Littérature scientifique sur le sujet « Predictive Reasoning »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Predictive Reasoning ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Predictive Reasoning"
Stauffer, E. Shannon. « HIGH TECH VS PREDICTIVE REASONING ». Orthopedics 18, no 10 (octobre 1995) : 967. http://dx.doi.org/10.3928/0147-7447-19951001-04.
Texte intégralOslington, Gabrielle, Joanne Mulligan et Penny Van Bergen. « Third-graders’ predictive reasoning strategies ». Educational Studies in Mathematics 104, no 1 (mai 2020) : 5–24. http://dx.doi.org/10.1007/s10649-020-09949-0.
Texte intégralFernbach, Philip M., Adam Darlow et Steven A. Sloman. « Asymmetries in predictive and diagnostic reasoning. » Journal of Experimental Psychology : General 140, no 2 (2011) : 168–85. http://dx.doi.org/10.1037/a0022100.
Texte intégralRodrigo, María J., Manuel de Vega et Javier Castaneda. « Updating mental models in predictive reasoning ». European Journal of Cognitive Psychology 4, no 2 (avril 1992) : 141–57. http://dx.doi.org/10.1080/09541449208406247.
Texte intégralLim, Tow Keang. « The predictive brain model in diagnostic reasoning ». Asia Pacific Scholar 6, no 2 (4 mai 2021) : 1–8. http://dx.doi.org/10.29060/taps.2021-6-2/ra2370.
Texte intégralYuan, Ye, Zhong Kai Yang et Qing Fu Li. « End Effect Processing for Empirical Mode Decomposition Using Fuzzy Inductive Reasoning ». Applied Mechanics and Materials 55-57 (mai 2011) : 407–12. http://dx.doi.org/10.4028/www.scientific.net/amm.55-57.407.
Texte intégralWang, W. C. « Personalized Prediction Model for Hepatocellular Carcinoma With a Bayesian Clinical Reasoning Approach ». Journal of Global Oncology 4, Supplement 2 (1 octobre 2018) : 210s. http://dx.doi.org/10.1200/jgo.18.84600.
Texte intégralHabeck, Christian, Qolamreza Razlighi et Yaakov Stern. « Predictive utility of task-related functional connectivity vs. voxel activation ». PLOS ONE 16, no 4 (8 avril 2021) : e0249947. http://dx.doi.org/10.1371/journal.pone.0249947.
Texte intégralLegaspi, Roberto, Raymund Sison, Ken-ichi Fukui et Masayuki Numao. « Cluster-based predictive modeling to improve pedagogic reasoning ». Computers in Human Behavior 24, no 2 (mars 2008) : 153–72. http://dx.doi.org/10.1016/j.chb.2007.01.007.
Texte intégralWilliams, Patricia Couch, R. Steve McCallum et Mellissa Testerman Reed. « Predictive Validity of the Cattell-Horn Gf-Gc Constructs to Achievement ». Assessment 3, no 1 (mars 1996) : 43–51. http://dx.doi.org/10.1177/107319119600300105.
Texte intégralThèses sur le sujet "Predictive Reasoning"
Bell, J. « Predictive conditionals, nonmonotonicity and reasoning about the future ». Thesis, University of Essex, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235132.
Texte intégralNg, Sin Wa Serena. « Towards an understanding of the staged model of predictive reasoning ». Thesis, University of Leicester, 2009. http://hdl.handle.net/2381/7868.
Texte intégralVallée-Tourangeau, Frédéric. « Adjustment to disconfirming evidence in a covariation judgment task : the role of alternative predictive relationships ». Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=41208.
Texte intégralAlaya, Mili Nourhene. « Managing the empirical hardness of the ontology reasoning using the predictive modelling ». Thesis, Paris 8, 2016. http://www.theses.fr/2016PA080062/document.
Texte intégralHighly optimized reasoning algorithms have been developed to allow inference tasks on expressive ontology languages such as OWL (DL). Nevertheless, reasoning remains a challenge in practice. In overall, a reasoner could be optimized for some, but not all ontologies. Given these observations, the main purpose of this thesis is to investigate means to cope with the reasoner performances variability phenomena. We opted for the supervised learning as the kernel theory to guide the design of our solution. Our main claim is that the output quality of a reasoner is closely depending on the quality of the ontology. Accordingly, we first introduced a novel collection of features which characterise the design quality of an OWL ontology. Afterwards, we modelled a generic learning framework to help predicting the overall empirical hardness of an ontology; and to anticipate a reasoner robustness under some online usage constraints. Later on, we discussed the issue of reasoner automatic selection for ontology based applications. We introduced a novel reasoner ranking framework. Correctness and efficiency are our main ranking criteria. We proposed two distinct methods: i) ranking based on single label prediction, and ii) a multi-label ranking method. Finally, we suggested to extract the ontology sub-parts that are the most computationally demanding ones. Our method relies on the atomic decomposition and the locality modules extraction techniques and employs our predictive model of the ontology hardness. Excessive experimentations were carried out to prove the worthiness of our approaches. All of our proposals were gathered in a user assistance system called "ADSOR"
Abbas, Kaja Moinudeen. « Bayesian Probabilistic Reasoning Applied to Mathematical Epidemiology for Predictive Spatiotemporal Analysis of Infectious Diseases ». Thesis, University of North Texas, 2006. https://digital.library.unt.edu/ark:/67531/metadc5302/.
Texte intégralSORMANI, RAUL. « Criticality assessment of terrorism related events at different time scales TENSOR clusTEriNg terroriSm actiOn pRediction ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/125509.
Texte intégralCastillo, Guevara Ramon Daniel. « The emergence of cognitive patterns in learning : Implementation of an ecodynamic approach ». University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1396531855.
Texte intégralCao, Qiushi. « Semantic technologies for the modeling of predictive maintenance for a SME network in the framework of industry 4.0 Smart condition monitoring for industry 4.0 manufacturing processes : an ontology-based approach Using rule quality measures for rule base refinement in knowledge-based predictive maintenance systems Combining chronicle mining and semantics for predictive maintenance in manufacturing processes ». Thesis, Normandie, 2020. http://www.theses.fr/2020NORMIR04.
Texte intégralIn the manufacturing domain, the detection of anomalies such as mechanical faults and failures enables the launching of predictive maintenance tasks, which aim to predict future faults, errors, and failures and also enable maintenance actions. With the trend of Industry 4.0, predictive maintenance tasks are benefiting from advanced technologies such as Cyber-Physical Systems (CPS), the Internet of Things (IoT), and Cloud Computing. These advanced technologies enable the collection and processing of sensor data that contain measurements of physical signals of machinery, such as temperature, voltage, and vibration. However, due to the heterogeneous nature of industrial data, sometimes the knowledge extracted from industrial data is presented in a complex structure. Therefore formal knowledge representation methods are required to facilitate the understanding and exploitation of the knowledge. Furthermore, as the CPSs are becoming more and more knowledge-intensive, uniform knowledge representation of physical resources and reasoning capabilities for analytic tasks are needed to automate the decision-making processes in CPSs. These issues bring obstacles to machine operators to perform appropriate maintenance actions. To address the aforementioned challenges, in this thesis, we propose a novel semantic approach to facilitate predictive maintenance tasks in manufacturing processes. In particular, we propose four main contributions: i) a three-layered ontological framework that is the core component of a knowledge-based predictive maintenance system; ii) a novel hybrid semantic approach to automate machinery failure prediction tasks, which is based on the combined use of chronicles (a more descriptive type of sequential patterns) and semantic technologies; iii) a new approach that uses clustering methods with Semantic Web Rule Language (SWRL) rules to assess failures according to their criticality levels; iv) a novel rule base refinement approach that uses rule quality measures as references to refine a rule base within a knowledge-based predictive maintenance system. These approaches have been validated on both real-world and synthetic data sets
Bjurén, Johan. « USING CASE-BASED REASONING FOR PREDICTING ENERGY USAGE ». Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-9436.
Texte intégralKhajotia, Burzin K. « CASE BASED REASONING – TAYLOR SERIES MODEL TO PREDICT CORROSION RATE IN OIL AND GAS WELLS AND PIPELINES ». Ohio University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1173828758.
Texte intégralLivres sur le sujet "Predictive Reasoning"
We are all apocalyptic now : On the responsibilities of teaching, preaching, reporting, writing, and speaking out. [S. l.] : R. Jensen, 2013.
Trouver le texte intégralWolsey, Thomas DeVere. Learning to predict and predicting to learn : Cognitive strategies and instructional routines. Boston : Pearson/Allyn & Bacon, 2009.
Trouver le texte intégralBridgeman, Brent. Predictions of freshman grade-point average from the revised and recentered SAT I, Reasoning Test. New York : College Entrance Examination Board, 2000.
Trouver le texte intégralMatwijkiw, Bronik. Predictive Reasoning in Legal Theory (Applied Legal Philosophy). Ashgate Pub Ltd, 2003.
Trouver le texte intégralReason and Prediction. Cambridge University Press, 2009.
Trouver le texte intégralGallagher, Shaun. Enactivist Interventions. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198794325.001.0001.
Texte intégralLearning to Predict and Predicting to Learn : Cognitive Strategies and Instructional Routines. Prentice Hall, 2008.
Trouver le texte intégralSuperforecasting : The Art and Science of Prediction. Penguin Random House, 2016.
Trouver le texte intégralSuperforecasting : The Art and Science of Prediction. Penguin Random House, 2015.
Trouver le texte intégralSuperforecasting : The Art and Science of Prediction. Penguin Random House, 2015.
Trouver le texte intégralChapitres de livres sur le sujet "Predictive Reasoning"
Wotawa, Franz. « Reasoning from First Principles for Self-adaptive and Autonomous Systems ». Dans Predictive Maintenance in Dynamic Systems, 427–60. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05645-2_15.
Texte intégralBazin, Alexandre, Miguel Couceiro, Marie-Dominique Devignes et Amedeo Napoli. « An Approach to Identifying the Most Predictive and Discriminant Features in Supervised Classification Problems ». Dans Graph-Based Representation and Reasoning, 48–56. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86982-3_4.
Texte intégralRiesterer, Nicolas, Daniel Brand et Marco Ragni. « The Predictive Power of Heuristic Portfolios in Human Syllogistic Reasoning ». Dans Lecture Notes in Computer Science, 415–21. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00111-7_35.
Texte intégralMartin, Luke J. W. « Predictive Reasoning and Machine Learning for the Enhancement of Reliability in Railway Systems ». Dans Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification, 178–88. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33951-1_13.
Texte intégralToledo, F., S. Moreno, E. Bonet et G. Martin. « Using Constraint Technology for Predictive Control of Urban Traffic Based on Qualitative and Temporal Reasoning ». Dans Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, 711–16. London : CRC Press, 2022. http://dx.doi.org/10.1201/9780429332111-121.
Texte intégralSabo, Isabela Cristina, Marco Billi, Francesca Lagioia, Giovanni Sartor et Aires José Rover. « Unsupervised Factor Extraction from Pretrial Detention Decisions by Italian and Brazilian Supreme Courts ». Dans Lecture Notes in Computer Science, 69–80. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-22036-4_7.
Texte intégralJarrell, Amanda, Jason M. Harley, Susanne Lajoie et Laura Naismith. « Examining the Relationship Between Performance Feedback and Emotions in Diagnostic Reasoning : Toward a Predictive Framework for Emotional Support ». Dans Lecture Notes in Computer Science, 650–53. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19773-9_83.
Texte intégralYusoff, Aziyati, Norashidah Md Din, Salman Yussof, Assad Abbas et Samee U. Khan. « Predictive Analytics for Network Big Data Using Knowledge-Based Reasoning for Smart Retrieval of Data, Information, Knowledge, and Wisdom (DIKW) ». Dans Big Data and Computational Intelligence in Networking, 209–26. Boca Raton, FL : CRC Press, [2018] : CRC Press, 2017. http://dx.doi.org/10.1201/9781315155678-13.
Texte intégralKisselburgh, Lorraine, et Jonathan Beever. « The Ethics of Privacy in Research and Design : Principles, Practices, and Potential ». Dans Modern Socio-Technical Perspectives on Privacy, 395–426. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-82786-1_17.
Texte intégralKang, Yong-Bin, Yuan-Fang Li et Shonali Krishnaswamy. « Predicting Reasoning Performance Using Ontology Metrics ». Dans The Semantic Web – ISWC 2012, 198–214. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-35176-1_13.
Texte intégralActes de conférences sur le sujet "Predictive Reasoning"
Walkinshaw, Neil. « Using evidential reasoning to make qualified predictions of software quality ». Dans PROMISE '13 : 9th International Conference on Predictive Models in Software Engineering. New York, NY, USA : ACM, 2013. http://dx.doi.org/10.1145/2499393.2499402.
Texte intégralYue, Jia, Anita Raja et William Ribarsky. « Predictive Analytics Using a Blackboard-Based Reasoning Agent ». Dans 2010 IEEE/ACM International Conference on Web Intelligence-Intelligent Agent Technology (WI-IAT). IEEE, 2010. http://dx.doi.org/10.1109/wi-iat.2010.155.
Texte intégralCao, Qiushi, Ahmed Samet, Cecilia Zanni-Merk, François de Beuvron et Christoph Reich. « Combining Evidential Clustering and Ontology Reasoning for Failure Prediction in Predictive Maintenance ». Dans 12th International Conference on Agents and Artificial Intelligence. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0008969506180625.
Texte intégralChaplot, Neelam, Praveen Dhyani et O. P. Rishi. « Predictive Approach of Case Base Reasoning in Artificial Intelligence ». Dans the Second International Conference. New York, New York, USA : ACM Press, 2016. http://dx.doi.org/10.1145/2905055.2905148.
Texte intégralTiger, Mattias, et Fredrik Heintz. « Stream Reasoning Using Temporal Logic and Predictive Probabilistic State Models ». Dans 2016 23rd International Symposium on Temporal Representation and Reasoning (TIME). IEEE, 2016. http://dx.doi.org/10.1109/time.2016.28.
Texte intégralThompson, Jennifer, et Jessica Bradley. « Predictive analysis network tool for human knowledge elicitation and reasoning ». Dans 2007 10th International Conference on Information Fusion. IEEE, 2007. http://dx.doi.org/10.1109/icif.2007.4408129.
Texte intégralKhokhar, Rashid H., et Mohd Noor Md Sap. « Predictive fuzzy reasoning method for time series stock market data mining ». Dans Defense and Security, sous la direction de Belur V. Dasarathy. SPIE, 2005. http://dx.doi.org/10.1117/12.603089.
Texte intégralHansen, Robert J., David L. Hall, G. William Nickerson et Shashi Phoha. « Integrated Predictive Diagnostics : An Expanded View ». Dans ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-gt-034.
Texte intégralSaputelli, Luigi A., Alexander Verde et Zameel Haris. « Deriving Unconventional Reservoir Predictive Models From Historic Data Using Case Base Reasoning ». Dans Unconventional Resources Technology Conference. Tulsa, OK, USA : American Association of Petroleum Geologists, 2015. http://dx.doi.org/10.15530/urtec-2015-2155770.
Texte intégralMontero-Jimenez, Juan Jose, Rob Vingerhoeds et Bernard Grabot. « Enhancing predictive maintenance architecture process by using ontology-enabled Case-Based Reasoning ». Dans 2021 IEEE International Symposium on Systems Engineering (ISSE). IEEE, 2021. http://dx.doi.org/10.1109/isse51541.2021.9582535.
Texte intégralRapports d'organisations sur le sujet "Predictive Reasoning"
Perry, Marcus B., Patrick J. Vincent et Jeremy D. Jordan. Human Predictive Reasoning for Group Interactions. Fort Belvoir, VA : Defense Technical Information Center, septembre 2010. http://dx.doi.org/10.21236/ada535335.
Texte intégral