
Mestre em Matemática
King, Jeremy David. « Finite presentability of Lie algebras and pro-p groups ». Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364385.
Texte intégralLima, Igor dos Santos 1983. « Completamentos Pro-p de grupos de dualidade de Poincaré ». [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306926.
Texte intégralTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-20T17:04:33Z (GMT). No. of bitstreams: 1 Lima_IgordosSantos_D.pdf: 1446540 bytes, checksum: 1e68bfb627d234fa97739cd2e813b4a9 (MD5) Previous issue date: 2012
Resumo: Neste trabalho, nos Teoremas Principais, damos condições suficientes para que o completamento pro-p de um grupo abstrato PDn seja virtualmente um grupo pro-p PDs para algum s ? n - 2 com n ? 4. Esse resultado é uma generalização do Teorema 3 em [K-2009]. Nossa prova é baseada em [K-2009] e nos resultados de A. A. Korenev [Ko-2004] e [Ko-2005]. Além disso, damos alguns exemplos de grupos que satisfazem as condições dos Teoremas Principais
Abstract: In this work we give in the Main Theorems suffiient conditions for that the pro- p completion of an abstract orientable PDn group to be virtually a pro-p PDs group for some s ? n - 2 with n ? 4. This result is a generalization of the Theorem 3 in [K-2009]. Our proof is based on [K-2009] and on the results of A. A. Korenev [Ko-2004] and [Ko-2005]. Furthermore we give some examples of groups that satisfy the conditions of the Main Theorems
Doutorado
Matematica
Doutor em Matemática
Middleton, Sarah E. A. P. « Hereditarily just infinite profinite groups that are not virtually pro-p ». Thesis, Royal Holloway, University of London, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604025.
Texte intégralSmith, Duncan Alexander Mathematics UNSW. « The Families with Period 1 of 2-groups of Coclass 3 ». Awarded by:University of New South Wales. Mathematics, 2000. http://handle.unsw.edu.au/1959.4/17792.
Texte intégralGärtner, Jochen [Verfasser], et Kay [Akademischer Betreuer] Wingberg. « Mild pro-p-groups with trivial cup-product / Jochen Gärtner ; Betreuer : Kay Wingberg ». Heidelberg : Universitätsbibliothek Heidelberg, 2011. http://d-nb.info/1179782801/34.
Texte intégralToinet, Emmanuel. « Automorphisms of right-angled Artin groups ». Thesis, Dijon, 2012. http://www.theses.fr/2012DIJOS003.
Texte intégralThe purpose of this thesis is to study the automorphisms of right-angled Artin groups. Given a finite simplicial graph G, the right-angled Artin group GG associated to G is the group defined by the presentation whose generators are the vertices of G, and whose relators are commuta-tors of pairs of adjacent vertices. The first chapter is intended as a general introduction to the theory of right-angled Artin groups and their automor-phisms. In a second chapter, we prove that every subnormal subgroup ofp-power index in a right-angled Artin group is conjugacy p-separable. As an application, we prove that every right-angled Artin group is conjugacy separable in the class of torsion-free nilpotent groups. As another applica-tion, we prove that the outer automorphism group of a right-angled Artin group is virtually residually p-finite. We also prove that the Torelli group ofa right-angled Artin group is residually torsion-free nilpotent, hence residu-ally p-finite and bi-orderable. In a third chapter, we give a presentation of the subgroup Conj(GG) of Aut(GG) consisting of the automorphisms thats end each generator to a conjugate of itself
Blondeau, Julien. « Déformation des extensions peu ramifiées en P ». Phd thesis, Université de Franche-Comté, 2011. http://tel.archives-ouvertes.fr/tel-00936135.
Texte intégralSimons, Nicholas James. « The width of verbal subgroups in profinite groups ». Thesis, University of Oxford, 2009. http://ora.ox.ac.uk/objects/uuid:01075c36-c7e6-4def-9647-86b4346e4726.
Texte intégralHubbard, David. « The nonexistence of certain free pro-p extensions and capitulation in a family of dihedral extensions of Q / ». Thesis, Connect to this title online ; UW restricted, 1996. http://hdl.handle.net/1773/5734.
Texte intégralHigashiyama, Kazumi. « The semi-absolute anabelian geometry of geometrically pro-p arithmetic fundamental groups of associated low-dimensional configuration spaces ». Kyoto University, 2019. http://hdl.handle.net/2433/242582.
Texte intégralSchmidt, Nicolas Alexander. « Generic pro-p Hecke algebras, the Hecke algebra of PGL(2, Z), and the cohomology of root data ». Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/19724.
Texte intégralThe theory of generic pro-$p$ Hecke algebras and their Bernstein maps is developed. For a certain subclass, the \textit{affine} pro-$p$ Hecke algebras, we are able to prove a structure theorem that in particular shows that the latter algebras are always noetherian if the ring of coefficients is. The crucial technical tool are the Bernstein relations, which are proven in an abstract way that generalizes the known cases. Moreover, the topological space of orientations is introduced and studied in the case of the extended modular group $\operatorname{PGL}_2(\mathds{Z})$, and used to determine the structure of its Hecke algebra as a module over a certain subalgebra, attached to the cusp at infinity. Finally, the question of the splitness of the normalizer of a maximal split torus inside a split reductive groups as an extension of the Weyl group by the group of rational points is studied. Using results obtained previously, this questioned is then reduced to a cohomological one. A partial answer to this question is obtained via computer calculations of the cohomology groups of the cocharacter lattices of all almost-simple semisimple root data of rank up to $8$. Using the theory of $\mathbf{FI}$-modules, these computations are used to determine the cohomology of the mod 2 reduction of the coroot lattices for type $A$ and all ranks.
QUADRELLI, CLAUDIO. « Cohomology of Absolute Galois Groups ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/56993.
Texte intégralHeyer, Claudius. « Applications of parabolic Hecke algebras : parabolic induction and Hecke polynomials ». Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20137.
Texte intégralThe first part deals with a new construction of parabolic induction for modules over the pro-p Iwahori-Hecke algebra. This construction exhibits a new class of algebras that can be thought of as an interpolation between the pro-p Iwahori-Hecke algebra of a p-adic reductive group $G$ and the corresponding algebra of a Levi subgroup $M$ of $G$. For these algebras we define a new induction functor and prove a transitivity property. This gives a new proof of the transitivity of parabolic induction for modules over the pro-p Iwahori-Hecke algebra. Further, a function on a parabolic subgroup with p-power values is studied. We show that it induces a function on the (pro-p) Iwahori-Weyl group of $M$, that it is monotonically increasing with respect to the Bruhat order, and that it allows to compare the length function on the Iwahori-Weyl group of $M$ with the one on the Iwahori-Weyl group of $G$. In the second part a general decomposition theorem for polynomials over the spherical (parahoric) Hecke algebra of a p-adic reductive group $G$ is proved. The proof requires that the chosen parabolic subgroup is contained in a non-obtuse one. Moreover, we give a classification of non-obtuse parabolic subgroups of $G$.
Salle, Landry. « Présentation de groupes de Galois de pro-p-extensions de corps de nombres ». Toulouse 3, 2008. http://thesesups.ups-tlse.fr/862/.
Texte intégralIn this thesis we determine new situations where some algebraic invariants of the Galois group of a pro-p-extension of a number field can be estimated. First we consider the Galois groups of extensions with restricted ramification above the cyclotomic -extension of a number field. By class field theory, we generalize Jaulent's results on the -rank of the abelianization of such a group. Then, we make use of Chafarevitch and Koch's methods to give the number of generators and to bound the number of relations. We are led to introduce a so-called Kummer group, which gives a bound of the defect of a local-global principle, and we find some sufficient conditions to annihilate it. In the second part, we intend to find some new mild pro-p-groups : such groups, which have been studied in an arithmetical setting by Labute, have cohomological dimension lower than 2. We generalize results by Wingberg on groups with restricted ramification and prescribed decomposition. In particular, such groups are exhibited in the case of mixed ramification. The method applies as well in the case of function fields. In the last part we focus on the case p=2 with an imaginary quadratic field as a base field. First we generalize results of Ferrero and Kida on Iwasawa invariants to the case of tamely ramified extensions. Then we give, in some special cases, a presentation of the Galois group of the maximal S-ramified pro-2-extension over the cyclotomic-extension of the base field, using a method of Mizusawa
Rougnant, Marine. « Sur quelques aspects des extensions à ramification restreinte ». Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCD015/document.
Texte intégralLet p be a prime number, let K/k be a Galois extension of number fields and let S be a finite set of primes of K. We suppose that the degree of K/k is finite and coprime to p. We denote by G(K,S) the Galois group of the pro-p maximal extension of K unramified outside S. We focus on this thesis on two differents aspects of this pro-p group.We are first interested in the tame case : we suppose that S does not contain any place above p. The works of Labute, Minac and Schmidt about mild pro-p groups brought the first examples of groups G(K,S) of cohomological dimension two. Using a corollary of their criterium, we compute some examples with PARI/GP and we observe a propagation phenomenum : if we take K=Q and if we suppose that G(Q,S) is mild, a large part of the pro-p groups G(K,S) with K imaginary quadratic are mild too. We then associate two oriented graphs to G(K,S) and we show a theoretical criterium proving mildness of some imaginary quadratic fields.We then consider the wild case where all the places dividing p belong to S. The Galois group Δ:=Gal(K/k) acts on G(K,S). The action of Δ is trivial on some quotients of G(K,S) ; we denote by G the maximal one and by H the corresponding closed subgroup of G(K,S). Maire has studied the Zp[[G]]-freeness of the module H^{ab}. We extend his results considering the φ-component of H^{ab} under the action of Δ. In a favourable context and under Leopoldt's conjecture, we show a necessary and sufficient condition for the freeness of the φ-components. This condition is connected to p-rational fields by class field theory. We present experiments with PARI/GP in some families of cubic cyclic, dihedral and quartic cyclic extensions of Q which support the following conjecture from Gras : every number field is p-rational for sufficiently large p
Ollivier, Rachel. « Modules sur l'algèbre de Hecke du pro-p-Iwahori de groupe linéaire général à coefficients dans F en caractéristique p ». Paris 7, 2005. http://www.theses.fr/2005PA077162.
Texte intégralToinet, Emmanuel. « Automorphismes des groupes d'Artin à angles droits ». Phd thesis, Université de Bourgogne, 2012. http://tel.archives-ouvertes.fr/tel-00698614.
Texte intégralLima, Jeyson Ferreira Silva de. « Pra?as p?blicas caicoense : territorialidades, sociabilidades e identidades ». Universidade Federal do Rio Grande do Norte, 2013. http://repositorio.ufrn.br:8080/jspui/handle/123456789/18949.
Texte intégralConselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico
The city, with all its complexity, is marked by the different uses that emerge and give the current composition of its forms, functions, processes and structures (SANTOS, 2008). These uses are responsible for defining the territoriality that engender public squares, especially from the projection of the practices of sociability and pleasure experienced by social groups and urban households, giving rise to the emergence of agreements and conflicts, especially when the public sphere and negotiates a private residence in the same territory. Thus, from analyzes performed in the public squares of the city of Caico / RN in the current context, did a survey of territorialities undertaken by these groups and social aggregates. These squares were seized territories while public use, but marked by the presence of private, becoming as important elements of the urban space caicoense
A cidade, com toda a sua complexidade, ? marcada pelos diferentes usos que se esbo?am e que d?o a composi??o atual de suas formas, fun??es, processos e estruturas (SANTOS, 2008). Estes usos s?o respons?veis por definir as territorialidades que se engendram nas pra?as p?blicas, sobretudo a partir da proje??o das pr?ticas de sociabilidade e de lazer vivenciadas pelos grupos e agregados sociais urbanos, dando margem ao surgimento de acordos e conflitos, especialmente, quando a esfera p?blica e a privada negocia a perman?ncia no mesmo territ?rio. Assim, a partir de an?lises realizadas nas pra?as p?blicas da cidade de Caic?/RN no contexto atual, fizemos um exame das territorialidades empreendidas por estes grupos e agregados sociais. Tais pra?as foram apreendidas enquanto territ?rios de uso p?blico, por?m marcados pela presen?a privada, configurando-se enquanto importantes elementos constituintes do espa?o urbano caicoense
Validire, Romain. « Capitulation des noyaux sauvages étales ». Phd thesis, Université de Limoges, 2008. http://tel.archives-ouvertes.fr/tel-00343427.
Texte intégralLa structure de groupe abélien du p-groupe des classes des étages de $F_{\infty}/F$ est asymptotiquement bien connue : nous montrons, au moyen de la théorie d'Iwasawa des $\Z_p$-extensions, un analogue de ce résultat en $K$-théorie supérieure.
Dans un deuxième temps, nous étudions le groupe de Galois sur $F_{\infty}$ de la pro-p-extension, non ramifiée, p-décomposée maximale de $F_{\infty}$, lorsque $F_{\infty}$ est la $\Z_p$-extension cyclotomique de $F$. Après avoir établi un lien entre la structure de ce groupe et le comportement galoisien des noyaux sauvages étales, nous donnons divers critères effectifs de non pro-p-liberté pour ce groupe.
Montenegro, Guzmán Samaria. « Théorie des modèles des corps pseudo-réels clos et pseudo-p-adiquement clos ». Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC269.
Texte intégralThis is a thesis in model theory applied to algebra. In this thesis we study the theory of bounded pseudo real closed fields (PRC fields) and pseudo p-adically closed fields (PpC fields) from a model theoretic point of view. The classes of bounded PRC and PpC fields are generalizations of those of pseudo-algebraically closed fields (PAC fields), real closed fields, and p-adically closed fields. The main result of the thesis is a positive answer to the conjecture by Chernikov, Kaplan and Simon: If M is a PRC-field, then Th(M) is NTP2 if and only if M is bounded. In the case of PpC fields, we prove that if M is a bounded PpC field, then Th(M) is NTP2. We also generalize this result to obtain that, if M is a bounded PRC or PpC field with exactly n orders or p-adic valuations respectively, then Th(M) is strong of burden n. This also allows us to explicitly compute the burden of types, and to describe forking. Other results of independent interest are some amalgamation results, and the elimination of imaginaries for bounded PRC fields. Keywords: Model theory, ordered fields, p-adic valuation, real closed fields, p-adically closed fields, PRC, PpC, NIP, NTP2, elimination of imaginaries
RÉMY, Bertrand. « Sur les propriétés algébriques et géométriques des groupes de Kac-Moody ». Habilitation à diriger des recherches, 2003. http://tel.archives-ouvertes.fr/tel-00007119.
Texte intégralBRISUDOVÁ, Eva. « Rozvoj myšlenkových a komunikačních dovedností dětí předškolního věku v kontextu Filozofie pro děti ». Master's thesis, 2018. http://www.nusl.cz/ntk/nusl-385118.
Texte intégral