Littérature scientifique sur le sujet « Porous Organic-Inorganic Hybrid Nickle Phosphate Materials »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Porous Organic-Inorganic Hybrid Nickle Phosphate Materials ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Porous Organic-Inorganic Hybrid Nickle Phosphate Materials"

1

Ma, Tian Yi, Tie Zhen Ren et Zhong Yong Yuan. « Synthesis and Photocatalytic Performance of Hierarchical Porous Titanium Phosphonate Hybrid Materials ». Advanced Materials Research 132 (août 2010) : 87–95. http://dx.doi.org/10.4028/www.scientific.net/amr.132.87.

Texte intégral
Résumé :
A hierarchical meso-/macroporous titanium phosphonate (TPPH) hybrid material was prepared via a simple surfactant-assisted process with the use of the precursor tetrabutyl titanate and 1-hydroxy ethylidene-1,1-diphosphonic acid. The prepared hybrid TPPH presented amorphous phase, exhibiting a hierarchical macroporous structure composed of mesopores with a pore size of 2.0 nm. The BET surface area is 256 m2/g. The hydroxyethylidene-bridged organophosphonate groups were homogeneously incorporated in the network of the hierarchical porous solid, as revealed by FT-IR, MAS NMR, XPS, and TGA measurements. The optical properties and photocatalytic activity of the hierarchical TPPH material were investigated in comparison with those of hierarchical porous titanium phosphate and pure mesoporous titania materials, showing superiority of the inorganic-organic hybrid framework, suggesting promising photocatalysts for wastewater cleanup.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Duraisamy, Ramesh, Kannan Pownsamy et Ghebray Asgedom. « Chemical Degradation of Epoxy-Polyamide Primer by Electrochemical Impedance Spectroscopy ». ISRN Corrosion 2012 (9 juillet 2012) : 1–10. http://dx.doi.org/10.5402/2012/819719.

Texte intégral
Résumé :
The degradation of organic-inorganic hybrid materials based on epoxy resin was characterized electrochemically in aggressive chemical electrolyte. In the present study, the hybrid material as primer was prepared from epoxy resin pigmented by zinc phosphate cured with polyamide (EPZ). The hybrid material was coated on mild steel substrate, and the corrosion behavior was studied by electrode-potential time measurements and mainly by electrochemical impedance spectroscopy (EIS) in 5% NaCl solution. The impedance parameters, namely, coating capacitance (), pore resistance (), charge transfer resistance (), double layer capacitance (), and break point frequency (), corresponding to 45° phase angle as a function of time of exposure were estimated. The observed impedance behavior were compared with the established equivalent electrical circuit represents the coated metal/electrolyte interface. Changes in the values of the circuit components given the information on the stages of degradation and physical phenomenon occurring throughout the degradation of primer coating were also been predicted. In addition, information related to the porous nature of the primer, limited passivation effect, and delamination of coating with longer exposure that resulted in the diffusion controlled corrosion of metal are also recognized. Thus, results indicate that the EPZ coating had good corrosion resistance. This could be a nonpolluting alternative to the traditional chromate like environmentally harmful coatings.
Styles APA, Harvard, Vancouver, ISO, etc.
3

López-González, Ivan, Camilo Zamora-Ledezma, María Isabel Sanchez-Lorencio, Elena Tristante Barrenechea, José Antonio Gabaldón-Hernández et Luis Meseguer-Olmo. « Modifications in Gene Expression in the Process of Osteoblastic Differentiation of Multipotent Bone Marrow-Derived Human Mesenchymal Stem Cells Induced by a Novel Osteoinductive Porous Medical-Grade 3D-Printed Poly(ε-caprolactone)/β-tricalcium Phosphate Composite ». International Journal of Molecular Sciences 22, no 20 (18 octobre 2021) : 11216. http://dx.doi.org/10.3390/ijms222011216.

Texte intégral
Résumé :
In this work, we evaluated the influence of a novel hybrid 3D-printed porous composite scaffold based on poly(ε-caprolactone) (PCL) and β-tricalcium phosphate (β-TCP) microparticles in the process of adhesion, proliferation, and osteoblastic differentiation of multipotent adult human bone marrow mesenchymal stem cells (ah-BM-MSCs) cultured under basal and osteogenic conditions. The in vitro biological response of ah-BM-MSCs seeded on the scaffolds was evaluated in terms of cytotoxicity, adhesion, and proliferation (AlamarBlue Assay®) after 1, 3, 7, and 14 days of culture. The osteogenic differentiation was assessed by alkaline phosphatase (ALP) activity, mineralization (Alizarin Red Solution, ARS), expression of surface markers (CD73, CD90, and CD105), and reverse transcription–quantitative polymerase chain reaction (qRT-PCR) after 7 and 14 days of culture. The scaffolds tested were found to be bioactive and biocompatible, as demonstrated by their effects on cytotoxicity (viability) and extracellular matrix production. The mineralization and ALP assays revealed that osteogenic differentiation increased in the presence of PCL/β-TCP scaffolds. The latter was also confirmed by the gene expression levels of the proteins involved in the ossification process. Our results suggest that similar bio-inspired hybrid composite materials would be excellent candidates for osteoinductive and osteogenic medical-grade scaffolds to support cell proliferation and differentiation for tissue engineering, which warrants future in vivo research.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wang, junju, Jie Tang, Yichao Lin, Hong He, Chaoshan Zhao, Wenrui Ma, Xiang Wang, Muling Zeng et Shunbo Li. « Construction of organic-inorganic hybrid heterostructure towards solvent responsive hydrogel with high stiffness ». Smart Materials and Structures, 25 juin 2023. http://dx.doi.org/10.1088/1361-665x/ace174.

Texte intégral
Résumé :
Abstract Solvent responsive hydrogel is a kind of intelligent soft material, which can be used in soft robots. Currently, most of the solvent responsive hydrogels are based on pure organic materials which has limited stiffness for actuations. Herein, a novel organic-inorganic composite hydrogel is designed and prepared. Calcium phosphate oligomers (CPO) nanoclusters are incorporated in polymer solution containing polyvinyl alcohol (PVA) and sodium alginate (SA) to form organic-inorganic hybrid copolymer suspensions. The solvent responsive hydrogel is simply prepared using co-evaporation method by optimizing the components in the colloid system. The inorganic nanoparticles work as the scaffold in the porous PVA network and the evaporation caused nonuniformity distribution further induces the formation of heterostructure, which has different shrinkage ratios along the thickness direction. The prepared hydrogel demonstrates excellent shape memory property by changing the environmental solvents between water and ethanol and its repeatability is also verified. The stiffness of hydrogel is enhanced and it has large deformation after incorporation of calcium phosphate nanoparticles. The bending angle of hydrogel can be well controlled by different water to ethanol ratios, allowing for underwater actuation. The functionality of an artificial gripper based on responsive hydrogel with high stiffness is demonstrated to transfer objects in ethanol. The design of organic-inorganic composite hydrogel with high stiffness may provide new insights for preparation of intelligent soft materials for underwater applications.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Nenoff, Tina M., Alejandra V. Chavez, Steven G. Thoma, Paula Provencio, William T. A. Harrison et Mark L. F. Phillips. « Amine Templated Zinc Phosphates Phases for Membrane Separations ». MRS Proceedings 519 (1998). http://dx.doi.org/10.1557/proc-519-125.

Texte intégral
Résumé :
AbstractOur research is focused on developing inorganic molecular sieve membranes for light gas separations such as hydrogen recovery and natural gas purification, and organic molecular separations, such as chiral enantiomers. We focus on zinc phosphates because of the ease in crystallization of new phases and the wide range of pore sizes and shapes obtained. With our hybrid systems of zinc phosphate crystalline phases templated by amine molecules, we are interested in better understanding the association of the template molecules to the inorganic phase, and how the organic transfers its size, shape, and (in some cases) chirality to the bulk. Furthermore, the new porous phases can also be synthesized as thin films on metal oxide substrates. These films allow us to make membranes from our organic/inorganic hybrid systems, suitable for diffusion experiments. Characterization techniques for both the bulk phases and the thin films include powder X-ray diffraction, TGA, Scanning Electron Micrograph (SEM) and Electron Dispersive Spectrometry (EDS).
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie