Littérature scientifique sur le sujet « POWER SYSTEM DISTRIBUTION »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « POWER SYSTEM DISTRIBUTION ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "POWER SYSTEM DISTRIBUTION"

1

Anazia, Emmanuel A., Onyedikachi N. Samuel` et Obroh O. Rebecca. « Estimating Nigerian Power System Post Contingency Line Flows Using Power Distribution Factors ». International Journal of Trend in Scientific Research and Development Volume-2, Issue-6 (31 octobre 2018) : 1287–305. http://dx.doi.org/10.31142/ijtsrd18854.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Moridian, Barzin, Daryl Bennett, Nina Mahmoudian, Wayne W. Weaver et Rush Robinnett. « Autonomous Power Distribution System ». IFAC Proceedings Volumes 47, no 3 (2014) : 7–12. http://dx.doi.org/10.3182/20140824-6-za-1003.01732.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Krishna, R. Vijaya, K. Sarath Kumar et M. Jeevana Rao. « Minimization of Power Losses In Radial Distribution System- A Review ». International Journal of Trend in Scientific Research and Development Volume-2, Issue-1 (31 décembre 2017) : 9–15. http://dx.doi.org/10.31142/ijtsrd5834.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Joshi, Praveen Kumar, Dr R. P. Singh et Chava Sunil Kumar. « Hybrid Active Filter for Enhancing Power Quality in Distribution System ». Journal of Advanced Research in Dynamical and Control Systems 11, no 10 (31 octobre 2019) : 82–90. http://dx.doi.org/10.5373/jardcs/v11i10/20193009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Olajuyin, E. A., et Olubakinde Eniola. « MICROGRID IN POWER DISTRIBUTION SYSTEM ». International Journal of Research -GRANTHAALAYAH 7, no 8 (23 juillet 2020) : 387–93. http://dx.doi.org/10.29121/granthaalayah.v7.i8.2019.687.

Texte intégral
Résumé :
Power is a very important instrument to the development of economy of a nation and it must be stable and available and to meet the demand of the consumers at all times. The quest for power supply has introduced a new technology called microgrid. Micro grids are regarded as small power systems that confine electric energy generating facilities, from both renewable energy sources and conventional synchronous. Generators, and customer loads with respect to produced electric energy. It can be connected to grid or operate in islanding mode. On the other hand, the grid’s dynamics and its stability rely on the amount of stored energy in the micro grid. In a conventional power system with a large number of synchronous generators as the main sources of energy, the mechanical energy in the generators’ rotors, in the form of kinetic energy, serves as the stored energy and feeds the grids in the event of any drastic load changes or if disturbances occur. Microgrid is an alternative idea to support the grid, it can be applied in a street, estates, community or a locality (towns and villages), organizations and establishments. Load forecasting can be further extended to Organizations, Local Government, State and country to determine the energy consumption.
Styles APA, Harvard, Vancouver, ISO, etc.
6

TUNIO, IRFAN A., A. M. SOOMRO, A. H. MEMON et A. S. LARIK. « Distribution System Power Loss Segregation ». SINDH UNIVERSITY RESEARCH JOURNAL -SCIENCE SERIES 50, no 04 (18 décembre 2018) : 547–50. http://dx.doi.org/10.26692/sujo/2018.09.0088.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

KONISHI, Hiroo. « DC Power Supply Distribution System ». Journal of The Institute of Electrical Engineers of Japan 125, no 3 (2005) : 163–64. http://dx.doi.org/10.1541/ieejjournal.125.163.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Dukes, E. C., R. Ehrlich, S. Goadhouse, L. Mualem, A. Norman et R. Tesarek. « The NOvA power distribution system ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 902 (septembre 2018) : 123–37. http://dx.doi.org/10.1016/j.nima.2018.06.021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Qiu, Wei, Kaiqi Sun et Huangqing Xiao. « Advances in Urban Power Distribution System ». Energies 15, no 19 (5 octobre 2022) : 7329. http://dx.doi.org/10.3390/en15197329.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Jia, Yang, Qiang Fu, Du Shi Ma et Ming Yang Zhu. « Power Distribution Automation System in Green Power Engineering ». Applied Mechanics and Materials 340 (juillet 2013) : 1034–38. http://dx.doi.org/10.4028/www.scientific.net/amm.340.1034.

Texte intégral
Résumé :
Not only distribution automation system but the principle of the existing means of communication are studied systematically and distribution automation communication system model based on IP network is provided. Backbone network is set between master station in the control center and substation sub-station. Communication between electronic station and terminal connections rely on the branch network. Simulation experiment shows the test of data traffic and network delay of IP communications network. In the actual network environment the data refresh meet the application requirements. So the program on the improvement of distribution automation communication in this article is feasible.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "POWER SYSTEM DISTRIBUTION"

1

Fletcher, Robert Henry. « Optimal distribution system horizon planning / ». Thesis, Connect to this title online ; UW restricted, 2007. http://hdl.handle.net/1773/6018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Yu, Xuebei. « Distribution system reliability enhancement ». Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41091.

Texte intégral
Résumé :
Practically all everyday life tasks from economic transactions to entertainment depend on the availability of electricity. Some customers have come to expect a higher level of power quality and availability from their electric utility. Federal and state standards are now mandated for power service quality and utilities may be penalized if the number of interruptions exceeds the mandated standards. In order to meet the requirement for safety, reliability and quality of supply in distribution system, adaptive relaying and optimal network reconfiguration are proposed. By optimizing the system to be better prepared to handle a fault, the end result will be that in the event of a fault, the minimum number of customers will be affected. Thus reliability will increase. The main function of power system protection is to detect and remove the faulted parts as fast and as selectively as possible. The problem of coordinating protective relays in electric power systems consists of selecting suitable settings such that their fundamental protective function is met under the requirements of sensitivity, selectivity, reliability, and speed. In the proposed adaptive relaying approach, weather data will be incorporated as follows. By using real-time weather information, the potential area that might be affected by the severe weather will be determined. An algorithm is proposed for adaptive optimal relay setting (relays will optimally react to a potential fault). Different types of relays (and relay functions) and fuses will be considered in this optimization problem as well as their coordination with others. The proposed optimization method is based on mixed integer programming that will provide the optimal relay settings including pickup current, time dial setting, and different relay functions and so on. The main function of optimal network reconfiguration is to maximize the power supply using existing breakers and switches in the system. The ability to quickly and flexibly reconfigure the power system of an interconnected network of feeders is a key component of Smart Grid. New technologies are being injected into the distribution systems such as advanced metering, distribution automation, distribution generation and distributed storage. With these new technologies, the optimal network reconfiguration becomes more complicated. The proposed algorithms will be implemented and demonstrated on a realistic test system. The end result will be improved reliability. The improvements will be quantified with reliability indexes such as SAIDI.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Rivas-Davalos, Francisco. « A genetic algorithm for power distribution system planning ». Thesis, Brunel University, 2004. http://bura.brunel.ac.uk/handle/2438/7891.

Texte intégral
Résumé :
The planning of distribution systems consists in determining the optimum site and size of new substations and feeders in order to satisfy the future power demand with minimum investment and operational costs and an acceptable level of reliability. This problem is a combinatorial, non-linear and constrained optimization problem. Several solution methods based on genetic algorithms have been reported in the literature; however, some of these methods have been reported with applications to small systems while others have long solution time. In addition, the vast majority of the developed methods handle planning problems simplifying them as single-objective problems but, there are some planning aspects that can not be combined into a single scalar objective; therefore, they require to be treated separately. The cause of these shortcomings is the poor representation of the potential solutions and their genetic operators This thesis presents the design of a genetic algorithm using a direct representation technique and specialized genetic operators for power distribution system expansion planning problems. These operators effectively preserve and exploit critical configurations that contribute to the optimization of the objective function. The constraints of the problems are efficiently handle with new strategies. The genetic algorithm was tested on several theoretical and real large-scale power distribution systems. Problems of network reconfiguration for loss reduction were also included in order to show the potential of the algorithm to resolve operational problems. Both single-objective and multi-objective formulations were considered in the tests. The results were compared with results from other heuristic methods such as ant colony system algorithms, evolutionary programming, differential evolution and other genetic algorithms reported in the literature. From these comparisons it was concluded that the proposed genetic algorithm is suitable to resolve problems of largescale power distribution system planning. Moreover, the algorithm proved to be effective, efficient and robust with better performance than other previous methods.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Whitcomb, Clifford Alan. « Composite system analysis of advanced shipboard electrical power distribution systems ». Thesis, Cambridge, Massachusetts : Massachusetts Institute of Technology, 1992. http://handle.dtic.mil/100.2/ADA254851.

Texte intégral
Résumé :
Thesis (Nav. E.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1992 and Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1992.
Thesis Advisor: Kirtley, James L., Jr. "May 1992." Description based on title screen as viewed on March 30, 2009. Includes bibliographical references (p. 73-74). Also available in print.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ibrahim, Sarmad Khaleel. « DISTRIBUTION SYSTEM OPTIMIZATION WITH INTEGRATED DISTRIBUTED GENERATION ». UKnowledge, 2018. https://uknowledge.uky.edu/ece_etds/116.

Texte intégral
Résumé :
In this dissertation, several volt-var optimization methods have been proposed to improve the expected performance of the distribution system using distributed renewable energy sources and conventional volt-var control equipment: photovoltaic inverter reactive power control for chance-constrained distribution system performance optimisation, integrated distribution system optimization using a chance-constrained formulation, integrated control of distribution system equipment and distributed generation inverters, and coordination of PV inverters and voltage regulators considering generation correlation and voltage quality constraints for loss minimization. Distributed generation sources (DGs) have important benefits, including the use of renewable resources, increased customer participation, and decreased losses. However, as the penetration level of DGs increases, the technical challenges of integrating these resources into the power system increase as well. One such challenge is the rapid variation of voltages along distribution feeders in response to DG output fluctuations, and the traditional volt-var control equipment and inverter-based DG can be used to address this challenge. These methods aim to achieve an optimal expected performance with respect to the figure of merit of interest to the distribution system operator while maintaining appropriate system voltage magnitudes and considering the uncertainty of DG power injections. The first method is used to optimize only the reactive power output of DGs to improve system performance (e.g., operating profit) and compensate for variations in active power injection while maintaining appropriate system voltage magnitudes and considering the uncertainty of DG power injections over the interval of interest. The second method proposes an integrated volt-var control based on a control action ahead of time to find the optimal voltage regulation tap settings and inverter reactive control parameters to improve the expected system performance (e.g., operating profit) while keeping the voltages across the system within specified ranges and considering the uncertainty of DG power injections over the interval of interest. In the third method, an integrated control strategy is formulated for the coordinated control of both distribution system equipment and inverter-based DG. This control strategy combines the use of inverter reactive power capability with the operation of voltage regulators to improve the expected value of the desired figure of merit (e.g., system losses) while maintaining appropriate system voltage magnitudes. The fourth method proposes a coordinated control strategy of voltage and reactive power control equipment to improve the expected system performance (e.g., system losses and voltage profiles) while considering the spatial correlation among the DGs and keeping voltage magnitudes within permissible limits, by formulating chance constraints on the voltage magnitude and considering the uncertainty of PV power injections over the interval of interest. The proposed methods require infrequent communication with the distribution system operator and base their decisions on short-term forecasts (i.e., the first and second methods) and long-term forecasts (i.e., the third and fourth methods). The proposed methods achieve the best set of control actions for all voltage and reactive power control equipment to improve the expected value of the figure of merit proposed in this dissertation without violating any of the operating constraints. The proposed methods are validated using the IEEE 123-node radial distribution test feeder.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Javanshir, Marjan. « DC distribution system for data center ». Thesis, Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/hkuto/record/B39344952.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Yu, Qiuli. « Multi-agent systems for reconfiguration of shipboard integrated power system including AC-DC zonal distribution system ». Diss., Mississippi State : Mississippi State University, 2008. http://library.msstate.edu/etd/show.asp?etd=etd-11072008-122943.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Mahajan, Nikhil R. « System Protection for Power Electronic Building Block Based DC Distribution Systems ». NCSU, 2004. http://www.lib.ncsu.edu/theses/available/etd-12052004-233822/.

Texte intégral
Résumé :
The purpose of this research has been to develop an agent based protection and reconfiguration scheme for power electronic building block based (PEBB) DC distribution systems. One of the foremost applications would be in the new zonal DC distribution on naval ships. The research involves the design of an agent based protection scheme which uses the PEBBs for current limiting and circuit breaking purposes. Considerations are given to reduce the system downtime under fault conditions, allow proper coordination and provide backup protection. The research also involves the design of a reconfiguration management scheme based on collaborative agents. The collaboration ensures that the reconfiguration is achieved at a global level, enhancing the system survivability under the conditions of multiple faults and damages. The coordination ensures that only the faulted part of the system is isolated and the reconfiguration makes sure that the power to the healthy part of the system is supplied continuously. The reconfiguration management also performs load shedding if the generation does not meet the load demand of the reconfigured system due to a fault or damage in the generator.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Janovsky, Pavel. « Large-scale coalition formation : application in power distribution systems ». Diss., Kansas State University, 2017. http://hdl.handle.net/2097/35328.

Texte intégral
Résumé :
Doctor of Philosophy
Department of Computing and Information Sciences
Scott A. DeLoach
Coalition formation is a key cooperative behavior of a system of multiple autonomous agents. When the capabilities of individual agents are not su fficient for the improvement of well-being of the individual agents or of the entire system, the agents can bene t by joining forces together in coalitions. Coalition formation is a technique for finding coalitions that are best fi tted to achieve individual or group goals. This is a computationally expensive task because often all combinations of agents have to be considered in order to find the best assignments of agents to coalitions. Previous research has therefore focused mainly on small-scale or otherwise restricted systems. In this thesis we study coalition formation in large-scale multi-agent systems. We propose an approach for coalition formation based on multi-agent simulation. This approach allows us to find coalitions in systems with thousands of agents. It also lets us modify behaviors of individual agents in order to better match a specific coalition formation application. Finally, our approach can consider both social welfare of the multi-agent system and well-being of individual self-interested agents. Power distribution systems are used to deliver electric energy from the transmission system to households. Because of the increased availability of distributed generation using renewable resources, push towards higher use of renewable energy, and increasing use of electric vehicles, the power distribution systems are undergoing signi ficant changes towards active consumers who participate in both supply and demand sides of the electricity market and the underlying power grid. In this thesis we address the ongoing change in power distribution systems by studying how the use of renewable energy can be increased with the help of coalition formation. We propose an approach that lets renewable generators, which face uncertainty in generation prediction, to form coalitions with energy stores, which on the other hand are always able to deliver the committed power. These coalitions help decrease the uncertainty of the power generation of renewable generators, consequently allowing the generators to increase their use of renewable energy while at the same time increasing their pro fits. Energy stores also bene t from participating in coalitions with renewable generators, because they receive payments from the generators for the availability of their power at speci fic time slots. We first study this problem assuming no physical constraints of the underlying power grid. Then we analyze how coalition formation of renewable generators and energy stores in a power grid with physical constraints impacts the state of the grid, and we propose agent behavior that leads to increase in use of renewable energy as well as maintains stability of the grid.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Cartier, J. C. « Power quality analysis in a CC-130 Hercules aircraft power distribution system ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0001/MQ44836.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "POWER SYSTEM DISTRIBUTION"

1

Gonen, Turan. Electric power distribution system engineering. New York : McGraw-Hill, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Electric power distribution system engineering. New York : McGraw-Hill, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Gönen, Turan. Electric power distribution system engineering. 2e éd. Boca Raton : Taylor & Francis, 2007.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Engineers, Institution of Electrical, dir. Power system protection. 2e éd. London : Institution of Electrical Engineers, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Association, Electricity Training, et Institution of Electrical Engineers, dir. Power system protection. 2e éd. London : Institution of Electrical Engineers, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

D, Stevenson William, et Stevenson William D, dir. Power system analysis. New York : McGraw-Hill, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Distribution system modeling and analysis. 2e éd. Boca Raton : CRC Press, 2007.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Distribution system modeling and analysis. Boca Raton : CRC Press, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Association, Electricity Training, et Institution of Electrical Engineers, dir. Power system protection. London : Institution of Electrical Engineers, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Chowdhury, Ali A., et Ali A. Chowdhury. Power distribution system reliability : Practical methods and applications. Hoboken : John Wiley & Sons, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "POWER SYSTEM DISTRIBUTION"

1

Pavlatos, C., et V. Vita. « Linguistic Representation of Power System Signals ». Dans Electricity Distribution, 285–95. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49434-9_12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Mariano, S. J. P. S., J. A. N. Pombo, M. R. A. Calado et J. A. M. Felippe de Souza. « Damping of Power System Oscillations with Optimal Regulator ». Dans Electricity Distribution, 173–98. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49434-9_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ghosh, Arindam, et Gerard Ledwich. « Series Compensation of Power Distribution System ». Dans Power Quality Enhancement Using Custom Power Devices, 333–77. Boston, MA : Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-1153-3_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Mueller, O. M., et E. K. Mueller. « Cryogenic Power / Energy Distribution System ». Dans Advances in Cryogenic Engineering, 1755–62. Boston, MA : Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4215-5_102.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Billinton, Roy, et Ronald N. Allan. « Distribution System Adequacy Evaluation ». Dans Reliability Assessment of Large Electric Power Systems, 147–82. Boston, MA : Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1689-3_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Čepin, Marko. « Distribution and Transmission System Reliability Measures ». Dans Assessment of Power System Reliability, 215–26. London : Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-688-7_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Pal, Kirti, Laxmi Srivastava et Manjaree Pandit. « Levenberg-Marquardt Algorithm Based ANN for Nodal Price Prediction in Restructured Power System ». Dans Electricity Distribution, 297–318. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49434-9_13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Arasteh, H., S. Bahramara, Z. Kaheh, S. M. Hashemi, V. Vahidinasab, P. Siano et M. S. Sepasian. « A System-of-Systems Planning Platform for Enabling Flexibility Provision at Distribution Level ». Dans Flexibility in Electric Power Distribution Networks, 41–65. Boca Raton : CRC Press, 2021. http://dx.doi.org/10.1201/9781003122326-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Yu, Lei, Trillion Q. Zheng, Deying Yi, Zhiyong Li et Cheng’an Wan. « The Space Distributed Power System : Power Generation, Power Distribution and Power Conversion ». Dans Lecture Notes in Electrical Engineering, 427–38. Cham : Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01273-5_47.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Jin, Xiaolong, Saeed Teimourzadeh, Osman Bulent Tor et Qiuwei Wu. « Three-Layer Aggregator Solutions to Facilitate Distribution System Flexibility ». Dans Flexibility in Electric Power Distribution Networks, 175–206. Boca Raton : CRC Press, 2021. http://dx.doi.org/10.1201/9781003122326-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "POWER SYSTEM DISTRIBUTION"

1

Awasthi, Himanshu, et Manbir Kaur. « Contingency Assessment of Radial Distribution System ». Dans 2018 IEEE 8th Power India International Conference (PIICON). IEEE, 2018. http://dx.doi.org/10.1109/poweri.2018.8704347.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Wang, Jiaren, et Ning Ding. « Power System Risk Assessment System considering Regional Power Market Transaction ». Dans 2022 China International Conference on Electricity Distribution (CICED). IEEE, 2022. http://dx.doi.org/10.1109/ciced56215.2022.9929237.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kaipia, T., P. Peltoniemi, J. Lassila, P. Salonen et J. Partanen. « Power electronics in SmartGrids - impact on power system reliability ». Dans CIRED Seminar 2008 : SmartGrids for Distribution. IEE, 2008. http://dx.doi.org/10.1049/ic:20080488.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bernardes, R., et F. Ayello. « PQMS - power quality monitoring system : improve power systems through IEDS ». Dans 20th International Conference and Exhibition on Electricity Distribution (CIRED 2009). IET, 2009. http://dx.doi.org/10.1049/cp.2009.1120.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Alonso, F. R., D. Q. Oliveira, A. C. Z. De Souza et B. I. L. Lopes. « Distribution system reconfiguration using artificial immune systems ». Dans 2014 North American Power Symposium (NAPS). IEEE, 2014. http://dx.doi.org/10.1109/naps.2014.6965397.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Malee, Rahul Kumar, Prerna Jain, Pranda Prashant Gupta et Sharma Suman Dharampal. « Distribution system expansion planning incorporating distributed generation ». Dans 2016 IEEE 7th Power India International Conference (PIICON). IEEE, 2016. http://dx.doi.org/10.1109/poweri.2016.8077273.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

« FA 4 - power distribution system ». Dans 2004 Large Engineering Systems Conference on Power Engineering. IEEE, 2004. http://dx.doi.org/10.1109/lescpe.2004.1356279.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Newman, T. « System automation in power distribution ». Dans IEE North Eastern Centre Power Section Symposium on the Reliability, Security and Power Quality of Distribution Systems. IEE, 1995. http://dx.doi.org/10.1049/ic:19950457.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Potter, Fred. « Electronic Power Distribution System Topologies ». Dans Aerospace Technology Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States : SAE International, 2009. http://dx.doi.org/10.4271/2009-01-3122.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lorito, F. « Advanced decentralised control system for MV/LV distribution system ». Dans 14th International Conference and Exhibition on Electricity Distribution (CIRED 1997 - Distributing Power for the Millennium). IEE, 1997. http://dx.doi.org/10.1049/cp:19970561.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "POWER SYSTEM DISTRIBUTION"

1

Gurdal, Zafer, Scott Ragon et Douglas Lindner. Global/Local Design Optimization of a Power Distribution System. Fort Belvoir, VA : Defense Technical Information Center, septembre 2000. http://dx.doi.org/10.21236/ada387344.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Gurdal, Zafer, Scott Ragon et Douglas Lindner. Global/Local Design Optimization of A Power Distribution System. Fort Belvoir, VA : Defense Technical Information Center, mars 2000. http://dx.doi.org/10.21236/ada389411.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Yue, Yunfeng. Making Urban Power Distribution Systems Climate-Resilient. Asian Development Bank, mai 2022. http://dx.doi.org/10.22617/wps220221.

Texte intégral
Résumé :
This working paper is designed to help ADB’s developing member countries build climate-resilient energy systems that can better support fast-growing cities in Asia and the Pacific. It shows how the COVID-19 pandemic underscored the urgent need for improved power networks and outlines why social inclusion should be central to energy system planning. Using actual examples from countries including India and Bangladesh, the study analyzes the risks and reliability of different energy solutions. Proposing a risk-based approach to energy system planning, it also considers the role that renewables and microgrids can play in building the climate-resilient infrastructure needed to support sustainable urban growth.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Clark, D. A. Test report light duty utility arm power distribution system (PDS). Office of Scientific and Technical Information (OSTI), mars 1996. http://dx.doi.org/10.2172/483523.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Tunc ALdemir, Don Miller et Peng Wang. Development of An On-Line, Core Power Distribution Monitoring System. Office of Scientific and Technical Information (OSTI), octobre 2007. http://dx.doi.org/10.2172/920987.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Filarowski, C. A. An automated system for studying the power distribution of electron beams. Office of Scientific and Technical Information (OSTI), décembre 1994. http://dx.doi.org/10.2172/96635.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Hummon, Marissa. Transformation of the Distribution System : Distributed and Resilient Optimal Power Flow. Office of Scientific and Technical Information (OSTI), mai 2022. http://dx.doi.org/10.2172/1870107.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Nantista, Christopher. Overmoded Rectangular Waveguide Components for a Multi-Moded RF Power Distribution System. Office of Scientific and Technical Information (OSTI), juillet 2000. http://dx.doi.org/10.2172/763818.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Reno, Matthew, Miguel Jimenez Aparicio, Felipe Wilches-Bernal, Javier Hernandez Alvidrez, Armando Montoya, Pedro Barba, Jack Flicker et al. Signal-Based Fast Tripping Protection Schemes for Electric Power Distribution System Resilience. Office of Scientific and Technical Information (OSTI), septembre 2022. http://dx.doi.org/10.2172/1890046.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Anderson, Alexander, Subramanian Vadari, Jonathan Barr, Shiva Poudel, Anamika Dubey, Thomas McDermott et Robin Podmore. Introducing the 9500 Node Distribution Test System to Support Advanced Power Applications. Office of Scientific and Technical Information (OSTI), septembre 2022. http://dx.doi.org/10.2172/1922914.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie