Articles de revues sur le sujet « Post-hoc explainabil »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 43 meilleurs articles de revues pour votre recherche sur le sujet « Post-hoc explainabil ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Zednik, Carlos, and Hannes Boelsen. "Scientific Exploration and Explainable Artificial Intelligence." Minds and Machines 32, no. 1 (2022): 219–39. http://dx.doi.org/10.1007/s11023-021-09583-6.
Texte intégralFauvel, Kevin, Tao Lin, Véronique Masson, Élisa Fromont, and Alexandre Termier. "XCM: An Explainable Convolutional Neural Network for Multivariate Time Series Classification." Mathematics 9, no. 23 (2021): 3137. http://dx.doi.org/10.3390/math9233137.
Texte intégralRoscher, R., B. Bohn, M. F. Duarte, and J. Garcke. "EXPLAIN IT TO ME – FACING REMOTE SENSING CHALLENGES IN THE BIO- AND GEOSCIENCES WITH EXPLAINABLE MACHINE LEARNING." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences V-3-2020 (August 3, 2020): 817–24. http://dx.doi.org/10.5194/isprs-annals-v-3-2020-817-2020.
Texte intégralGadzinski, Gregory, and Alessio Castello. "Combining white box models, black box machines and human interventions for interpretable decision strategies." Judgment and Decision Making 17, no. 3 (2022): 598–627. http://dx.doi.org/10.1017/s1930297500003594.
Texte intégralShen, Yifan, Li Liu, Zhihao Tang, et al. "Explainable Survival Analysis with Convolution-Involved Vision Transformer." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 2 (2022): 2207–15. http://dx.doi.org/10.1609/aaai.v36i2.20118.
Texte intégralGill, Navdeep, Patrick Hall, Kim Montgomery, and Nicholas Schmidt. "A Responsible Machine Learning Workflow with Focus on Interpretable Models, Post-hoc Explanation, and Discrimination Testing." Information 11, no. 3 (2020): 137. http://dx.doi.org/10.3390/info11030137.
Texte intégralAslam, Nida, Irfan Ullah Khan, Samiha Mirza, et al. "Interpretable Machine Learning Models for Malicious Domains Detection Using Explainable Artificial Intelligence (XAI)." Sustainability 14, no. 12 (2022): 7375. http://dx.doi.org/10.3390/su14127375.
Texte intégralMikołajczyk, Agnieszka, Michał Grochowski, and Arkadiusz Kwasigroch. "Towards Explainable Classifiers Using the Counterfactual Approach - Global Explanations for Discovering Bias in Data." Journal of Artificial Intelligence and Soft Computing Research 11, no. 1 (2021): 51–67. http://dx.doi.org/10.2478/jaiscr-2021-0004.
Texte intégralKumar, Akshi, Shubham Dikshit, and Victor Hugo C. Albuquerque. "Explainable Artificial Intelligence for Sarcasm Detection in Dialogues." Wireless Communications and Mobile Computing 2021 (July 2, 2021): 1–13. http://dx.doi.org/10.1155/2021/2939334.
Texte intégralKnapič, Samanta, Avleen Malhi, Rohit Saluja, and Kary Främling. "Explainable Artificial Intelligence for Human Decision Support System in the Medical Domain." Machine Learning and Knowledge Extraction 3, no. 3 (2021): 740–70. http://dx.doi.org/10.3390/make3030037.
Texte intégralVieira, Carla Piazzon Ramos, and Luciano Antonio Digiampietri. "A study about Explainable Articial Intelligence: using decision tree to explain SVM." Revista Brasileira de Computação Aplicada 12, no. 1 (2020): 113–21. http://dx.doi.org/10.5335/rbca.v12i1.10247.
Texte intégralApostolopoulos, Ioannis D., Ifigeneia Athanasoula, Mpesi Tzani, and Peter P. Groumpos. "An Explainable Deep Learning Framework for Detecting and Localising Smoke and Fire Incidents: Evaluation of Grad-CAM++ and LIME." Machine Learning and Knowledge Extraction 4, no. 4 (2022): 1124–35. http://dx.doi.org/10.3390/make4040057.
Texte intégralLossos, Christian, Simon Geschwill, and Frank Morelli. "Offenheit durch XAI bei ML-unterstützten Entscheidungen: Ein Baustein zur Optimierung von Entscheidungen im Unternehmen?" HMD Praxis der Wirtschaftsinformatik 58, no. 2 (2021): 303–20. http://dx.doi.org/10.1365/s40702-021-00707-1.
Texte intégralSudars, Kaspars, Ivars Namatēvs, and Kaspars Ozols. "Improving Performance of the PRYSTINE Traffic Sign Classification by Using a Perturbation-Based Explainability Approach." Journal of Imaging 8, no. 2 (2022): 30. http://dx.doi.org/10.3390/jimaging8020030.
Texte intégralAbbas, Asmaa, Mohamed Medhat Gaber, and Mohammed M. Abdelsamea. "XDecompo: Explainable Decomposition Approach in Convolutional Neural Networks for Tumour Image Classification." Sensors 22, no. 24 (2022): 9875. http://dx.doi.org/10.3390/s22249875.
Texte intégralSrinivasu, Parvathaneni Naga, N. Sandhya, Rutvij H. Jhaveri, and Roshani Raut. "From Blackbox to Explainable AI in Healthcare: Existing Tools and Case Studies." Mobile Information Systems 2022 (June 13, 2022): 1–20. http://dx.doi.org/10.1155/2022/8167821.
Texte intégralNtakolia, Charis, Christos Kokkotis, Patrik Karlsson, and Serafeim Moustakidis. "An Explainable Machine Learning Model for Material Backorder Prediction in Inventory Management." Sensors 21, no. 23 (2021): 7926. http://dx.doi.org/10.3390/s21237926.
Texte intégralForetic, Nikola, Vladimir Pavlinovic, and Miodrag Spasic. "Differences in Specific Power Performance among Playing Positions in Top Level Female Handball." Sport Mont 20, no. 1 (2022): 109–13. http://dx.doi.org/10.26773/smj.220219.
Texte intégralBiswas, Shreyan, Lorenzo Corti, Stefan Buijsman, and Jie Yang. "CHIME: Causal Human-in-the-Loop Model Explanations." Proceedings of the AAAI Conference on Human Computation and Crowdsourcing 10, no. 1 (2022): 27–39. http://dx.doi.org/10.1609/hcomp.v10i1.21985.
Texte intégralNtakolia, Charis, Dimitrios Priftis, Mariana Charakopoulou-Travlou, et al. "An Explainable Machine Learning Approach for COVID-19’s Impact on Mood States of Children and Adolescents during the First Lockdown in Greece." Healthcare 10, no. 1 (2022): 149. http://dx.doi.org/10.3390/healthcare10010149.
Texte intégralAntoniadi, Anna Markella, Yuhan Du, Yasmine Guendouz, et al. "Current Challenges and Future Opportunities for XAI in Machine Learning-Based Clinical Decision Support Systems: A Systematic Review." Applied Sciences 11, no. 11 (2021): 5088. http://dx.doi.org/10.3390/app11115088.
Texte intégralChatterjee, Soumick, Arnab Das, Chirag Mandal, et al. "TorchEsegeta: Framework for Interpretability and Explainability of Image-Based Deep Learning Models." Applied Sciences 12, no. 4 (2022): 1834. http://dx.doi.org/10.3390/app12041834.
Texte intégralMeng, Deyu, Hongzhi Guo, Siyu Liang, et al. "Effectiveness of a Hybrid Exercise Program on the Physical Abilities of Frail Elderly and Explainable Artificial-Intelligence-Based Clinical Assistance." International Journal of Environmental Research and Public Health 19, no. 12 (2022): 6988. http://dx.doi.org/10.3390/ijerph19126988.
Texte intégralWei, Meiqi, Deyu Meng, Hongzhi Guo, et al. "Hybrid Exercise Program for Sarcopenia in Older Adults: The Effectiveness of Explainable Artificial Intelligence-Based Clinical Assistance in Assessing Skeletal Muscle Area." International Journal of Environmental Research and Public Health 19, no. 16 (2022): 9952. http://dx.doi.org/10.3390/ijerph19169952.
Texte intégralXie, Yibing, Nichakorn Pongsakornsathien, Alessandro Gardi, and Roberto Sabatini. "Explanation of Machine-Learning Solutions in Air-Traffic Management." Aerospace 8, no. 8 (2021): 224. http://dx.doi.org/10.3390/aerospace8080224.
Texte intégralSadler, Sophie, Derek Greene, and Daniel Archambault. "Towards explainable community finding." Applied Network Science 7, no. 1 (2022). http://dx.doi.org/10.1007/s41109-022-00515-6.
Texte intégralFarahani, Farzad V., Krzysztof Fiok, Behshad Lahijanian, Waldemar Karwowski, and Pamela K. Douglas. "Explainable AI: A review of applications to neuroimaging data." Frontiers in Neuroscience 16 (December 1, 2022). http://dx.doi.org/10.3389/fnins.2022.906290.
Texte intégralVale, Daniel, Ali El-Sharif, and Muhammed Ali. "Explainable artificial intelligence (XAI) post-hoc explainability methods: risks and limitations in non-discrimination law." AI and Ethics, March 15, 2022. http://dx.doi.org/10.1007/s43681-022-00142-y.
Texte intégralKarim, Muhammad Monjurul, Yu Li, and Ruwen Qin. "Toward Explainable Artificial Intelligence for Early Anticipation of Traffic Accidents." Transportation Research Record: Journal of the Transportation Research Board, February 18, 2022, 036119812210761. http://dx.doi.org/10.1177/03611981221076121.
Texte intégralFleisher, Will. "Understanding, Idealization, and Explainable AI." Episteme, November 3, 2022, 1–27. http://dx.doi.org/10.1017/epi.2022.39.
Texte intégralYang, Chu-I., and Yi-Pei Li. "Explainable uncertainty quantifications for deep learning-based molecular property prediction." Journal of Cheminformatics 15, no. 1 (2023). http://dx.doi.org/10.1186/s13321-023-00682-3.
Texte intégralLee, Minyoung, Joohyoung Jeon, and Hongchul Lee. "Explainable AI for domain experts: a post Hoc analysis of deep learning for defect classification of TFT–LCD panels." Journal of Intelligent Manufacturing, March 26, 2021. http://dx.doi.org/10.1007/s10845-021-01758-3.
Texte intégralBelle, Vaishak, and Ioannis Papantonis. "Principles and Practice of Explainable Machine Learning." Frontiers in Big Data 4 (July 1, 2021). http://dx.doi.org/10.3389/fdata.2021.688969.
Texte intégralOkazaki, Kotaro, and Katsumi Inoue. "Explainable Model Fusion for Customer Journey Mapping." Frontiers in Artificial Intelligence 5 (May 11, 2022). http://dx.doi.org/10.3389/frai.2022.824197.
Texte intégralHegselmann, Stefan, Christian Ertmer, Thomas Volkert, Antje Gottschalk, Martin Dugas, and Julian Varghese. "Development and validation of an interpretable 3 day intensive care unit readmission prediction model using explainable boosting machines." Frontiers in Medicine 9 (August 23, 2022). http://dx.doi.org/10.3389/fmed.2022.960296.
Texte intégralWeber, Patrick, K. Valerie Carl, and Oliver Hinz. "Applications of Explainable Artificial Intelligence in Finance—a systematic review of Finance, Information Systems, and Computer Science literature." Management Review Quarterly, February 28, 2023. http://dx.doi.org/10.1007/s11301-023-00320-0.
Texte intégralLee, Kyungtae, Mukil V. Ayyasamy, Yangfeng Ji, and Prasanna V. Balachandran. "A comparison of explainable artificial intelligence methods in the phase classification of multi-principal element alloys." Scientific Reports 12, no. 1 (2022). http://dx.doi.org/10.1038/s41598-022-15618-4.
Texte intégralPapagni, Guglielmo, Jesse de Pagter, Setareh Zafari, Michael Filzmoser, and Sabine T. Koeszegi. "Artificial agents’ explainability to support trust: considerations on timing and context." AI & SOCIETY, June 27, 2022. http://dx.doi.org/10.1007/s00146-022-01462-7.
Texte intégralKucklick, Jan-Peter, and Oliver Müller. "Tackling the Accuracy–Interpretability Trade-off: Interpretable Deep Learning Models for Satellite Image-based Real Estate Appraisal." ACM Transactions on Management Information Systems, October 10, 2022. http://dx.doi.org/10.1145/3567430.
Texte intégralNguyen, Sam, Ryan Chan, Jose Cadena, et al. "Budget constrained machine learning for early prediction of adverse outcomes for COVID-19 patients." Scientific Reports 11, no. 1 (2021). http://dx.doi.org/10.1038/s41598-021-98071-z.
Texte intégralChen, Ruoyu, Jingzhi Li, Hua Zhang, Changchong Sheng, Li Liu, and Xiaochun Cao. "Sim2Word: Explaining Similarity with Representative Attribute Words via Counterfactual Explanations." ACM Transactions on Multimedia Computing, Communications, and Applications, September 8, 2022. http://dx.doi.org/10.1145/3563039.
Texte intégralZini, Julia El, and Mariette Awad. "On the Explainability of Natural Language Processing Deep Models." ACM Computing Surveys, July 19, 2022. http://dx.doi.org/10.1145/3529755.
Texte intégralAbdelsamea, Mohammed M., Mohamed Medhat Gaber, Aliyuda Ali, Marios Kyriakou, and Shams Fawki. "A logarithmically amortising temperature effect for supervised learning of wheat solar disinfestation of rice weevil Sitophilus oryzae (Coleoptera: Curculionidae) using plastic bags." Scientific Reports 13, no. 1 (2023). http://dx.doi.org/10.1038/s41598-023-29594-w.
Texte intégral