Littérature scientifique sur le sujet « Power transformers design »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Power transformers design ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Power transformers design"
Orosz, Tamás, et István Vajda. « Design Optimization with Geometric Programming for Core Type Large Power Transformers ». Electrical, Control and Communication Engineering 6, no 1 (23 octobre 2014) : 13–18. http://dx.doi.org/10.2478/ecce-2014-0012.
Texte intégralOrosz, Tamás. « FEM-Based Power Transformer Model for Superconducting and Conventional Power Transformer Optimization ». Energies 15, no 17 (25 août 2022) : 6177. http://dx.doi.org/10.3390/en15176177.
Texte intégralБаширов, М., Mussa Bashirov, Азат Хисматуллин, Azat Hismatullin, И. Прахов et I. Prahov. « Increasing of Power Oil-Filled Transformers’ Operation Reliability and Safety ». Safety in Technosphere 7, no 2 (23 janvier 2019) : 15–21. http://dx.doi.org/10.12737/article_5c35cc6e2354f7.79418159.
Texte intégralSu, Biao, Li Xue Li, Yi Hui Zheng, Xin Wang, Yan Liu et Chang Li Dang. « Design and Analysis of PCB Rogowski Coil Current Transformer ». Applied Mechanics and Materials 672-674 (octobre 2014) : 984–88. http://dx.doi.org/10.4028/www.scientific.net/amm.672-674.984.
Texte intégralZhang, Zhan, et Cai Xia Gao. « Hardware Design of Online Monitoring System for Power Transformer Malfunction ». Applied Mechanics and Materials 143-144 (décembre 2011) : 618–21. http://dx.doi.org/10.4028/www.scientific.net/amm.143-144.618.
Texte intégralÖZÜPAK, Yıldırım. « Performing Structural Design and Modeling of Transformers Using ANSYS-Maxwell ». Brilliant Engineering 2, no 2 (29 janvier 2021) : 38–42. http://dx.doi.org/10.36937/ben.2021.002.005.
Texte intégralĆućić, Branimir, Nina Meško, Martina Mikulić et Dominik Trstoglavec. « Design improvements in modern distribution transformers ». Journal of Energy - Energija 63, no 1-4 (2 juillet 2022) : 74–81. http://dx.doi.org/10.37798/2014631-4165.
Texte intégralChisepo, Hilary Kudzai, Leslie David Borrill et Charles Trevor Gaunt. « Measurements show need for transformer core joint details in finite element modelling of GIC and DC effects ». COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 37, no 3 (8 mai 2018) : 1011–28. http://dx.doi.org/10.1108/compel-11-2016-0511.
Texte intégralSopov, Anatoliy I., et Aleksandr V. Vinogradov. « The Heating System of Agricultural Facilities Using Excess Heat Power Transformers ». Elektrotekhnologii i elektrooborudovanie v APK 67, no 1 (28 mars 2020) : 42–47. http://dx.doi.org/10.22314/2658-4859-2020-67-1-42-47.
Texte intégralMelnikova, O. S., et V. S. Kuznetsov. « Method of calculating the electric strength of oil channels of the main insulation of power transformers ». Vestnik IGEU, no 5 (30 décembre 2020) : 48–55. http://dx.doi.org/10.17588/2072-2672.2020.5.048-055.
Texte intégralThèses sur le sujet "Power transformers design"
Carvajal, Angel J. « First principles design of coreless power transformers ». Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120875.
Texte intégralThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 117-118).
This thesis presents a theoretical foundation and methodology for designing novel 4-coil high frequency coreless power transformers from first principles via lumped equivalent circuit models. The procedure is applied to construct a design for 100W transformer with an S21 parameter value of .96. Using MATLAB and LTspice, simulation tools have been developed to produce accurate predictions of inductance, resistance, coupling coefficients, and S21 parameter values for an ensemble of coil models. These theoretical calculations have been employed for spiral and cylindrical coils and have been validated with numerous constructed experimental designs. The utility uses a first principles approach and derives these calculations directly from the physical parameters and relative positions of the coils. Simulation outputs greatly aid the engineering task of designing an efficient coreless power transformer.
by Angel J. Carvajal.
M. Eng.
Shen, Wei. « Design of High-density Transformers for High-frequency High-power Converters ». Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/28280.
Texte intégralPh. D.
Makowski, Nathanael Jared. « Proposal and Analysis of Demagnetization Methods of High Voltage Power System Transformers and Design of an Instrument to Automate the Demagnetization Process ». PDXScholar, 2011. https://pdxscholar.library.pdx.edu/open_access_etds/431.
Texte intégralXue, Jing. « Single-phase vs. Three-phase High Power High Frequency Transformers ». Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/32919.
Texte intégralMaster of Science
Economides, Sophia Betty. « Design and application of multilayer monolithic microwave integrated circuit transformers ». Thesis, King's College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312971.
Texte intégralDai, Ning. « Modeling, analysis, and design of high-frequency high-density low-profile power transformers ». Diss., This resource online, 1996. http://scholar.lib.vt.edu/theses/available/etd-06062008-151512/.
Texte intégralWilson, Colin Richard. « The design and development of fast pulsed power supplies using Transmission Line Transformers ». Thesis, University of St Andrews, 1992. http://hdl.handle.net/10023/13600.
Texte intégralGoad, Stephen D. « The theory and design of switched-mode power transformers for minimum conductor loss ». Diss., Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/52290.
Texte intégralPh. D.
Gradzki, Pawel Miroslaw. « Core loss characterization and design optimization of high-frequency power ferrite devices in power electronics applications ». Diss., This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-06062008-165934/.
Texte intégralDi, Capua Giulia. « Models and methods for the design of isolated power converters in high-frequency high-efficiency applications ». Doctoral thesis, Universita degli studi di Salerno, 2013. http://hdl.handle.net/10556/893.
Texte intégralIsolated power supplies design requires the achievement of overall stress, losses, cost, size and reliability trade-off. This problem is of considerable importance in modern applications of power converters, as for energy saving issues as for the achievement of high power density capabilities needed to integrate the power supply into the same boards where the system they feed is hosted. The aim of this PhD dissertation is to discuss the fundamental issues regarding the design of high-efficiency high-power-density isolated power converters, related to the transformers design and to the system-level analysis of functional and parametric correlations existing among transformers and silicon devices in the achievement of high efficiency. Transformer design is the central issue in isolated switching power supplies design. Affording a preliminary reliable investigation of possible feasible power supply designs using off-the-shelf transformers can be of great help in reducing the time to prototyping and the time-to-market. Even though many off-the-shelf transformers are available today for standard applications, many special situations occur such that the design of a custom transformer is required. New design method are needed in order to enable a wider detection and investigation of possible transformer design solutions by means of a straightforward matching between the available magnetic cores, the operating conditions of the transformer to be designed and the design constraints to be fulfilled. A critical re-examination of transformers design methods discussed in technical literature has been afforded to highlighting some common misleading assumptions which can hinder the minimization of the transformer. Thus, a new design approach has been investigated and discussed, which helps in easily identifying possible transformer solutions in critical custom designs for a given application, complying with losses and size constraints. The new method is aimed at quickly identifying possible combinations of magnetic cores and windings turns number when many possible design might be feasible and a fast comparative evaluation is needed for preliminary cores selection. Novel geometric form factors of magnetic core (Kf and Kc) have been introduced and a consequent classification procedure for magnetic cores has been obtained, showing the correlation between the characteristics of the core and the specific applications in which each type of core offers major advantages in terms of minimizing losses and/or size. A magneto-electro-thermal macro model of the transformer has been adopted in order to investigate the dependency of total transformer losses on the temperature and to analyze the temperature sensitivity of form factor constraints of magnetic cores for power loss compliance. In particular, temperature-dependent boundaries curves both for the core window area and cross-section and for the form factors Kf and Kc have been obtained, allowing quick identification of feasible design solutions, complying with all design constraints, included thermal issues. Transformers and silicon devices do inextricably share the responsibility of major losses in isolated power supplies, and the optimization of the former normally impinges the one of the latter. As a consequence, the intimate correlation among these parts need to be jointly considered regarding the way the characteristics of one device influence the losses of the other one. In order to achieve reliable comparative evaluations among different design set-up, a new versatile numerical model for commutations analysis of power MOSFETs has been developed. The model takes into account the non-linear behavior of the inter-electrode capacitances and has been conceived to work as with parameters and information contained in the devices datasheets as with more detailed models. A Modified Forward Euler (MFE) numerical technique has been specifically developed and adopted in the realization of a numerical algorithm which solves the non linear system of differential equations describing the effect of parasitic capacitances in whatever operating conditions, in order to overcome the limitation exhibited by ODEs techniques for stiff problems in this particular application. The new MFE technique allows to compare the switching characteristics of MOSFETs with a good level of reliability and to obtain a detailed analysis of capacitive currents paths circulating between MOSFETs in half-bridge configuration during commutations. The numerical device-level model of the MOSFETs couples has been first tested in the analysis of basic non isolated synchronous rectification buck converter and then used into an integrated model allowing the analysis of Active Clamp Forward converters. It has been also demonstrated that the model adopted for the switching cell can be implemented in circuit simulators like Micro-Cap. The correlations existing between the parasitic parameters which characterize both transformer and MOSFETs and their impact on the switching behavior and the efficiency of such a conversion system can be effectively investigated by using such modeling approach, thus overcoming the limitations and unreliability of simplified analytical formulas for the prediction of the ZVS achievement. In particular, the integrated system model has been successfully used to determine the mutual constraint conditions between magnetic devices and solid state devices to achieve soft-switching, and their effects on the physical feasibility and design/selection of such power devices in order to achieve high efficiency. Experimental activities have been done to validate the methods and models proposed, through the implementation of on-line losses measurements techniques for both magnetic and solid state devices. The high switching frequency, high slew rates, high current and low leakage devices make such measures extremely sensitive to the parasitic circuit layout parameters. In order to achieve reliable measurements, non-conventional measurement techniques have been investigated based on the use of current sensing MOSFETs, and applied in the development and implementation of new measuring circuits. [edited by author]
XI n.s.
Livres sur le sujet "Power transformers design"
M, Del Vecchio Robert, dir. Transformer design principles : With applications to core-form power transformers. 2e éd. Boca Raton : Taylor & Francis, 2010.
Trouver le texte intégralM, Del Vecchio Robert, dir. Transformer design principles : With applications to core-form power transformers. New York : Taylor & Francis, 2002.
Trouver le texte intégralTransformers : Analysis, design, and measurement. Boca Raton, FL : Taylor & Francis, 2012.
Trouver le texte intégralHurley, William G. Transformers and inductors for power electronics : Theory, design and applications. Chichester, West Sussex : Wiley-Blackwell, 2013.
Trouver le texte intégralGönen, Turan. Electric power transmission system engineering : Analysis and design. New York : John Wiley & Sons, 1988.
Trouver le texte intégralGönen, Turan. Electric power transmission system engineering : Analysis and design. New York : J. Wiley, 1988.
Trouver le texte intégralIEEE Power Engineering Society. Transformers Committee. West Coast Subcommittee. et IEEE Standards Board, dir. IEEE seismic guide for power transformers and reactors. New York, NY : Institute of Electrical and Electronics Engineers, 1990.
Trouver le texte intégralGeorgilakis, Pavlos S. Spotlight on modern transformer design. Dordrecht : Springer, 2009.
Trouver le texte intégralIndian Institute of Technology (Kharagpur, India). Dept. of Electrical Engineering., dir. Location of partial discharge in power transformers by computation and measurement of capacitively transmitted voltage surges. New Delhi : Research Scheme on Power, Central Board of Irrigation and Power, 1995.
Trouver le texte intégralBlalock, Thomas J. Transformers at Pittsfield : A history of the General Electric large power transformer plant at Pittsfield, Massachusetts. Baltimore, MD : Gateway Press, 1998.
Trouver le texte intégralChapitres de livres sur le sujet "Power transformers design"
Zolfaghari, Alireza. « Stacked Inductors and Transformers ». Dans Low-Power CMOS Design for Wireless Transceivers, 17–40. Boston, MA : Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-3787-5_3.
Texte intégralDi Barba, P., M. E. Mognaschi, A. Savini et J. Turowski. « Cost-Effective Optimal Design of Screens in Power Transformers ». Dans Computer Engineering in Applied Electromagnetism, 41–45. Dordrecht : Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3169-6_7.
Texte intégralAl-Abadi, Ali, Ahmed Gamil et Franz Schatzl. « Optimization of Magnetic Shunts Towards Efficient and Economical Power Transformers Design ». Dans Lecture Notes in Electrical Engineering, 15–26. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31676-1_2.
Texte intégralErickson, Robert W., et Dragan Maksimović. « Transformer Design ». Dans Fundamentals of Power Electronics, 565–86. Boston, MA : Springer US, 2001. http://dx.doi.org/10.1007/0-306-48048-4_15.
Texte intégralErickson, Robert W., et Dragan Maksimović. « Transformer Design ». Dans Fundamentals of Power Electronics, 485–505. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43881-4_12.
Texte intégralErickson, Robert W. « Transformer Design ». Dans Fundamentals of Power Electronics, 512–38. Boston, MA : Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-7646-4_14.
Texte intégralZhu, Fang, et Baitun Yang. « Testing ». Dans Power Transformer Design Practices, 237–62. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, LLC, 2021. : CRC Press, 2021. http://dx.doi.org/10.1201/9780367816865-12.
Texte intégralZhu, Fang, et Baitun Yang. « Core ». Dans Power Transformer Design Practices, 21–43. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, LLC, 2021. : CRC Press, 2021. http://dx.doi.org/10.1201/9780367816865-3.
Texte intégralZhu, Fang, et Baitun Yang. « Load Loss ». Dans Power Transformer Design Practices, 127–44. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, LLC, 2021. : CRC Press, 2021. http://dx.doi.org/10.1201/9780367816865-7.
Texte intégralZhu, Fang, et Baitun Yang. « Insulation ». Dans Power Transformer Design Practices, 61–102. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, LLC, 2021. : CRC Press, 2021. http://dx.doi.org/10.1201/9780367816865-5.
Texte intégralActes de conférences sur le sujet "Power transformers design"
White, A. « Design of high voltage power transformers ». Dans 15th IET International School on High Voltage Engineering and Testing 2008. IEE, 2008. http://dx.doi.org/10.1049/ic:20080537.
Texte intégralBeiranvand, Hamzeh, Esmaeel Rokrok, Behrooz Rezaeealam et Amit Kumar. « Optimal design of medium-frequency transformers for solid-state transformer applications ». Dans 2017 8th Power Electronics, Drive Systems & Technologies Conference (PEDSTC). IEEE, 2017. http://dx.doi.org/10.1109/pedstc.2017.7910407.
Texte intégralAl-Abadi, A., A. Gamil et F. Schatzl. « Optimum Shielding Design for Losses and Noise Reduction in Power Transformers ». Dans 2019 6th International Advanced Research Workshop on Transformers (ARWtr). IEEE, 2019. http://dx.doi.org/10.23919/arwtr.2019.8930176.
Texte intégralShotts, Zac, Frank Rose, Steve Merryman et Ray Kirby. « Design Methodology for Dual Resonance Pulse Transformers ». Dans 2005 IEEE Pulsed Power Conference. IEEE, 2005. http://dx.doi.org/10.1109/ppc.2005.300516.
Texte intégralPaffrath, Meinhard, Yayun Zhou, Yiqing Guo et Harald ErtL. « Interactive winding geometry design of power transformers ». Dans 2018 4th International Conference on Optimization and Applications (ICOA). IEEE, 2018. http://dx.doi.org/10.1109/icoa.2018.8370494.
Texte intégralDi Capua, Giulia, et Nicola Femia. « Geometric form Factors-Based Power Transformers Design ». Dans 2018 15th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD). IEEE, 2018. http://dx.doi.org/10.1109/smacd.2018.8434889.
Texte intégralDey, Anshuman, Navid Shafiei, Rahul Khandekar, Wilson Eberle et Ri Li. « Improving Thermal Performance of High Frequency Power Transformers using Bobbinless Transformer Design ». Dans 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, 2020. http://dx.doi.org/10.1109/itherm45881.2020.9190320.
Texte intégralPrabhu, D. R., et D. L. Taylor. « Synthesis of Systems From Specifications Containing Orientations and Positions Associated With Flow Variables ». Dans ASME 1989 Design Technical Conferences. American Society of Mechanical Engineers, 1989. http://dx.doi.org/10.1115/detc1989-0047.
Texte intégralYeh, Chih-Shen, et Jih-Sheng Lai. « A Study on High Frequency Transformer Design in Medium-voltage Solid-state Transformers ». Dans 2018 Asian Conference on Energy, Power and Transportation Electrification (ACEPT). IEEE, 2018. http://dx.doi.org/10.1109/acept.2018.8610778.
Texte intégralGradzki, P. M., M. M. Jovanovic et F. C. Lee. « Computer-aided design for high-frequency power transformers ». Dans Applied Power Electronics Conference and Exposition. IEEE, 1990. http://dx.doi.org/10.1109/apec.1990.66427.
Texte intégralRapports d'organisations sur le sujet "Power transformers design"
Makowski, Nathanael. Proposal and Analysis of Demagnetization Methods of High Voltage Power System Transformers and Design of an Instrument to Automate the Demagnetization Process. Portland State University Library, janvier 2000. http://dx.doi.org/10.15760/etd.431.
Texte intégralBroverman, A. Y. Optimum transformer design for a pulsed power system. Office of Scientific and Technical Information (OSTI), novembre 1987. http://dx.doi.org/10.2172/5508881.
Texte intégralRodríguez Burgos, Ojel L. Necessity Has Triumphed over Desire. Puerto Rico Institute for Economic Liberty, septembre 2022. http://dx.doi.org/10.53095/13582004.
Texte intégralMazarakis, Michael Gerrassimos, et Kenneth William Struve. Conceptual design for a linear-transformer driver (LTD)-based refurbishment and upgrade of the Saturn accelerator pulse-power system. Office of Scientific and Technical Information (OSTI), septembre 2006. http://dx.doi.org/10.2172/894744.
Texte intégral