Thèses sur le sujet « Prione »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Prione ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
CUNATI, DIANA. « Ruolo dei lipid raft nel metabolismo della proteina prionica ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/27001.
Texte intégralSang, Chieh. « Single molecule fluorescence studies of prions and prion-like proteins ». Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/287929.
Texte intégralHeiseke, Andreas. « Prions and autophagy : Effect of lithium on prion infection and role of basal autophagy in primary prion infection ». kostenfrei, 2010. https://mediatum2.ub.tum.de/node?id=818228.
Texte intégralUrrea, Zazurca Laura. « Funciones de la proteína priónica celular, alfa-sinucleína y reelina en enfermedades neurodegenerativas ». Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/482168.
Texte intégralMany neurodegenerative diseases are characterized by the loss of neurons and intracellular accumulation of abnormal proteins, with the formation of inclusion bodies. Parkinson’s disease (PD) is the second most common form of neurodegenerative diseases. PD shows an abnormal accumulation of α-synuclein aggregates in neurons, called Lewy bodies (LB). Several groups have reported that abnormal form of α-synuclein can propagate through the cells and, consequently, form inclusions. Thus, it has been suggested different molecular mechanisms involved in α-synuclein propagation. It has been reported that cellular prion protein (PrPc) is a receptor of β-amyloid. In this study, we analyse whether the PrPc is a receptor for α-synuclein. Animals with different PrPc expression were intracranially injected with α-synuclein protofibrils. We observe that PrPc expression is not mandatory for α-synuclein propagation, but PrPc-overexpressing mice show more aggregates than in PrPc absence. Moreover, charge cluster domain of PrPc is essential for α-synuclein binding. In addition, we study Reelin levels in different neurodegenerative diseases. Reelin is a glycoprotein that is crucial for the correct cytoarchitectonic organization of the developing Central Nervous System. Decreased levels of Reelin lead to synaptic dysfunction or neurodegeneration. In the present study, we analyse the changes in Reelin and Reln mRNA in Alzheimer’s disease, Dementia with Lewy Bodies (DLB), Parkinson´s disease (PD) and sporadic Creutzfeldt-Jakob disease (sCJD). Meanwhile, inmunoblot results indicate decreased levels of Reelin in AD and DLB, PD do not show changes. In contrast, it has been detected an increase in sCJD(I). Reelin increased levels depends on reactive oxygen species (ROS). Using inhibitors of ROS production, as DPI and NAC, Reelin levels are maintained.
Bhamra, S. K. « Systematic mutagenesis of the mouse prion protein to identify critical regions for the efficient propagation of prions ». Thesis, University College London (University of London), 2014. http://discovery.ucl.ac.uk/1443249/.
Texte intégralWang, Weiqiang. « Prion inspired nanomaterials and their biomedical applications ». Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670982.
Texte intégralLos amiloides muestran una estructura fibrilar altamente ordenada. Muchos de estos ensamblajes aparecen asociados a enfermedades humanas. No obstante, la naturaleza controlable, estable, modulable y robusta de las fibras amiloides se puede emplear para construir nanomateriales notables con una amplia gama de aplicaciones. Los priones funcionales constituyen una clase particular de amiloides. Estas proteínas transmisibles exhiben una arquitectura modular, con un dominio priónico desordenado responsable del ensamblaje y uno o más dominios globulares que dan cuenta de la actividad. Cabe destacar que la proteína globular original se puede reemplazar con cualquier proteína de interés sin comprometer el potencial de fibrilación. Estas fusiones genéticas forman fibrillas en las que el dominio globular permanece plegado, lo que genera nanoestructuras funcionales. Sin embargo, en muchos casos, el impedimento estérico restringe la actividad de estas fibrillas. Esta limitación puede resolverse diseccionando los dominios de priones en secuencias más cortas que mantengan sus propiedades de autoensamblado mientras permiten un mejor acceso a la proteína en el estado fibrilar. En esta tesis doctoral, exploramos el "soft amyloid core" (SAC) del prion de levadura Sup35p como una unidad modular de autoensamblaje, que recapitula la propensión a la agregación del dominio priónico completo. Fusionamos el SAC con diferentes proteínas globulares de interés que difieren en conformación y tamaños, creando un enfoque genético general y directo para generar nanofibrillas dotadas de las funcionalidades deseadas. El modelado computacional nos permitió obtener información sobre la relación entre el tamaño de los dominios globulares y la longitud del conector que los une con el SAC, proporcionando la base para el diseño de nanomateriales con diferentes propiedades mesoscópicas, ya sean nanofibrillas o nanopartículas. Sobre esta base, diseñamos y producimos, por primera vez, nanopartículas amiloides esféricas, altamente activas, no tóxicas, de tamaño definido, y diseñamos nanoestructuras bifuncionales con aplicación en la administración dirigida de fármacos. Las lecciones aprendidas en estos ejercicios permitieron la construcción de una nanofibrilla similar a un anticuerpo biespecífico con potencial para su uso en inmunoterapia. En resumen, los nanomateriales funcionales similares a los priones descritos aquí aprovechan la metodología de fusión genética para generar un nuevo conjunto de estructuras con aplicación en biomedicina y biotecnología.
Amyloids display a highly ordered fibrillar structure. Many of these assemblies appear associated with human disease. However, the controllable, stable, tunable, and robust nature of amyloid fibrils can be exploited to build up remarkable nanomaterials with a wide range of applications. Functional prions constitute a particular class of amyloids. These transmissible proteins exhibit a modular architecture, with a disordered prion domain responsible for the assembly and one or more globular domains that account for the activity. Importantly, the original globular protein can be replaced with any protein of interest, without compromising the fibrillation potential. These genetic fusions form fibrils in which the globular domain remains folded, rendering functional nanostructures. However, in many cases, steric hindrance restricts the activity of these fibrils. This limitation can be solved by dissecting prion domains into shorter sequences that keep their self-assembling properties while allowing better access to the protein in the fibrillar state. In this PhD thesis, we exploited the "soft amyloid core (SAC)" of the Sup35p yeast prion as a modular self-assembling unit, which recapitulates the aggregation propensity of the complete prion domain. We fused the SAC to different globular proteins of interest differing in conformation and sizes, building up a general and straightforward genetic approach to generate nanofibrils endowed with desired functionalities. Computational modeling allowed us to gain insights into the relationship between the size of the globular domains and the length of the linker that connects them to the SAC, providing the basis for the design of nanomaterials with different mesoscopic properties, either nanofibrils or nanoparticles. On this basis, we designed and produced, for the first time, highly active, non-toxic, spherical amyloid nanoparticles of defined size and engineered bifunctional nanostructures with application in targeted drug delivery. The lessons learned in these exercises resulted in the construction of a bispecific antibody-like nanofibril, showing potential in immunotherapy. In summary, the prion-like functional nanomaterials described here take profit of the genetic fusion approach to render a novel set of structures with application in biomedicine and biotechnology.
Apodaca, Jennifer J. « Regulation of prion protein in yeast and mammalian cells via ubiquitin mediated degradation a dissertation / ». San Antonio : UTHSC, 2008. http://proquest.umi.com.libproxy.uthscsa.edu/pqdweb?did=1594496391&sid=6&Fmt=2&clientId=70986&RQT=309&VName=PQD.
Texte intégralHowlin, Robert. « Decontamination of prions, prion-associated amyloid and infectivity from surgical stainless steel : implications for the risk of iatrogenic transmission of CJD ». Thesis, University of Southampton, 2009. https://eprints.soton.ac.uk/150533/.
Texte intégralSun, Meng. « Development of the new yeast-based assays for prion properties ». Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/45831.
Texte intégralDakowski, Caroline. « Rôle de la protéine prion cellulaire (PRPC) dans la différenciation neuronale : Infection par les prions (PRPSC) et bases moléculaires de la neurodégénérescence ». Thesis, Paris 5, 2012. http://www.theses.fr/2012PA05T032.
Texte intégralPremzl, Marko, et Premzl@anu edu au premzl@excite com Marko. « Prion Protein Gene and Its Shadow ». The Australian National University. The John Curtin School of Medical Research, 2004. http://thesis.anu.edu.au./public/adt-ANU20050328.164529.
Texte intégralFröhlich, Gallardo Estefanía Paz. « Aplicación de la inmunohistoquímica en óbex de caprinos para la detección de proteínas priónicas ». Tesis, Universidad de Chile, 2017. http://repositorio.uchile.cl/handle/2250/151607.
Texte intégralEl Scrapie es una enfermedad neurodegenerativa y fatal que afecta a pequeños rumiantes como ovinos, caprinos y muflones. El causante de esta enfermedad es una partícula proteinácea infecciosa llamada prión, que se origina por un cambio conformacional de una proteína priónica celular del hospedero (PrPC). Los programas de vigilancia consideran a la Histopatología como método diagnóstico y a la Inmunohistoquímica (IHQ) como método confirmatorio para el Scrapie. Esta memoria fue desarrollada en el laboratorio de la Unidad de Patología del Servicio Agrícola y Ganadero de Lo Aguirre. Se utilizaron 50 muestras de óbex de caprinos mayores de 2 años, sin importar raza ni sexo, provenientes de mataderos de la IV Región de Chile. De cada muestra de óbex se obtuvieron cortes seriados con el propósito de destinar uno a la tinción de Hematoxilina y Eosina (H/E), y un corte homólogo a la técnica de Inmunohistoquímica. Así en la tinción H/E se comprobó la aptitud de la muestra evaluada a partir de la observación de la integridad de núcleos nerviosos de presentación bilateral. En total se trabajó con 50 muestras que fueron sometidas a los métodos tradicionales de histopatología para la tinción de H/E. De éstas, 50 cortes resultaron aptos para aplicar la técnica de Inmunohistoquímica. De los cortes sometidos a IHQ ninguno presentó el precipitado granular rojo característico de la inmunorreacción por la presencia de priones, por lo cual se determinó que todas las muestras de los caprinos estudiados fueron negativas, al igual que los controles negativos de óbex. Por su parte, los controles positivos de óbex siempre presentaron el precipitado granular rojo indicativo de una inmunorreacción positiva, tal como lo había indicado el Centro de Referencia para ese tipo de controles. De esta manera, este trabajo colaboró con la vigilancia pasiva anual que realizó el Servicio Agrícola y Ganadero durante el año 2015, con respecto a la detección de priones en la especie caprina en un determinado grupo de animales de nuestro país
Scrapie is a neurodegenerative and fatal disease, affecting small ruminants such as sheep, goats and mouflons. The cause of these diseases is an infectious proteinaceous particle called prion, which originates from a conformational change of a prion cellular protein of the host (PrPC). Surveillance programs consider histopathology as the diagnostic method and Immunohistochemistry (IHC) as a confirmatory method for Scrapie. This study was developed in the Laboratory of Pathology Unit of the Agricultural and Livestock Service of Lo Aguirre. Fifty obex samples of goats, older than 2 years, regardless of race or sex, were used from slaughterhouses in IV Region of Chile. Serial sections were obtained from each obex sample in order to assign one slice to the Hematoxylin and Eosin staining (H/E) and its homologous slice to the Immunohistochemistry technique. Thus, in the H/E staining the suitability of the slices were evaluated, from the observation of the integrity of the following nerve nuclei, with bilateral presentation: of the solitary tract, parasympathetic of the vagus nerve, of the spinal tract of the trigeminal nerve and motor of the hypoglossus. In total, 50 slices were performed, which were subjected to the traditional methods of histopathology and H/E staining. Of these, 50 were able to apply the technique of Immunohistochemistry (IHC). Of the samples submitted to IHC, none of them presented the red granular precipitate characteristic of the immunoreaction due to the presence of prions, whereby it was determined that all samples of the goats studied were to be classified as negative, as were the negative controls of Obex. On the other hand, positive obex controls always presented the red granular precipitate indicative of a positive immunoreaction, as indicated by the Reference Center for such controls. In this way, this work collaborated with the annual passive surveillance carried out by the Agricultural and Livestock Service during the year 2015, regarding the detection of prions in the goat species in a determined group of animals of our country
Chen, Buxin. « Prion species barrier at the short phylogenetic distances in the yeast model ». Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/29762.
Texte intégralCommittee Chair: Chernoff, Yury; Committee Member: Bommarius, Andreas; Committee Member: Doyle, Donald; Committee Member: Lobachev, Kirill; Committee Member: Yi, Soojin. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Chan, Hok-mo. « Medium security prison ». Hong Kong : University of Hong Kong, 1996. http://sunzi.lib.hku.hk/hkuto/record.jsp?B2595149x.
Texte intégralCrozet, Carole. « Souris transgéniques pour la protéine prion ovine : transmission d'encéphalopathies subaiguës spongiformes transmissibles naturelles et expérimentales : contribution à la caractérisation des maladies à prions ». Lyon 1, 2001. http://www.theses.fr/2001LYO1T036.
Texte intégralBoudet-Devaud, François. « La protéine prion cellulaire : un relai de neurotoxicité commun aux protéines amyloïdes et aux nanoparticules Protective role of cellular prion protein against TNFα-mediated inlammation through TACE α-secretase PrPSc-induced PDK1 overactivation promotes the production of seedable Amyloid-β peptides in prion diseases Corruption of cellular prion protein signaling by titanium dioxide or carbon black nanoparticles promotes the accumulation of amyloid-β peptides ». Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCB127.
Texte intégralThe cellular prion protein (PrPC) is a protein mostly expressed at the plasma membrane of neurons. Its transconformation into the pathogenic prion PrPSc is at the root of prion diseases. It is clearly established that the PrPSc-induced neurodegeneration depends on the expression of PrPC in neurons and results from the corruption of PrPC function(s) by PrPSc. Unravelling the role of PrPC is thus a prerequisite to grasp neurodegeneration mechanisms in prion diseases. Part of my work shows that PrPC exerts a cytoprotective function against TNFalpha inflammatory cytokine. PrPC silencing in neurons (PrPnull-neurons) renders these cells highly sensitive to TNFalpha due to surface accumulation of TNFalpha receptor (TNFR). My work demonstrates that the loss of PrPC regulatory function on the clustering and signaling downstream of bêta 1 integrins in PrPnull neurons provokes the overactivation of the kinase PDK1, subsequent internalization of TACE alpha-secretase, and uncoupling of TACE from TNFR substrate. Because of the phenotypic proximity between PrPnull neurons (Ezpeleta et al. 2017) and PrPSc-infected neurons (Pietri et al. 2013; Alleaume-Butaux et al. 2015), my work supports the view of a loss of PrPC protective function in prion diseases. As concerns prion infection, my work shows that after PDK1 overactivation, internalized TACE is uncoupled from another substrate, the amyloid peptides precursor protein (APP), leading to the accumulation of neurotoxic peptides Abêta 40 and Abêta 42, hallmarks of Alzheimer's disease. Within a prion infectious context, Abêta 40/42 peptides are predominantly present as monomers, and to a lesser extent, as trimers and tetramers. By combining in vitro and in vivo approaches, we show that Abêta peptides produced by infected neurons do not alter replication nor the infectivity of prions. Nevertheless, we demonstrate that oligomerized Abêta is able to form amyloid plaques in the brain of transgenic APP23 mice infected by prions. In these mice, Abêta deposits accelerate prion pathogenesis. The last axis of my work deals with nanoparticles, that is, nanometric materials commonly found in manufactured products and industrial processes. My work shows that, as PrPSc and Abêta, titanium dioxide or carbon black assemblies interact with PrPC at the surface of neurons and deviate its signaling function, which leads, inter alia, to PDK1 overactivation, TACE internalization, TNFR accumulation at the plasma membrane, and neuronal cells hypersensitivity to TNFalpha inflammatory stress. We also found that nanoparticle-induced TACE uncoupling from APP increases Abêta peptide production by neurons. Even if no epidemiological study has demonstrated to date a link between nanoparticle exposure and Alzheimer's disease, my work suggests an causal implication of nanoparticles in the initiation or amplification of this disease
Coyle, Andrew G. « The organisational development of the Scottish Prison Service, with particular reference to the role and influence of the prison officer ». Thesis, University of Edinburgh, 1986. http://hdl.handle.net/1842/7557.
Texte intégralEzpeleta, Juliette. « Du rôle physiologique de la protéine prion cellulaire à l'infection par les prions : régulation/dérégulation du module de signalisation PDK1/TACE α-secrétase Protective role of cellular prion protein against TNFα-mediated inflammation trough TACE α-secretase Cerebellar compartmentation of prion pathogenesis Production of seedable Amyloid-β peptides in prion diseases upon PrPSc-induced PDK1 overactivation ». Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCB004.
Texte intégralPrion diseases are neurodegenerative disorders characterized by the accumulation into the central nervous system of an abnormally folded protein called Scrapie prion protein (PrPSc). PrPSc is the transconformational isoform of a ubiquitous protein of the host named cellular prion protein (PrPC). It is well established that the toxicity of PrPSc is restricted to neurons and arise from a corruption of the physiological function(s) of PrPC. However, the mechanisms by which PrPSc exerts its neurotoxicity remain poorly understood, partly because the physiological function(s) of PrPC is/are still elusive. Currently, no one knows if PrPC loses a protective role or acquires a toxic function upon its conversion into PrPSc, a combination of both events is also possible. Identifying PrPC-associated function(s) is thus a prerequisite to understand how PrPSc provokes neurodegeneration. The present work reports for the first time a protective role of PrPC towards the pro-inflammatory cytokine sTNF-alpha-associated toxicity. We show that PrPC adjusts cell sensitivity to sTNF-alpha by controlling TACE-dependent TNFR1 shedding. Mecanistically, PrPC governs both (i) TACE activity, through PrPC coupling to NADPH oxidase/Reactive Oxygen Species production, and (ii) TACE localization, by downregulating the beta-1 integrins/ROCK/PDK1 signaling pathway, thus PrPC ensures the bioavailability of an active TACE at the plasma membrane. PrPC depletion provokes the micro-aggregation of beta-1 integrins, the overactivation of ROCK and PDK1 kinases, and the subsequent internalization of TACE into Caveolin-1 enriched micro-vesicles. This leads to a defect of TNFR1 shedding, which accumulates at the plasma membrane and renders PrPC-depleted neurons highly vulnerable to sTNF-alpha insult. These alterations have also been reported in prion-infected neurons with the same intensities, supporting the view that a loss-of-the protective function of PrPC towards sTNF-alpha likely occur along prion diseases. Within a prion infectious context, a collaborative work revealed that the cerebellar Purkinje cells that do not express zebrins are highly vulnerable to the toxicity of two prion strains, 22L and ME7, compared to Purkinje cells that express zebrins. This suggest a protective role of zebrins against PrPSc-associated toxicity. A major part of my thesis identifies a new target deregulated downstream from the PDK1/TACE signaling module, the amyloid precursor protein (APP), well-known for its implication in Alzheimer's disease. By abrogating the non-amyloidogenic cleavage of APP by TACE, PrPSc provokes the overproduction of Abeta40/42 peptides. Abeta40/42 predominates as monomers but are also found as multimeric assemblies, i.e. trimers and tetramers. PrPSc-induced Abeta40/42 overproduction relates to PDK1 overactivation as pharmacological inhibition of PDK1 attenuates production of Abeta monomers and renders multimers undetectable. Of note, our work reveals that Abeta peptides do not impact on PrPSc replication nor infectivity. Nevertheless, Abeta40/42 peptides generated upon prion infection can deposit in mice brains only if an exogenous Abeta seed is co-transmitted with PrPSc. Importantly, Abeta deposition leads to early death of prion-infected mice. This work delineates the conditions that allow Abeta plaques formation and highlights the onset of a mixed-pathology caused by the co-occurrence of PrPSc and Abeta deposition within a prion infectious context
Schwengler, Franziska. « Prion Diseases ». Diss., lmu, 2005. http://nbn-resolving.de/urn:nbn:de:bvb:19-36790.
Texte intégralBamia, Aline. « Identification de nouvelles molécules anti-prions et caractérisation de leurs modes d'action ». Thesis, Brest, 2019. http://www.theses.fr/2019BRES0047.
Texte intégralPrion is infectious protein responsible of neurodegenerative diseases in human and animal. Scrapie in goat and sheep and Creutzfeldt-Jakob disease in human are prion-related diseases. Prion diseases are fatal and to date there is no efficient treatment against these troubles. This is why in our lab we focus on identification of new compounds efficient against prions. Flunarizine was identified as new anti-prion compound efficient against yeast prion [PSI+] and [URE3], and against mammalian prion PrPSc in vitro, ex vivo and in vivo. Flunarizine may be good drug candidate against prion diseases due to its anti-prion potential in different model. Structure-activity relationship (SAR) around flunarizine hightlights 31 compounds out of 47 which inhibit prion PrPSc propagation in vitro. Six of most efficient compounds cleared prion PrPSc in organotypic slice culture. There were no relationship between flunarizine and related compound activities against prion PrPSc and their known mode of action. The most potent compounds against PrPSc inhibit PFAR (protein folding activity of ribosome). PFAR is a protein chaperon activity which is involved in yeast prion [PSI+] propagation. Many tested compounds are good candidates for drugs repurposing against prion diseases because of their important activity against PrPSc prion.Inhibition of PFAR by all the hightly effective flunarizine related compounds, suggest that PFAR may be consider as cellular target for prion related-diseases treatment
Peyrin, Jean-Michel. « Implication des cellules microgliales dans la neuropathologie des maladies à prions ». Paris 5, 1998. http://www.theses.fr/1998PA05P226.
Texte intégralBariar, Bhawana. « Effects of the components of the Get pathway on prion propagation ». Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/26659.
Texte intégralCommittee Chair: Chernoff,Yury; Committee Member: Cairney,John; Committee Member: Choi,Jung; Committee Member: Doyle,Donald; Committee Member: Lobachev,Kirill. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Saijo, Eri. « INVESTIGATING THE ROLE OF PRION PROTEIN POLYMORPHISMS ON PRION PATHOGENESIS ». UKnowledge, 2012. http://uknowledge.uky.edu/microbio_etds/4.
Texte intégralRumscheid, Frank. « Die figürlichen Terrakotten von Priene : Fundkontexte, Ikonographie und Funktion in Wohnhäusern und Heiligtümern im Licht antiker Parallelbefunde ». Wiesbaden Reichert, 2006. http://bvbr.bib-bvb.de:8991/F?func=service&docl̲ibrary=BVB01&docn̲umber=015027207&linen̲umber=0001&funcc̲ode=DBR̲ECORDS&servicet̲ype=MEDIA.
Texte intégralKrejciova, Zuzana. « Exposure and response of human non-neuronal cells to prions in vitro ». Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/8186.
Texte intégralMirabile, I. « Prion pathology in the brainstem : clinical target areas in prion disease ». Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1346475/.
Texte intégralCarulla, Martí Patricia. « La proteína priónica celular : Análisis de su función neuroprotectora y reguladora del ciclo Celular ». Doctoral thesis, Universitat de Barcelona, 2013. http://hdl.handle.net/10803/129157.
Texte intégralTransmissible spongiform encephalopathies constitute a group of fatal neurodegenerative disorders affecting both animals and humans. The causative agents of these diseases are “prions”, which are defined as proteinaceous infectious particles that result from an abnormal conformational folding of the cellular prion protein (PrPC) into a pathogenic form called PrPSC. Although the role of PrPSC has been intensively studied, the physiological function of PrPC still remains unclear. Several evidences support the notion that PrPC plays a role in different cellular processes including: i) cell cycle and proliferation, ii) copper homeostasis, iii) neuroprotection, iv) synaptic transmission and v) intracellular signaling, among others. Here we expand previous data concerning PrPC function by describing the molecular mechanisms by which PrPC regulates cell proliferation in vitro and excitotoxic cell death in vivo. First, we describe how transient overexpression of PrPC in Neuro2a cells enhances cell cycle progression after mitogenic stimulation, while the opposite effect is observed when PrPC is silenced. These effects are due in part to the interaction of PrPC with the epidermal growth factor receptor (EGFR) in the cell membrane and the consequent downstream activation of ERK1/2 and protein kinase B (AKT) pathways. We also describe PrPC-dependent filopodia formation in Neuro2a cells through the modulation of AKT-Cdc42-N-WASP pathway. In a second study, we took advantage of the Prnp0/0Jnk3+/+ and Prnp0/0Jnk30/0 mice models to analyze the neuroprotective role of PrPC against kainate-induced epileptic seizures and cell death. Our results indicate that PrPC regulates kainate receptor-mediated neurotransmission through its interaction with the GluR6/7-PSD-95-MLK3 complex and the downstream modulation of JNK3 neurotoxic signaling. These new insights into the molecular functions of PrPC help us to understand the physiopathological events underlying prion disease and other related neurodegenerative pathologies.
Smith, Juliana Jamel. « The cultural dynamic of the prison industrial complex a critique of political rhetoric and popular film during the 1980's / ». Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2008. http://wwwlib.umi.com/cr/ucsd/fullcit?p1450190.
Texte intégralTitle from first page of PDF file (viewed April 7, 2008). Available via ProQuest Digital Dissertations. Includes bibliographical references (p. 121-129).
Kiachopoulos, Sophia. « Biogenese des Prion-Proteins ». Diss., lmu, 2005. http://nbn-resolving.de/urn:nbn:de:bvb:19-44118.
Texte intégralSarafoff, Nikolaus. « Amplifikation von Prionen in vitro ». Diss., lmu, 2006. http://nbn-resolving.de/urn:nbn:de:bvb:19-57072.
Texte intégralRadreau, Félicie. « Cellules souches embryonnaires et neurales humaines : quand la PrP et l'APP "s'en mêlent" ou "s’emmêlent" ». Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT045/document.
Texte intégralThe cellular Prion Protein (PrPc) is a ubiquitary protein mainly expressed in the central nervous system. It is particularly known for its conformational conversion in PrPSc in Prion diseases, which are proteinopathies such as Alzheimer’s disease (AD). AD is associated with extracellular deposits of aggregated beta-amyloid peptides (Aβ) derived from successive β- and the γ-secretase cleavages of the amyloid precursor protein (APP) expressed by neurons. PrPc and APP share some common functions and proteolytic pathways (α- or β-secretase), involving them in proliferation, differentiation, synaptogenesis and cellular survival. PrPc is involved in the regulation of proliferation and differentiation of many stem cells: adult neural (NSC), hematopoietic (HSC) and human embryonic (hESC). Several publications also show that PrP downregulates the cleavage of APP in Aβ and positively regulates the cleavage of APP in sAPPα suggesting an anti-amyloïdogenic role of PrPc. PrP could also act as a receptor of Aβ at the neuronal surface inducing LTP inhibition and synaptic alteration. In this context, the specific objectives of my thesis were:- Study of the expression of PrP, APP and its cleavage residues during neural induction of hESC in NSC and neuronal differentiation.- Impact of the modulation of PrP expression on APP cleavages as well as on stem cells properties (survival, proliferation, differentiation). 1. Neural induction of hESC in NSCFor this project, we have used Human Embryonic Stem Cells (hESC) for which the laboratory has an authorization from the “Agence de la Biomédecine”.For the neural induction, we have tested two protocols, the first one allows the obtention of neurospheres in suspension and then figures of “rosettes” composed of NSC, and a “monolayer” protocol that mimics the beginning of corticogenesis. An optimization of these protocols has been necessary (starting cell density, cell fixation methods to improve PrP detection). We have also determined the best conditions to analyze the expression of PrP, APP and its derived peptides (Aß, sAPPα/β). 2. Differentiation of NSCNSC derived from hESC were amplified and differentiated into neurons and/or astrocytes. Cells were characterized in particular by immunofluorescence and RT-qPCR for the expression of the major astrocytic (GFAP) and neuronal markers (BIII-tubulin, doublecortin, synaptophysin) and the progressive decrease of NSC markers. Again we have determined the best conditions for cell density and kinetic time points for our analysis.3. Modulation of PrPC expression We have used lentiviral vectors allowing the expression of an anti-PrP shRNA, human PrP and respective controls. To achieve this task, lentiviral transductions of hESC and NSC were optimized: cell density, size of the seeding culture wells or MOI of lentivirus. Finaly, samples collected allowed us to evaluate the impact of PrPc modulation on the APP cleavages as well as on stem cells properties (survival, proliferation, differentiation)
Mead, Simon Harvey. « Molecular genetic analysis of the prion protein gene locus in human prion disease ». Thesis, Imperial College London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.417947.
Texte intégralShi, Song. « Screening anti-prion compounds and diagnosing prion diseases by amplifying PrPSc in vitro ». Diss., Ludwig-Maximilians-Universität München, 2015. http://nbn-resolving.de/urn:nbn:de:bvb:19-179963.
Texte intégralMahmoud, Mohamed Karmi Hussein. « Studies on pathogenic mechanisms of prion diseases and evaluation of prion strains properties ». Diss., Munich Verl. Dr. Hut, 2009. http://d-nb.info/992892376/04.
Texte intégralKlingeborn, Mikael. « The prion protein in normal cells and disease : studies on the cellular processing of bovine PrPC and molecular characterization of the Nor98 prion / ». Uppsala : Department of Molecular Biosciences, Swedish University of Agricultural Sciences, 2006. http://epsilon.slu.se/2006105.pdf.
Texte intégralSanghera, Narinder. « The interaction of the prion protein with lipid membranes and implications for prion conversion ». Thesis, University of Warwick, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247140.
Texte intégralMashima, Tsukasa. « The structural analysis of RNA aptamer against prion protein and its anti-prion activity ». Kyoto University, 2013. http://hdl.handle.net/2433/170071.
Texte intégralLenuzza, Natacha. « Modélisation de la réplications des Prions : Implication de la dépendance en taille des agrégats de PrP et de l'hétérogénéité des populations cellulaires ». Phd thesis, Ecole Centrale Paris, 2009. http://tel.archives-ouvertes.fr/tel-00453321.
Texte intégralChu, Clement SM. « Towards the structure of yeast prions ». Diss., Search in ProQuest Dissertations & ; Theses. UC Only, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3390039.
Texte intégralRagagnin, Audrey. « Mort neuronale et maladies à prions ». Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAJ094/document.
Texte intégralThe conversion of the protective cellular prion protein PrPC into an infectious, neurotoxic conformer PrPSc is a feature of prion diseases. In the prion-diseased brain, the loss of PrPC, the production of pathogenic PrPSc and inflammation contribute to neuronal death by still unknown mechanisms.The present results validate cerebellar organotypic cultures as a valuable experimental system to study ex vivo these mechanisms and provide insight into the apoptotic and autophagic processes activated by the absence of PrPC in Prnp-deficient mice and by PrPSc prions and lead to the death of the cerebellar Purkinje cells. A second line of research in situ showed that the anatomo-functional compartmentation of the mouse cerebellum is an endogenous parameter of the pathogenesis of the 22L scrapie prions. Finally, another in situ approach revealed that prions increase the levels of TNFR1, a receptor for the pro-inflammatory cytokine TNF-α at the membrane of the astrocytes enveloping Purkinje cell excitatory synapses in the cerebellar cortex of infected mice. This implies that the response of synaptic complexes to prions involves a glial component
Gierusz, Leszek A. « Folding and fibril formation of prions ». Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/56927/.
Texte intégralToupet, Karine. « Stratégies thérapeutiques des maladies à prions ». Montpellier 2, 2009. http://www.theses.fr/2009MON20128.
Texte intégralPrion diseases are fatal neurodegenerative disorders that affect both humans and animals. These diseases are induced by the accumulation in the brain of the misfolded isoform of the normal cellular prion protein: PrPSc. The emergence of new risks of transmission for these diseases and the lack of efficient treatments, prompt us to search for new therapeutic strategies and targets. We developed two innovative therapeutic approaches. The first one consisted in searching for molecules able to trap preamyloid forms of PrPSc (dimers and trimers), known as key elements in the replication cycle of prions. A drugs screening approach, in silico and in cellulo, allowed us to discover thienyl pyrimidine and thienyl azine compounds able to specifically oligomerize PrPSc molecules. These PrPSc oligomers decrease prions infectivity in vivo, highlighting the therapeutic potential of these compounds. Our second strategie is a gene therapy approach using the dominant negative properties of certain polymorphisms of the prion protein, such as the Q218K and Q167R mutants. Our objective was to evaluate the therapeutic potential of lentiviral vectors carrying the PrPQ218K and PrPQ167R mutants, in mice, at the terminal stage of the disease. We succeeded in significantly prolonging the survival time of mice of 20%, with two intracerebrally chronic injections of lentiviral vectors carrying the PrPQ167R mutant. All our results not only open the way for new therapeutic strategies against prion diseases but also will benefit for therapies of other neurodegenerative disorders
Ekwa, Robert. « Les maladies à prions : problèmes épistémologiques ». Paris 1, 2012. http://docelec.u-bordeaux.fr/login?url=http://www.harmatheque.com/ebook/les-maladies-a-prions--problemes-epistemologiques--volume-2--vache-folle-et-raisonnements-causals-41085.
Texte intégralZahn, Ralph. « Prion propagation and molecular chaperones ». Zürich : Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, 2002. http://e-collection.ethbib.ethz.ch/show?type=habil&nr=4.
Texte intégralUelhoff, Armgard. « Polarisierter Transport des Prion-Proteins ». Diss., lmu, 2005. http://nbn-resolving.de/urn:nbn:de:bvb:19-40163.
Texte intégralRambold, Angelika. « Funktionelle Charakterisierung des Prion-Proteins ». Diss., lmu, 2008. http://nbn-resolving.de/urn:nbn:de:bvb:19-91541.
Texte intégralNorton, Jennifer Diane, et Jennifer Diane Norton. « Mechanisms of Prion Variant Competition ». Diss., The University of Arizona, 2017. http://hdl.handle.net/10150/625845.
Texte intégralUppington, Kay Marie. « Cell death in prion disease ». Thesis, University of Bath, 2008. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488879.
Texte intégralLee, Kil Sun. « Biologia da proteína prion celular ». Universidade de São Paulo, 2002. http://www.teses.usp.br/teses/disponiveis/46/46131/tde-22082018-104148/.
Texte intégralThe cellular prion protein (PrPc) is a glycoprotein anchored to the plasma membrane by GPI (Glycosyl-phosphatidylinositol). Its abnormal isoform (PrPsc) is the infectious protein responsible for several neurodegenerative diseases. The main etiology of the prion diseases is related to conformational changes in the PrPc molecule, which occur after its internalization (Prusiner, 1998). In order to elucidate the physiological functions of PrPc, our group identified and characterized interactions between PrPc and other cellular molecules. The first is the interaction between PrPc and STI 1 (Stress Inducible Protein 1). This interaction has an important role in the neuroprotection against apoptosis through cAMP and PKA signaling (Chiarini et al., 2002; Zanata et al., 2002). PrPc also interacts with proteins of the extracellular matrix such as laminin and vitronetin. These interactions contribute for neurite outgrowth, maintenance and regeneration (Graner et al., 2000 a and b; Hajj et al., submitted) and also in memory formation (Coitinho et al., submitted). In the first part of this work we have applied the differential dysplay RTPCR technique in order to identify genes that are regulated by PrPc - STI 1 interaction and also by the deletion of PrPc. In the second part we have demonstrated that PrPc-laminin interaction induces transient calcium signaling in neuronal cells, which occurs even in the absence of extracellular calcium. PrPc cycles continuously between the plasma membrane and intracellular compartments. This mechanism is associated with some of the physiological function of PrPc, such as Cu2+ homeostasis (Brown, 2001 ), interaction with laminin receptor (Gauczynski et al., 2001 ), and PrPc conversion into PrPsc (McKinley et al., 1991; Arnold et al., 1995). Thus, in the third part of this project, we have characterized the PrPc localization at the cell surface and in intracellular compartments. The protein trafficking through Golgi apparatus, plasma membrane, early and recycling endosomes was also defined. Moreover, we have determinated that N-terminus PrPc domain is responsible for its internalization while C-terminus participates in PrPc delivery. Therefore, this work has contributed to elucidate biological events related to the cell signaling and trafficking of PrPc, which are important for the characterization of PrPc physiological functions and to understand the pathological mechanisms related to this molecule.
Apetri, Constantin Adrian. « Folding of the Prion Protein ». Case Western Reserve University School of Graduate Studies / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=case1080747299.
Texte intégral