Littérature scientifique sur le sujet « Postembryonic »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Postembryonic ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Postembryonic"

1

Prokop, A., et G. M. Technau. « The origin of postembryonic neuroblasts in the ventral nerve cord of Drosophila melanogaster ». Development 111, no 1 (1 janvier 1991) : 79–88. http://dx.doi.org/10.1242/dev.111.1.79.

Texte intégral
Résumé :
Embryonic and postembryonic neuroblasts in the thoracic ventral nerve cord of Drosophila melanogaster have the same origin. We have traced the development of threefold-labelled single precursor cells from the early gastrula stage to late larval stages. The technique allows in the same individual monitoring of progeny cells at embryonic stages (in vivo) and differentially staining embryonic and postembryonic progeny within the resulting neural clone at late postembryonic stages. The analysis reveals that postembryonic cells always appear together with embryonic cells in one clone. Furthermore, BrdU labelling suggests that the embryonic neuroblast itself rather than one of its progeny resumes proliferation as a postembryonic neuroblast. A second type of clone consists of embryonic progeny only.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Antonova, E. I., D. I. Omarova, N. V. Firsova et K. A. Krasnikova. « The Role of Liver Progenitor Cells in Postembryonic Development of <i>Rana terrestris</i> ; under Normal Physiological Conditions ». Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki 166, no 1 (15 mars 2024) : 38–65. http://dx.doi.org/10.26907/2542-064x.2024.1.38-65.

Texte intégral
Résumé :
The liver plays an essential role in the metabolism of animals, acting as a central hub for metabolic reactions. It serves as a “peripheral integrator” and balances the body’s energy needs. Its regenerative capacity is remarkably high and is maintained by the proliferation of hepatocytes, as well as hematopoietic and regional liver progenitor cells (LPC). This study investigated LPC-driven liver regeneration during postembryonic development in Rana terrestris under normal physiological conditions. The analysis of intrahepatic and hematopoietic markers by immunohistochemistry and flow cytometry revealed that progenitor cells with the immunophenotypes of CK19+ (intrahepatic progenitor cells), CD34+CD45+ (hematopoietic progenitor cell population), and CD34+CD45– (hemangioblast population) equally promote liver regeneration during the first year of postembryonic development. However, in the second and third years of postembryonic development, liver regeneration was found to be primarily associated with CK19+-positive cells, with a smaller contribution from CD34+CD45– cells. The results obtained were largely determined by the habitat of the amphibians, thermoregulation, and the completion of morphogenetic processes in the third year of postembryonic development. It is also noteworthy that the liver of the examined specimens remained the major hematopoietic organ throughout all observed stages of postembryonic development.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lanot, René, Daniel Zachary, François Holder et Marie Meister. « Postembryonic Hematopoiesis in Drosophila ». Developmental Biology 230, no 2 (février 2001) : 243–57. http://dx.doi.org/10.1006/dbio.2000.0123.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Diefenbach, Thomas J., et Jeffrey I. Goldberg. « Postembryonic expression of the serotonin phenotype in Helisoma trivolvis : comparison between laboratory-reared and wild-type strains ». Canadian Journal of Zoology 68, no 7 (1 juillet 1990) : 1382–89. http://dx.doi.org/10.1139/z90-206.

Texte intégral
Résumé :
In a laboratory-reared albino strain of the snail Helisoma trivolvis, the number of neurons expressing the serotonin phenotype increases markedly during postembryonic life. To address whether these latent changes occur selectively in the laboratory-reared strain, postembryonic expression of serotonin immunoreactivity was directly compared in laboratory-reared and wild-type specimens. The spatial pattern of serotonin-immunoreactive neurons was generally the same in the two strains. In contrast, the time course over which this pattern was generated was more prolonged in the wild types than in the laboratory-reared strain. The cerebral, left parietal, and visceral ganglia of laboratory-reared animals completed their postembryonic acquisition of serotonin-immunoreactive neurons by stage P10. Acquisition of serotonin-immunoreactive neurons after stage P10 occurred only in the pedal ganglia. In the wild types, addition of serotonin-immunoreactive neurons continued at least until stage P20 in all of the ganglia examined. Analysis of serotonergic clusters within the cerebral and pedal ganglia revealed distinct developmental patterns for individual clusters. Therefore, the acquisition of the serotonin phenotype during postembryonic life is a normal component of nervous system development in wild-type H. trivolvis.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Chengyan, WAN, LIN Yongtai et HUANG Daoming. « Postembryonic Development of Megalobrama skolkovii ». Journal of Lake Sciences 11, no 4 (1999) : 357–62. http://dx.doi.org/10.18307/1999.0412.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Peskov, V. N., M. V. Franchuk et N. S. Atamas. « Morphological Differentiation in Nestlings Turdus philomelos (Passeriformes, Turdidae) and Staging in their Development during the Nesting Period of Postembryogenesis ». Vestnik Zoologii 52, no 5 (1 octobre 2018) : 429–34. http://dx.doi.org/10.2478/vzoo-2018-0044.

Texte intégral
Résumé :
Abstract The work demonstrates the clear presence of ageing aspects in the postembryonic development of the song thrush in regard to its linear dimensions and body proportions. It is proposed to distinguish the stages of early nesting, mid-nesting and late nesting. At each stage, the mostly developed body parts and organs are those which are needed for the growing organism to provide its best functionality at the current period of its postembryonic development.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kondratov, Kondratov, Viktor V. Stepanishin et Stanislav G. Kumirov. « Histogenesis of skeletal muscles of representatives of chicken meat productivity ». Veterinariya, Zootekhniya i Biotekhnologiya 1, no 110 (2023) : 15–23. http://dx.doi.org/10.36871/vet.zoo.bio.202301002.

Texte intégral
Résumé :
The article presents a comparative analysis of the histogenesis of skeletal musculature of Smena-8 cross chickens and Pharaoh quails at different periods of postembryonic development. The regularities and features of postembryonic histogenesis of skeletal muscles of chickens and quails are presented on the example of the rectus head of the quadriceps femoris and the superficial pectoral muscle. The periods of ontogenesis reflecting the formation of the muscular system in chickens and quails are described. Increased differentiation of cellular structures at certain periods of development was established, differences in the histological structure of skeletal muscles depending on the age of the bird and its species were shown. A comparative characteristic of these muscles at different stages of postembryonic ontogenesis is given. According to all micromorphological indicators, the superiority of the quadriceps femoral muscle over the superficial pectoral muscle was established in all the studied periods, as well as earlier differentiation of its intracellular structures, regardless of the species of chicken.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Park, M., et M. W. Krause. « Regulation of postembryonic G(1) cell cycle progression in Caenorhabditis elegans by a cyclin D/CDK-like complex ». Development 126, no 21 (1 novembre 1999) : 4849–60. http://dx.doi.org/10.1242/dev.126.21.4849.

Texte intégral
Résumé :
In many organisms, initiation and progression through the G(1) phase of the cell cycle requires the activity of G(1)-specific cyclins (cyclin D and cyclin E) and their associated cyclin-dependent kinases (CDK2, CDK4, CDK6). We show here that the Caenorhabditis elegans genes cyd-1 and cdk-4, encoding proteins similar to cyclin D and its cognate cyclin-dependent kinases, respectively, are necessary for proper division of postembryonic blast cells. Animals deficient for cyd-1 and/or cdk-4 activity have behavioral and developmental defects that result from the inability of the postembryonic blast cells to escape G(1) cell cycle arrest. Moreover, ectopic expression of cyd-1 and cdk-4 in transgenic animals is sufficient to activate a S-phase reporter gene. We observe no embryonic defects associated with depletion of either of these two gene products, suggesting that their essential functions are restricted to postembryonic development. We propose that the cyd-1 and cdk-4 gene products are an integral part of the developmental control of larval cell proliferation through the regulation of G(1) progression.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Higgins, Linden E., et Mary Ann Rankin. « Different Pathways in Arthropod Postembryonic Development ». Evolution 50, no 2 (avril 1996) : 573. http://dx.doi.org/10.2307/2410832.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

García-Alonso, L. A. « Postembryonic sensory axon guidance in Drosophila ». Cellular and Molecular Life Sciences CMLS 55, no 11 (août 1999) : 1386–98. http://dx.doi.org/10.1007/s000180050379.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Postembryonic"

1

Alexandre, Kelly Marie Peifer Mark A. « Identifying mechanisms regulating Wnt signaling during postembryonic development ». Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2009. http://dc.lib.unc.edu/u?/etd,2503.

Texte intégral
Résumé :
Thesis (M.S.)--University of North Carolina at Chapel Hill, 2009.
Title from electronic title page (viewed Oct. 5, 2009). "... in partial fulfillment of the requirements for the degree of Master of Science in the Department of Biology." Discipline: Biology; Department/School: Biology.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lin, Suewei. « Neuronal Diversification in the Postembryonic Drosophila Brain : A Dissertation ». eScholarship@UMMS, 2011. https://escholarship.umassmed.edu/gsbs_diss/565.

Texte intégral
Résumé :
A functional central nervous system (CNS) is composed of numerous types of neurons. Neurons are derived from a limited number of multipotent neural stem cells. Previous studies have suggested three major strategies nature uses to diversify neurons: lineage identity specification that gives an individual neural stem cell distinct identity based on its position in the developing CNS; temporal identity specification that gives neurons derived from a neural stem cell distinct identities based on their birth-order within the lineage; and binary cell fate specification that gives different identities to the two sister postmitotic neurons derived from the terminal division of a common precursor. Through the combination of the three strategies, almost unlimited neuron types can be generated. To understand neuronal diversification, we have to understand the underlying molecular mechanisms of each of the three strategies. The fruit fly Drosophila melanogaster, has been an excellent model for studying neuronal diversity, mainly due to its easily traceable nervous system and an impressive collection of genetic tools. Studies in fly have provided us fundamental insights into lineage identity, temporal identity, and binary cell fate specifications. Nevertheless, previous studies mostly centered on the embryonic ventral nerve cord (VNC) because of its simpler organization. Our understanding of the generation of neuronal diversity in the fly brain is still rudimentary. In this thesis work, I focused on the mushroom body (MB) and three antennal lobe neuronal lineages, studying their neuronal diversification during postembryonic brain development. In Chapter I, I reviewed the previous studies that have built our current understanding of the neuronal diversification. In Chapter II, I showed that MB temporal identity changes are instructed by environmental cues. In Chapter III, to search for the potential factors that mediate the environmental control of the MB temporal identity changes, I silenced each of the 18 nuclear receptors (NRs) in the fly genome using RNA interference. Although I did not identify any NR important for the regulation of MB temporal identities, I found that unfulfilled is required for regulating axon guidance and for the MB neurons to acquire all major subtype-specific identities. In Chapter IV, I demonstrated that the Notch pathway and its antagonist Numb mediate binary cell fate determination in the three classical antennal lobe neuronal lineages— anterodorsal projection neuron (adPN), lateral antennal lobe (lAL), and ventral projection neuron (vPN)—in a context-dependent manner. Finally, in Chapter V, I did detailed lineage analysis for the lAL lineage, and identified four classes of local interneurons (LNs) with multiple subtypes innervating only the AL, and 44 types projection neurons (PNs) contributing to olfactory, gustatory, and auditory neural circuits. The PNs and LNs were generated simultaneously but with different tempos of temporal identity specification. I also showed that in the lAL lineage the Notch pathway not only specifies binary cell fates, but is also involved in the temporal identity specification.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kostić, Ivana. « Regulation of embryonic and postembryonic cell divisions in Caenorhabditis elegans ». Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=29448.

Texte intégral
Résumé :
To understand the molecular basis of developmental control of cell division during C. elegans organogenesis, two different approaches were taken. First, a screen was performed to identify mutants with altered numbers of intestinal nuclei using a reporter transgene specific to the intestinal nuclei. The intestine displays three different cell division patterns; mitosis, karyokinesis and endoreplication, therefore, in this screen we could potentially isolate mutants in genes affecting any of these different cell cycles. An F2 semi-clonal screen was performed and mutants with fewer or supernumerary numbers of intestinal nuclei were isolated. One mutant, rr31, with twice the wild type complement of intestinal nuclei was mapped and the defect was subsequently shown to be due to a gain-of-function mutation in the cell cycle phosphatase cdc-25.1. Further characterization of the cdc-25.1(gf) mutant, showed that the extra intestinal cells arise from an additional division of the intestinal cell precursors during embryogenesis, and that this phenotype is unique to the intestinal lineage. (Abstract shortened by UMI.)
Styles APA, Harvard, Vancouver, ISO, etc.
4

Evers, Jan Felix. « The role of dendritic filopodia in postembryonic remodelling of dendritic architecture ». [S.l. : s.n.], 2005. http://www.diss.fu-berlin.de/2005/153/index.html.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Li, Shaolin 1973. « Genetic analysis of the initiation of postembryonic development in Caenorhabditis elegans ». Thesis, McGill University, 2001. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33799.

Texte intégral
Résumé :
Initiation of postembryonic development is an important event for normal C. elegans development. Extrinsic factors affect development as well as intrinsic developmental cues. In order to investigate the molecular basis of initiation of postembryonic development, a genetic screen was performed to identify temperature-sensitive mutants that cannot initiate the cell divisions associated with postembryonic development at the restrictive temperature. Hydroxyurea (HU), a DNA replication inhibitor, was used as a tool to select against worms that initiate postembryonic cell divisions and/or the developmental program. 1,600,000 haploid genomes were screened, and 20 mutants have been isolated. 6 of them have been mapped to a relatively small genetic interval, and one inx-6 has been cloned and encodes an innexin family protein. Mutation of inx-6 caused abnormalities in pharyngeal pumping, resulting in worms that could not feed. The functions of a cyclin B homologue (ZC168.4) in postembryonic development have also been studied since cyclin B mutants also have postembryonic developmental arrest phenotype. Results indicate that zygotic expression of cyclin B is absolutely required for normal postembryonic development. Moreover, we found a novel function of this cyclin B homologue, which demonstrates an uncommon paternal effect required for spermatogenesis and/or fertilization.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Beramendi, Ana. « Morphological and functional studies on the Drosophila neuromuscular system during postembryonic stages / ». Stockholm : Department of Zoology, Stockholm University, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-609.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Almeida, M. S. S. « The role of Notch and Grainyhead in the development of the postembryonic neuroblasts ». Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.595481.

Texte intégral
Résumé :
Postembryonic neuroblasts (pNBs) in the Drosophila larval CNS are considered to be neural stem cells production most of the neurons of the adult Drosophila central nervous system (CNS). The pNBs are derived from the embryonic neuroblasts (NBs). After a period of quiescence at the end of embryogenesis they reactivate during larval life and proliferate extensively for a limited period. The pNBs are able to self-review in each division and also to produce a precursor cell that will generate two postmitotic cells that fully differentiate at metamorphosis. Therefore, the pNBs provide a good model to investigate the mechanisms involved in the regulation of neural stem cells. The aim of this research was to investigate whether Notch signalling and the transcription factor Grainyhead have roles in regulating pNBs processes. Before investigating the regulation of the pNBs behaviour it was first necessary to characterise in more detail the characteristics of these cells and their progeny. Several genes that are expressed in the embryonic CNS were selected to further study. Among these I identified some factors that are expressed only in specific pNB lineages, such as Gsb-p and others that are expressed at a specific stage in all lineages such as Prospero. Based on their expression pattern it appears that Gsb-p is likely to perform a similar function in the larval CNS as in the embryo. In contrast the distribution of Prospero suggest different roles in the pNB lineages. The result was first that the Notch pathway is active in the pNBs, indicated by the expression of Notch target gene mg. However, the results obtained, using clonal analysis to manipulate Notch function in the pNB lineages, indicate that Notch does not have a role in maintaining the undifferentiated state of the pNBs or their proliferative state. In contrast to its function in vertebrate systems where it is able to regulate the uncommitted state of the neural progenitor cells. The analysis of grh mutant indicated that Grh has a role in regulating the proliferation and/or cell death of the pNBs.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Lee, Hung-Tai. « Cellular and molecular studies of postembryonic muscle fibre recruitment in zebrafish (Danio rerio L.) ». Thesis, St Andrews, 2010. http://hdl.handle.net/10023/901.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Murakami, Chisato. « Taxonomic and postembryonic studies of Kinorhyncha around the Seto Marine Biological Laboratory, Kyoto University ». 京都大学 (Kyoto University), 2002. http://hdl.handle.net/2433/150044.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Becker, Clara [Verfasser], et Joachim [Akademischer Betreuer] Wittbrodt. « Mechanisms of growth control in the postembryonic medaka retina / Clara Becker ; Betreuer : Joachim Wittbrodt ». Heidelberg : Universitätsbibliothek Heidelberg, 2020. http://d-nb.info/1222109565/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Postembryonic"

1

Tata, Jamshed R. Hormonal signaling and postembryonic development. Berlin : Springer, 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

1929-, Gilbert Lawrence I., Tata Jamshed R et Atkinson Burr G, dir. Metamorphosis : Postembryonic reprogramming of gene expression in amphibian and insect cells. San Diego : Academic Press, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Posnien, Nico, Patrícia Beldade et Fernando Casares, dir. Evolution of Postembryonic Development. Frontiers Media SA, 2022. http://dx.doi.org/10.3389/978-2-88974-480-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Gilbert, Lawrence I., Jamshed R. Tata et Burr G. Atkinson. Metamorphosis : Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells. Elsevier Science & Technology Books, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lawrence I. Gilbert (Series Editor), Jamshed R. Tata (Series Editor) et Burr G. Atkinson (Series Editor), dir. Metamorphosis : Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells (Cell Biology). Academic Press, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lawrence I. Gilbert (Series Editor), Jamshed R. Tata (Series Editor) et Burr G. Atkinson (Series Editor), dir. Metamorphosis : Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells (Cell Biology). Academic Press, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Dimitrijevic, Rajko N. Postembryonic Development & Polymorphism in Some Pseudoscorpions from the Families Chthoniidae & Neobisiidae (Faculty of Biology Monographs). Bioloki Fakultet, 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gupta, Ayodhya P. Morphogenetic Hormones of Arthropods : Embryonic and Postembryonic Sources Part 2 (Recent Advances I Comparative Arthropod Morphology, Physiology, An). Rutgers Univ Pr, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Postembryonic"

1

Gillott, Cedric. « Postembryonic Development ». Dans Entomology, 595–623. Dordrecht : Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-017-4380-8_21.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Punzo, Fred. « Postembryonic Development ». Dans Adaptations of Desert Organisms, 47–74. Berlin, Heidelberg : Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04090-4_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Umesono, Yoshihiko. « Postembryonic Axis Formation in Planarians ». Dans Diversity and Commonality in Animals, 743–61. Tokyo : Springer Japan, 2018. http://dx.doi.org/10.1007/978-4-431-56609-0_33.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bueno, Sérgio Luiz de Siqueira, Roberto Munehisa Shimizu et Juliana Cristina Bertacini Moraes. « Postembryonic Development, Parental Care, and Recruitment ». Dans Aeglidae, 155–79. Boca Raton : Taylor & Francis, [2020] : CRC Press, 2019. http://dx.doi.org/10.1201/b22343-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hoffelen, Samantha Van, et Michael A. Herman. « Analysis of Wnt Signaling During Caenorhabditis elegans Postembryonic Development ». Dans Methods in Molecular Biology, 87–102. Totowa, NJ : Humana Press, 2008. http://dx.doi.org/10.1007/978-1-60327-469-2_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Heyland, Andreas, Nicholas Schuh et Jonathan Rast. « Sea Urchin Larvae as a Model for Postembryonic Development ». Dans Results and Problems in Cell Differentiation, 137–61. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92486-1_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Sillar, K. T., J. F. S. Wedderburn et A. J. Simmers. « Postembryonic Maturation of a Spinal Circuit Controlling Amphibian Swimming Behaviour ». Dans Neural Control of Movement, 203–11. Boston, MA : Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1985-0_26.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Sekii, Kiyono, et Kazuya Kobayashi. « Sex-Inducing Substances Terminate Dormancy in Planarian Postembryonic Reproductive Development ». Dans Advances in Invertebrate (Neuro)Endocrinology, 25–62. Includes bibliographical references and indexes. | Contents : Volume 1. Phyla other than arthropoda. : Apple Academic Press, 2020. http://dx.doi.org/10.1201/9781003029854-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Guyomarc’h, Soazig, Mikaël Lucas et Laurent Laplaze. « Postembryonic in Plants : Experimental Induction of New Shoot and Root Organs ». Dans Methods in Molecular Biology, 79–95. New York, NY : Springer New York, 2021. http://dx.doi.org/10.1007/978-1-0716-1816-5_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ishizuya-Oka, Atsuko, Tosikazu Amano, Liezhen Fu et Yun-Bo Shi. « Regulation of Apoptosis by Extracellular Matrix during Postembryonic Development inXenopus Laevis ». Dans When Cells Die II, 123–41. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471476501.ch6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Postembryonic"

1

Costache, Mioara. « RESEARCH ON EMBRYONIC AND POSTEMBRYONIC DEVELOPMENT TO THE PADDLEFISH (POLYODON SPATHULA) IN THE ACCLIMATIZATION AREA ». Dans 19th SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings. STEF92 Technology, 2019. http://dx.doi.org/10.5593/sgem2019/6.1/s25.115.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zykova, L. A., A. B. Burlakov, S. A. Titov et A. N. Bogachenkov. « Study of the cardiovascular system of Danio rerio in the postembryonic period of development using an ultrasound scanner ». Dans Акустооптические и радиолокационные методы измерений и обработки информации. Москва : Научно-технологический центр уникального приборостроения РАН, 2021. http://dx.doi.org/10.25210/armimp-2021-25.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bian Shaokang, Chao He, Liang Chuancheng et Wang Liwen. « Toxicity of the Herbicide Butchlor Effects on early period of postembryonic development of Toad Bufo bufo Gargarizans and Bufo naddei Strauch ». Dans 2011 International Symposium on Information Technology in Medicine and Education (ITME 2011). IEEE, 2011. http://dx.doi.org/10.1109/itime.2011.6132088.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Costache, Mioara, Daniela Radu, Nino Marica, Mihail Costache et Mariana Cristina Arcade. « GROWTH OF THE NORTH AMERICAN STURGEON ( POLYODON SPATHULA ) DURING THE POST-EMBRYONIC DEVELOPMENT PERIOD IN PROTECTED AREAS ». Dans 23rd SGEM International Multidisciplinary Scientific GeoConference 2023. STEF92 Technology, 2023. http://dx.doi.org/10.5593/sgem2023/3.1/s12.08.

Texte intégral
Résumé :
The article includes the results obtained in the growth experiments during the postembryonic development period of the North American sturgeon species Polyodon spathula. The experiments took place in the years 2020 and 2021. Sturgeon larvae aged 5 days old, obtained through artificial reproduction at SCDP Nucet, were stocked and raised until the age of 35 days in two variants, in concrete tanks (useful volume -120 m3 /tank), located in the pilot station intended for fish culture experiments from the SCDP Nucet genetic library. The experimental variants consisted in testing the support capacity of the tanks when stocked with sturgeon larvae in densities of 40,000 ex/tank, respectively 333 specimens/m3 (V1); and 20,000 ex/tank respectively, 166 ex/m3 (V2). The sturgeon larvae were fed with zooplankton ( Moina sp., Daphnia sp.) and artificial feed. Feeding regime was found to contribute significantly to final size and growth rate. In variant 1 (V1) sturgeon fry with an average mass of 7.4 g/ex. were obtained (survival rate of 30.3 %) and in the second variant the sturgeon fry recorded an average mass of 9.8 g/ex. (survival rate 48.4%). The differences in survival between the two variants of the rearing experiments were due to the fact that the adaptation to artificial feed was made more difficult. Also, overcrowding causes typical manifestations that consist in the appearance of large differences between individuals that favor cannibalism.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Veselov, D. S., G. R. Akhiyarova, R. S. Ivanov et G. V. Sharipova. « The functional significance of the accumulation in cells and the distribution between them of auxins and abscisic acid in the processes of embryonic and postembryonic development ». Dans IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-98.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie