Littérature scientifique sur le sujet « Potassic and Ultrapotassic rocks »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Potassic and Ultrapotassic rocks ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Potassic and Ultrapotassic rocks"

1

Che, Dong, Mianping Zheng, Yuanyi Zhao, Zhaozhi Zhang, Chuanyong Ye, Enyuan Xing, Xuefei Zhang et Mingming Li. « High Degree of Differentiation and Enrichment of Li, Rb and Cs in Potassic-Ultrapotassic Volcanic Rocks : An Example from the Lhasa Block, Tibet ». Minerals 13, no 3 (28 février 2023) : 342. http://dx.doi.org/10.3390/min13030342.

Texte intégral
Résumé :
Post-collisional potassic-ultrapotassic volcanic rocks are widely developed in the Lhasa block, Qinghai-Tibet region. In this paper, it was observed for the first time that dilute alkali elements–Li, Rb, and Cs–exhibit supernormal enrichment in the research data of numerous potassic-ultrapotassic volcanic rocks in the Lhasa block. At the same time, there are few studies on the genesis of enrichment. Currently, 568 sets of published volcanic rock data and 8 sets of measured data in the Lhasa block are sorted in detail, and the genesis of dilute alkali element enrichment is explained by means of geochemical research methods. It is believed that the high degree of magmatic fractionation of potassic-ultrapotassic volcanic rocks in the Lhasa block is the main reason for the abnormal enrichment of dilute alkali elements such as Li, Rb, and Cs. The abnormal enrichment area is mainly located in the central and western parts of the Lhasa block with an age range of 25–13 Ma. The discrimination range of Zr/Hf and Nb/Ta with a high degree of differentiation of potassic-ultrapotassic volcanic rocks in the Lhasa block is divided by analogy with the research results of highly fractionated granites, which provides a reference for the study of the supernormal enrichment of dilute alkali elements in potassic-ultrapotassic volcanic rocks in this area.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Förster, Michael W., Stephan Buhre, Bo Xu, Dejan Prelević, Regina Mertz-Kraus et Stephen F. Foley. « Two-Stage Origin of K-Enrichment in Ultrapotassic Magmatism Simulated by Melting of Experimentally Metasomatized Mantle ». Minerals 10, no 1 (31 décembre 2019) : 41. http://dx.doi.org/10.3390/min10010041.

Texte intégral
Résumé :
The generation of strongly potassic melts in the mantle requires the presence of phlogopite in the melting assemblage, while isotopic and trace element analyses of ultrapotassic rocks frequently indicate the involvement of subducted crustal lithologies in the source. However, phlogopite-free experiments that focus on melting of sedimentary rocks and subsequent hybridization with mantle rocks at pressures of 1–3 GPa have not successfully produced melts with K2O >5 wt%–6 wt%, while ultrapotassic igneous rocks reach up to 12 wt% K2O. Accordingly, a two-stage process that enriches K2O and increases K/Na in intermediary assemblages in the source prior to ultrapotassic magmatism seems likely. Here, we simulate this two-stage formation of ultrapotassic magmas using an experimental approach that involves re-melting of parts of an experimental product in a second experiment. In the first stage, reaction experiments containing layered sediment and dunite produced a modally metasomatized reaction zone at the border of a depleted peridotite. For the second-stage experiment, the metasomatized dunite was separated from the residue of the sedimentary rock and transferred to a smaller capsule, and melts were produced with 8 wt%–8.5 wt% K2O and K/Na of 6–7. This is the first time that extremely K-enriched ultrapotassic melts have been generated experimentally from sediments at low pressure applicable to a post-collisional setting.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Goodfellow, Wayne D., Mike P. Cecile et Matthew I. Leybourne. « Geochemistry, petrogenesis, and tectonic setting of lower Paleozoic alkalic and potassic volcanic rocks, Northern Canadian Cordilleran Miogeocline ». Canadian Journal of Earth Sciences 32, no 8 (1 août 1995) : 1236–54. http://dx.doi.org/10.1139/e95-101.

Texte intégral
Résumé :
The Northern Canadian Cordilleran Miogeocline developed intermittently during the early Paleozoic and hosts alkalic and ultrapotassic volcanic rocks that are spatially restricted in thin beds and lenses and isolated volcanic piles. On the basis of geochemistry and geographic location, these volcanic rocks are subdivided into five main groups. Group I rocks (Porter Puddle and Macmillan rocks) are potassic basanites characterized by high Nb, Ce, and Nb/Y and low Zr/Nb. They are chemically similar to the Mountain Diatreme, indicating a genetic link. Group II rocks (Porter Puddle, Niddery, and Macmillan rocks) are also potassic but have lower abundances of Nb and Ce, higher Zr/Nb, and lower Nb/Y. Group III rocks (Vulcan and Itsi Lakes) are also potassic but are chemically variable, have lower contents of high field strength elements (HFSE) than the groups I and II rocks, and contain elevated Ba contents. Groups I–III are characterized by mica (biotite and phlogopite) phenocrysts, sanidine, augite, and Ba-feldspar, a mineral assemblage typical of ultrapotassic lavas. Group IV (Whale Mountain) alkali basalts are the least enriched in the large ion lithophile elements and have relatively low contents of HFSE compared with Groups I and II basalts. Groups I–III are consistent with partial melting of a previously metasomatized lithospheric mantle that was variably enriched in Ba, Nb, and Ce, whereas the group IV rocks are more typical of asthenospherically derived oceanic island basalt partial melts. The geochemistry of the volcanic rocks is consistent with paleotectonic models of the Selwyn Basin. The Selwyn Basin is a passive continental rift that underwent episodic extension and associated subsidence throughout the lower Paleozoic. Alkalic volcanism, and spatially and temporally associated Ba and base metal mineralization, is concentrated along rift-parallel normal faults, particularly where these faults are offset by transform faults.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Melluso, L., R. K. Srivastava, C. M. Petrone, V. Guarino et A. K. Sinha. « Mineralogy and magmatic affinity of the Jasra intrusive complex, Shillong Plateau, India ». Mineralogical Magazine 76, no 5 (octobre 2012) : 1099–117. http://dx.doi.org/10.1180/minmag.2012.076.5.03.

Texte intégral
Résumé :
AbstractThe rocks of the Jasra intrusive complex (Shillong Plateau, northeastern India) include phlogopite clinopyroxenites (with olivine or perovskite relics), alkali gabbros/monzodiorites, syenites and nepheline syenites. They have a potassic affinity (Na2O/K2O ∼1), and their mineralogy is dominated by clinopyroxene with which phlogopite, olivine, amphibole, feldspars, feldspathoids, oxides, orthopyroxenes, perovskite, titanite and other accessory phases are variably associated. The Jasra intrusive rocks are cumulates derived from at least two distinct magmatic liquids. The potassic affinity of the Jasra rocks differs from the nearby Sung Valley ijolitic-carbonatitic complex and from the ultrapotassic lamproitic rocks of the Damodar Valley, which are of approximately the same age. This suggests major variability in the mantle sources of small-volume alkaline volcanism in the Early Cretaceous of northeastern India.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Plá Cid, Jorge, Cristiani S. Campos, Lauro V. S. Nardi et Luana Florisbal. « Petrology of Gameleira potassic lamprophyres, São Francisco Craton ». Anais da Academia Brasileira de Ciências 84, no 2 (8 mai 2012) : 377–98. http://dx.doi.org/10.1590/s0001-37652012005000030.

Texte intégral
Résumé :
Gameleira lamprophyres are dykes and mafic microgranular enclaves associated with the shoshonitic Gameleira monzonite. This association belongs to the Paleoproterozoic alkaline magmatism from Serrinha nucleus, northeast Brazil. The liquidus paragenesis is diopside, pargasite, apatite and mica. Reverse zoning was identified in the groundmass alkali feldspar and was related to the undercooling of lamprophyric magma during the emplacement, with high growth rate of pargasite/edenite inducing disequilibrium between feldspars and liquid. Chemical data indicate that the lamprophyres are basic rocks (SiO2 < 48 wt%), with alkaline character (Na2O + K2O > 3 wt%) and potassic signature (K2O/Na2O ≈ 2). High contents of MgO and Cr are consistent with a signature of a primary liquid, and such concentrations, as well as Al, K, P, Ba, Ni- and light rare earth elements, are consistent with an olivine-free metasomatic mantle source enriched in amphibole, clinopyroxene and apatite. By contrast, the ultrapotassic lamprophyres from Morro do Afonso, contemporaneous alkaline ultrapotassic magmatism in Serrinha nucleus, were probably produced by melting of a clinopyroxene-phlogopite-apatite enriched-source. The identification of different mineral paragenesis in the source of potassic and ultrapotassic lamprophyres from Serrinha nucleus can contribute to the understanding of the mantle heterogeneities and tectonic evolution of this region.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Peccerillo, Angelo. « Potassic and ultrapotassic rocks : Compositional characteristics, petrogenesis, and geologic significance ». Episodes 15, no 4 (1 décembre 1992) : 243–51. http://dx.doi.org/10.18814/epiiugs/1992/v15i4/002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Palmer, M. R., E. Y. Ersoy, C. Akal, İ. Uysal, Ş. C. Genç, L. A. Banks, M. J. Cooper, J. A. Milton et K. D. Zhao. « A short, sharp pulse of potassium-rich volcanism during continental collision and subduction ». Geology 47, no 11 (23 septembre 2019) : 1079–82. http://dx.doi.org/10.1130/g45836.1.

Texte intégral
Résumé :
Abstract Potassic volcanic rocks are characteristic of collisional tectonic zones, with recycling of continental crust playing an important role in their generation. Potassium-rich partial melts and/or fluids derived from subducted continental material initiate and/or mix with mantle-derived melts and then erupt at the surface with varying degrees of interaction with the overlying lithosphere. The details of how continental material incorporates into mantle melts are, however, uncertain. In particular, the depths from which the potassium-rich fluids and/or melts are released from the continental material and then react with the mantle-derived melts remain a subject of debate. We have measured the boron isotope composition of volcanic rocks from Western Anatolia (Turkey) that erupted between 52 and 0.1 Ma, and span the lifetime of collisional events from initial arc-type eruptions to post-collisional volcanism. These data and other geochemical indices show that ultrapotassic volcanism was mainly confined to a narrow window between ca. 20 and 15 Ma, consistent with recycling of high-pressure phengite, with the timing of the potassic volcanism coincident with slab rollback and breakoff.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Carlier, G., J. P. Lorand, J. P. Liégeois, M. Fornari, P. Soler, V. Carlotto et J. Cárdenas. « Potassic-ultrapotassic mafic rocks delineate two lithospheric mantle blocks beneath the southern Peruvian Altiplano ». Geology 33, no 7 (2005) : 601. http://dx.doi.org/10.1130/g21643.1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Mitchell, Roger H. « Igneous Rock Associations 26. Lamproites, Exotic Potassic Alkaline Rocks : A Review of their Nomenclature, Characterization and Origins ». Geoscience Canada 47, no 3 (28 septembre 2020) : 119–42. http://dx.doi.org/10.12789/geocanj.2020.47.162.

Texte intégral
Résumé :
Lamproite is a rare ultrapotassic alkaline rock of petrological importance as it is considered to be derived from metasomatized lithospheric mantle, and of economic significance, being the host of major diamond deposits. A review of the nomenclature of lamproite results in the recommendation that members of the lamproite petrological clan be named using mineralogical-genetic classifications to distinguish them from other genetically unrelated potassic alkaline rocks, kimberlite, and diverse lamprophyres. The names “Group 2 kimberlite” and “orangeite” must be abandoned as these rock types are varieties of bona fide lamproite restricted to the Kaapvaal Craton. Lamproites exhibit extreme diversity in their mineralogy which ranges from olivine phlogopite lamproite, through phlogopite leucite lamproite and potassic titanian richterite-diopside lamproite, to leucite sanidine lamproite. Diamondiferous olivine lamproites are hybrid rocks extensively contaminated by mantle-derived xenocrystic olivine. Currently, lamproites are divided into cratonic (e.g. Leucite Hills, USA; Baifen, China) and orogenic (Mediterranean) varieties (e.g. Murcia-Almeria, Spain; Afyon, Turkey; Xungba, Tibet). Each cratonic and orogenic lamproite province differs significantly in tectonic setting and Sr–Nd–Pb–Hf isotopic compositions. Isotopic compositions indicate derivation from enriched mantle sources, having long-term low Sm/Nd and high Rb/Sr ratios, relative to bulk earth and depleted asthenospheric mantle. All lamproites are considered, on the basis of their geochemistry, to be derived from ancient mineralogically complex K–Ti–Ba–REE-rich veins, or metasomes, in the lithospheric mantle with, or without, subsequent contributions from recent asthenospheric or subducted components at the time of genesis. Lamproite primary magmas are considered to be relatively silica-rich (~50–60 wt.% SiO2), MgO-poor (3–12 wt.%), and ultrapotassic (~8–12 wt.% K2O) as exemplified by hyalo-phlogopite lamproites from the Leucite Hills (Wyoming) or Smoky Butte (Montana). Brief descriptions are given of the most important phreatomagmatic diamondiferous lamproite vents. The tectonic processes which lead to partial melting of metasomes, and/or initiation of magmatism, are described for examples of cratonic and orogenic lamproites. As each lamproite province differs with respect to its mineralogy, geochemical evolution, and tectonic setting there is no simple or common petrogenetic model for their genesis. Each province must be considered as the unique expression of the times and vagaries of ancient mantle metasomatism, coupled with diverse and complex partial melting processes, together with mixing of younger asthenospheric and lithospheric material, and, in the case of many orogenic lamproites, with Paleogene to Recent subducted material.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Cellai, Daniela, Sandro Conticelli et Silvio Menchetti. « Crystal-chemistry of clinopyroxenes from potassic and ultrapotassic rocks in central Italy : implications on their genesis ». Contributions to Mineralogy and Petrology 116, no 3 (avril 1994) : 301–15. http://dx.doi.org/10.1007/bf00306499.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Potassic and Ultrapotassic rocks"

1

Condamine, Pierre. « Rôle du phlogopite sur la genèse de magmas riches en potassium : approche expérimentale ». Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22596/document.

Texte intégral
Résumé :
Des liquides riches en K2O ( K2O > 2 pds. % ; K2O/Na2O > 1) sont observés dans la majeure partie des contextes géodynamiques sur Terre. Ces liquides sont principalement caractérisés par leurs teneurs en K2O variant entre 3 et 13 pds. % et des rapports K2O/Na2O de 1 – 40. Les compositions chimiques des différents groupes de liquides riches en K2O observés sont extrêmement variables, depuis des termes très sous-saturés en silice (kamafugites, kimberlites, lamproïtes madupitiques à olivine) à des termes sur-saturés en silice (shoshonites, lamproïtes à phlogopite). Ces fortes teneurs en K2O et les rapports K2O/ Na2O élevés ne peuvent pas être obtenus par la fusion de péridotites fertiles ou réfractaires. Des expériences de fusion partielle en piston-cylindre ont été réalisées sur des péridotites à phlogopite ± amphibole dans les domaines de stabilité du spinelle et du grenat (1 et 3 GPa) afin de déterminer la capacité du manteau lithosphérique à produire des liquides riches en K2O. La présence de faibles teneurs en fluor dans le matériel de départ stabilise le phlogopite à des températures supérieures aux études antérieures. Les faibles degrés de fusion obtenus à 1 GPa sont sur-saturés en silice et leur teneur en K2O est tamponnée à 4 – 6 pds. % par la présence de phlogopite résiduel pour des péridotites fertile et réfractaire, respectivement. Les expériences réalisées à 3 GPa montrent que les premiers degrés de fusion sont sous-saturés en silice mais plus riches en K2O (6 – 8 pds. % pour la lherzolite et la harzburgite, respectivement) que dans le domaine du spinelle, démontrant l’importance de la pression sur la genèse de liquides riches en K2O. Les modélisations réalisées montrent également que l’augmentation de la proportion de phlogopite dans la source ne modifie pas la teneur en K2O des liquides formés mais diminue leurs rapports K2O/Na2O. Par conséquent, la fusion de péridotite à phlogopite dans la gamme de pression étudiée ne permet pas d’obtenir des liquides aussi riches en K2O que certains lamproïtes et kamafugites. Une série d’expériences réalisée sur du phlogopite pur à 1 et 3 GPa montrent que les liquides dérivés de telles sources sont très riches en K2O (12 – 14 pds. %) et comparables aux lamproïtes. Les différentes lithologies dans le manteau ne permettent cependant pas d’expliquer la grande gamme de composition des liquides riches en K2O et nécessitent des conditions riches en éléments volatils (H2O, CO2, F) et des fugacités d’oxygène réductrices
K2O-rich melts (K2O > 2 wt. %; K2O/Na2O > 1) have been described in all of the major geodynamic settings on Earth. These melts are mainly characterized by their huge K2O content, ranging between 2 – 13 wt. % and K2O/Na 2 O ratios of 1 – 40. The chemical compositions of the different K2O-rich melt groups span a very high variability, from strongly silica undersaturated melts (kamfugites, kimberlites, madupitic lamproites) to silica-rich terms (shoshonites, phlogopite lamproites). These very high K2O contents together with strong K2O/Na2O ratios cannot be derived from partial melting of fertile or depleted peridotites. Partial melting experiments have been conducted in piston cylinder apparatus on phlogopite ± amphibole-peridotite in the spinel and garnet stability fields (1 – 3 GPa) in order to determine the ability of the lithospheric mantle to produce K2O-rich melts. The presence of small amounts of fluorine in the starting material leads to stabilize phlogopite at higher temperatures than previously determined. The first degrees of melting at 1 GPa are silica-rich and their K2O contents are buffered to 4 – 6 wt. % in the presence of residual phlogopite, depending on the source fertility (lherzolite and harzburgite, respectively). In the garnet stability field at 3 GPa, low-degree melts are silica-undersaturated but are enriched in K2O, compared to the garnet stability field: from 6 to 8 wt. % in lherzolite and harzburgite sources, respectively. These results suggest that pressure is a key parameter in the mantle to produce K2O-rich melts. Partition coefficient modelings show that increasing the phlogopite proportion in the mantle source does not modify the K2O content of derived melts, but decreases their K2O/Na2O ratios. Consequently, partial melting of phlogopite-peridotite in this range of pressure cannot accounts for the highest K2O contents observed in natural lamproites and kamafugites. A series of experiments has been realized on pure phlogopite at 1 and 3 GPa, showing that derived melts are strongly enriched in K2O (12 – 14 wt. %) and share chemical affinities with lamproites. Peridotite or pyroxenite melting in the presence of phlogopite, however, do not permit to reproduce the high chemical variability of natural K2O-rich melts requires volatile-rich conditions (H2O, CO2, F) and reduced oxygen fugacities
Styles APA, Harvard, Vancouver, ISO, etc.
2

Barnekow, Peter. « Volcanic Rocks from Central Italy : An Oxygen Isotopic Microanalytical and Geochemical Study ». Doctoral thesis, [S.l.] : [s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=961354194.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

CONTICELLI, SANDRO. « Genesi del magmatismo alcalino-potassico dell'Italia Centrale : evidenze Petrologiche, Geochimiche e Petrologico Sperimentali ». Doctoral thesis, 1989. http://hdl.handle.net/2158/442853.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Foley, Stephen F(Stephen Francis). « The origin of ultrapotassic igneous rocks ». Thesis, 1986. https://eprints.utas.edu.au/19976/1/whole_FoleyStephenFrancis1987_thesis.pdf.

Texte intégral
Résumé :
This thesis consists of a review of ultrapotassic igneous rock occurrences and three experimental programs designed to examine the petrogenesis of the lamproites. A definition for ultrapotassic rocks is introduced using the whole-rock chemical screens K20>3 wt%, MgO>3 wt% and K20/Na20>2. Three major end-member groups are recognised; Group I (lamproites) are characterised by low CaO, A1203 and Na 2 0, high K 2 0/A1203 and Mg-number, and extremely high incompatible element contents; Group II have low Si0 2 and high CaO, and lower incompatible elements than group I although they have high relatively Sr; Group III rocks occur in orogenic areas and have high CaO and A1203, and low Ti0 2 , Nb and Ba typical of island arc rocks. Primary magmas-for all three groups probably originate by partial melting of mantle material enriched in incompatible elements. The chemical signatures of the groups indicate differences in (i) source composition prior to enrichment, (ii) the chemical nature of the enriching agent, and (iii) pressure-temperature conditions of melting. The liquldus mineralogy of a pristine, primary leucite lamproite from-- Gaussberg, Antarctica, was studied at .1 atm with controlled f0 2 , oxygen fugacity at the time of crystallisation of the Gaussberg rock is shown by ferric value [10OFe 3 /(Fe 3 +Fe2 )] of spinel, Fe 2 03 content of leucite and Mg-number of olivine, to have been just below NNO. Application of the spinel ferric value calibration to other lamproites indicates that they began to crystallise at f0 2 ranging from MW to above NNO. The ferric value of spinel is very sensitive to changes in oxygen fugacity, and may prove useful as a diamond survivability indicator': diamonds are unlikely to survive in the more oxidised lamproite magmas. The effect of fluorine, an important constituent of ultrapotassic rocks, on phase relationships in the kalsilite-forsterite-quartz system was studied at 28kbar. Fluorphiogopite is found to be stable to 300 0C higher than hydroxyphlogopite, and the peritectic point PHL+EN+F0+L, which can be used to model melting of a mica-harzburgite mantle, lies at an equally magnesian composition. Fluorine acts as a melt polymerising agent as shown by the expansion of the enstatite phase volume relative to forsterite and by FTIR spectroscopic studies. Fluorine forms bonds with network modifying cations and removes KA10 2groups from the aluminosilicate network, causing an increase in Si/(Si+Al) in the network. However, in the presence of water fluorine will appear to depolymerise melts due to the action of OH released by HF dissolution; the viscosity will be lowered by fluorine in either case due to the formation of fluoride complexes. A model is developed for the origin of lamproitic magmas by partial melting of a mica-harzburgite mantle in a reduced environment in the presence offluorine. Lamproitestypically carry depleted mantle nodules and have H20-and F-rich, but CO 2-poor compositions. Primary lamproite magmas appear to range in silica content from around 40 wt% (olivine lamproites) to at least 52 wt% (leucite lamproites). In a reduced mantle (f02 1W to IW+2 log units) CH4 will be the dominant carbon species in fluids, and CO2will be very rare even in a carbon-rich environment. CH4 also acts as a depolymeriser, so that production of silicic melts will be optimised in a reduced, fluorine-rich mantle. Olivine lainproites may be produced by melting of a similar composition at higher pressures. Calculations show that oxidation from the proposed reduced conditions at source to observed surface oxidation states can be achieved by dissociation of only 0.1 wt% H20 driven by diffusive loss of H2. Silica-poor rocks of Group II may originate in an oxidised environment with abundant CO2but little H 2 0. Fluorine will maintain a large phase field for mica in these conditions so that initial melts will be magnesian and strongly silica-undersaturated. A technique is developed for liquidus experiments at high pressures in the presence of reduced H20>CH 4fluids. Two lamproite compositions were studied by this technique to test the hypothesis outlined above. The olivine lamproite has olivine as the liquidus phase at all pressures studied (up to 40 kbar), but the increasing stability of orthopyroxene+ mica with pressure indicates that there may be a OL+OPX+PHL point at the liquidus between 45 and 55 kbar. This is consistent with the occurrence of diamonds in olivine lamproitës. The leucite lamproite has liquidus fields for olivine, mica and orthopyroxene with increasing pressure, but has no point where the three coexist. These phase relationships can be interpreted to fit the mica-harzburgite melting model (with melting at 20 kbar) if minor olivine fractionation occurs at high pressures, or possibly if the water content of the source differs from that of the experiments. Thus, pressure variation may be the principal control of lamproite chemistry. Several experiments with variable CH4 /H2 0 or H20/CO2 fluids enable comparison of melting behaviour at varying f0 2 . At very low f02, melting temperatures are increased due to lowered water activity, but mica stability is increased due to its higher F/OH.
Styles APA, Harvard, Vancouver, ISO, etc.
5

LEPORE, GIOVANNI ORAZIO. « Crystal chemistry of phlogopites from ultrapotassic rocks with lamproitic affinity from the Western Mediterranean Region ». Doctoral thesis, 2015. http://hdl.handle.net/2158/981797.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Mokgatlha, Kgomotso P. B. « Transformation of tonalitic gneiss into potassic garnet-sillimanite gneiss in a deep crustal shear zone in the Limpopo belt ». Thesis, 2014. http://hdl.handle.net/10210/12759.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Potassic and Ultrapotassic rocks"

1

Gupta, Alok K. The young potassic rocks. New Delhi : Ane Books, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

I, Groves D., dir. Potassic igneous rocks and associated gold-copper mineralization. Berlin : Springer, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

I, Groves D., dir. Potassic igneous rocks and associated gold-copper mineralization. 2e éd. Berlin : Springer, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Müller, Daniel, et David I. Groves. Potassic Igneous Rocks and Associated Gold-Copper Mineralization. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23051-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Müller, Daniel, et David I. Groves. Potassic Igneous Rocks and Associated Gold-Copper Mineralization. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-92979-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Müller, Daniel, et David I. Groves. Potassic Igneous Rocks and Associated Gold-Copper Mineralization. Berlin, Heidelberg : Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-00920-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Müller, Daniel, et David I. Groves. Potassic Igneous Rocks and Associated Gold-Copper Mineralization. Berlin, Heidelberg : Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59665-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Zhongguo fu jia yan shi : Zi yuan yu qing jie li yong ji shu = Potassic rocks in China : resource and clean utilization techniques. Beijing : Hua xue gong ye chu ban she, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Alok, Gupta K., et Fyfe S. William. Young Potassic Rocks. Studium Pr Llc, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Potassic igneous rocks and associated gold-copper mineralization. Berlin, Heidelberg : Springer, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Potassic and Ultrapotassic rocks"

1

Gupta, Alok Krishna. « Genesis of Ultrapotassic Rocks ». Dans Origin of Potassium-rich Silica-deficient Igneous Rocks, 453–74. New Delhi : Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2083-1_15.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Mitchell, Roger H., et Steven C. Bergman. « Potassic Rocks and the Lamproite Clan ». Dans Petrology of Lamproites, 9–38. Boston, MA : Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3788-5_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Müller, Daniel, et David I. Groves. « Tectonic Settings of Potassic Igneous Rocks ». Dans Potassic Igneous Rocks and Associated Gold-Copper Mineralization, 19–52. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23051-1_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Müller, Daniel, et David I. Groves. « Tectonic Settings of Potassic Igneous Rocks ». Dans Potassic Igneous Rocks and Associated Gold-Copper Mineralization, 11–38. Berlin, Heidelberg : Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-00920-8_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Müller, Daniel, et David I. Groves. « Tectonic Settings of Potassic Igneous Rocks ». Dans Potassic Igneous Rocks and Associated Gold-Copper Mineralization, 13–41. Berlin, Heidelberg : Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59665-0_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Müller, Daniel, et David I. Groves. « Tectonic Settings of Potassic Igneous Rocks ». Dans Potassic Igneous Rocks and Associated Gold-Copper Mineralization, 31–71. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92979-8_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Müller, Daniel, et David I. Groves. « Primary Enrichment of Precious Metals in Potassic Igneous Rocks ». Dans Potassic Igneous Rocks and Associated Gold-Copper Mineralization, 77–96. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23051-1_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Müller, Daniel, et David I. Groves. « Halogen Contents of Mineralized Versus Unmineralized Potassic Igneous Rocks ». Dans Potassic Igneous Rocks and Associated Gold-Copper Mineralization, 227–45. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23051-1_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Müller, Daniel, et David I. Groves. « Primary Enrichment of Precious Metals in Potassic Igneous Rocks ». Dans Potassic Igneous Rocks and Associated Gold-Copper Mineralization, 63–82. Berlin, Heidelberg : Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-00920-8_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Müller, Daniel, et David I. Groves. « Halogen Contents of Mineralized versus Unmineralized Potassic Igneous Rocks ». Dans Potassic Igneous Rocks and Associated Gold-Copper Mineralization, 145–57. Berlin, Heidelberg : Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-00920-8_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Potassic and Ultrapotassic rocks"

1

He, Yongsheng, Qianqian Yan et Shan Ke. « Iron Isotope Compositions of Ultrapotassic Volcanic Rocks from Northeastern China and the Implication on Deep Oxygen Cycle ». Dans Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Janousek, Vojtech, Yulia Kochergina, Alexandre Andronikov et Vladimir Kusbach. « Magnesium isotopic composition of Variscan subduction-related plutonic rocks and its significance for the origin of ultrapotassic magmas (Moldanubian Zone of Bohemian Massif) ». Dans Goldschmidt2021. France : European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.7137.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

González-Maurel, Osvaldo, Geoffrey Howarth, Julian Marsh, Andy Duncan et Petrus le Roux. « Petrogenesis of shoshonites and ultrapotassic rocks associated with the high-Ti basaltic lavas of the Tuli basin, Karoo Large Igneous Province, southern Africa ». Dans Goldschmidt2021. France : European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.6911.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Potassic and Ultrapotassic rocks"

1

Peterson, T. D., et A. N. LeCheminant. Ultrapotassic rocks of the Dubawnt Supergroup, District of Keewatin, N.W.T. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1996. http://dx.doi.org/10.4095/210976.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie