Littérature scientifique sur le sujet « Porous foam »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Porous foam ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Porous foam"
Starov, Victor, Anna Trybala, Phillip Johnson et Mauro Vaccaro. « Foam Quality of Foams Formed on Capillaries and Porous Media Systems ». Colloids and Interfaces 5, no 1 (8 février 2021) : 10. http://dx.doi.org/10.3390/colloids5010010.
Texte intégralJohnson, Phillip, Mauro Vaccaro, Victor Starov et Anna Trybala. « Foam Formation and Interaction with Porous Media ». Coatings 10, no 2 (5 février 2020) : 143. http://dx.doi.org/10.3390/coatings10020143.
Texte intégralAgbedor, Solomon-Oshioke, Donghui Yang, Jianqing Chen, Lei Wang et Hong Wu. « Low-Temperature Reactive Sintered Porous Mg-Al-Zn Alloy Foams ». Metals 12, no 4 (18 avril 2022) : 692. http://dx.doi.org/10.3390/met12040692.
Texte intégralYamada, Yasuo, Takumi Banno, Yun Cang Li et Cui E. Wen. « Anisotropic Mechanical Properties of Nickel Foams Fabricated by Powder Metallurgy ». Materials Science Forum 569 (janvier 2008) : 277–80. http://dx.doi.org/10.4028/www.scientific.net/msf.569.277.
Texte intégralShih, Albert J., et Zhenhua Huang. « Three-Dimensional Optical Measurements of Porous Foams ». Journal of Manufacturing Science and Engineering 128, no 4 (26 février 2006) : 951–59. http://dx.doi.org/10.1115/1.2194556.
Texte intégralDouarche, Frederic, Benjamin Braconnier et Bernard Bourbiaux. « Foam placement for soil remediation : scaling foam flow models in heterogeneous porous media for a better improvement of sweep efficiency ». Science and Technology for Energy Transition 78 (2023) : 42. http://dx.doi.org/10.2516/stet/2023036.
Texte intégralWong, Pei-Chun, Sin-Mao Song, Pei-Hua Tsai, Muhammad Jauharul Maqnun, Wei-Ru Wang, Jia-Lin Wu et Shian-Ching (Jason) Jang. « Using Cu as a Spacer to Fabricate and Control the Porosity of Titanium Zirconium Based Bulk Metallic Glass Foams for Orthopedic Implant Applications ». Materials 15, no 5 (3 mars 2022) : 1887. http://dx.doi.org/10.3390/ma15051887.
Texte intégralThanh, Tram Nguyen Xuan, Michito Maruta, Kanji Tsuru, Alireza Valanezhad, Shigeki Matsuya et Ishikawa Kunio. « Fabrication of Calcite Foam by Inverse Ceramic Foam Method ». Key Engineering Materials 529-530 (novembre 2012) : 153–56. http://dx.doi.org/10.4028/www.scientific.net/kem.529-530.153.
Texte intégralWong, Wai Yee, Ahmad Fauzi Mohd Noor et Radzali Othman. « Sintering of Beta-Tricalcium Phosphate Scaffold Using Polyurethane Template ». Key Engineering Materials 694 (mai 2016) : 94–98. http://dx.doi.org/10.4028/www.scientific.net/kem.694.94.
Texte intégralXiong, Jian Yu, Yun Cang Li, Yasuo Yamada, Peter D. Hodgson et Cui E. Wen. « Processing and Mechanical Properties of Porous Titanium-Niobium Shape Memory Alloy for Biomedical Applications ». Materials Science Forum 561-565 (octobre 2007) : 1689–92. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.1689.
Texte intégralThèses sur le sujet "Porous foam"
Osei-Bonsu, Kofi. « Foam-facilitated oil displacement in porous media ». Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/foamfacilitated-oil-displacement-in-porous-media(f2b2e93b-3a9b-41fa-a841-f81b271e8fad).html.
Texte intégralArmitage, Paul. « Foam flow through porous media : a micromodel study ». Thesis, Imperial College London, 1991. http://hdl.handle.net/10044/1/46650.
Texte intégralGabbrielli, Ruggero. « Foam geometry and structural design of porous material ». Thesis, University of Bath, 2009. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.507759.
Texte intégralAlvarez, Martinez José Manuel. « Foam-flow behavior in porous media : effects of flow regime and porous-medium heterogeneity / ». Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Texte intégralRodeheaver, Bret Alan. « Open-celled microcellular themoplastic foam ». Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/18914.
Texte intégralYeates, Christopher. « Multi-Scale Study of Foam Flow Dynamics in Porous Media ». Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS023/document.
Texte intégralIn this work, we use of a high-complexity micromodel of fixed structure on which we perform a series of experiments with varying injection rates, foam qualities, inlet bubble size distributions and injection methods. We perform individual bubble tracking and associate flow properties with bubble size properties and structural characteristics of the medium. We propose new tools describing the local and global flow in different ways. We establish specific behaviors for different bubble sizes, demonstrating that trapped foams are more likely to have smaller than average bubble sizes, while flowing bubbles also tend to segregate in different flow paths according to bubble size. Larger bubbles tend to flow in high-velocity preferential paths that are generally more aligned with pressure gradient, but smaller bubbles tend to access in supplement transversal paths linking the different preferential paths. Furthermore, for our data we establish the pre-eminence of the trapped foam fraction over bubble density within the microscopic explanation of apparent viscosity, although both contribute to some degree. We structurally characterize consistently trapped zones as areas with either low pore coordination, low entrance throat size, unfavorable throat orientation or a combination thereof. High-flow zones however cannot be characterized in terms of local structural parameters and necessitate integration of complete path information from the entire model. In this regard, in order to capture the high-flow zones, we develop a path-proposing model that makes use of a graph representation of the model, from an initial decomposition into pores and throats, that uses only local throat size and throat orientation relative to pressure gradient to characterize paths
Yeates, Christopher. « Multi-Scale Study of Foam Flow Dynamics in Porous Media ». Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS023.
Texte intégralIn this work, we use of a high-complexity micromodel of fixed structure on which we perform a series of experiments with varying injection rates, foam qualities, inlet bubble size distributions and injection methods. We perform individual bubble tracking and associate flow properties with bubble size properties and structural characteristics of the medium. We propose new tools describing the local and global flow in different ways. We establish specific behaviors for different bubble sizes, demonstrating that trapped foams are more likely to have smaller than average bubble sizes, while flowing bubbles also tend to segregate in different flow paths according to bubble size. Larger bubbles tend to flow in high-velocity preferential paths that are generally more aligned with pressure gradient, but smaller bubbles tend to access in supplement transversal paths linking the different preferential paths. Furthermore, for our data we establish the pre-eminence of the trapped foam fraction over bubble density within the microscopic explanation of apparent viscosity, although both contribute to some degree. We structurally characterize consistently trapped zones as areas with either low pore coordination, low entrance throat size, unfavorable throat orientation or a combination thereof. High-flow zones however cannot be characterized in terms of local structural parameters and necessitate integration of complete path information from the entire model. In this regard, in order to capture the high-flow zones, we develop a path-proposing model that makes use of a graph representation of the model, from an initial decomposition into pores and throats, that uses only local throat size and throat orientation relative to pressure gradient to characterize paths
Kim, Dae Whan. « Convection and flow boiling in microgaps and porous foam coolers ». College Park, Md. : University of Maryland, 2007. http://hdl.handle.net/1903/7446.
Texte intégralThesis research directed by: Mechanical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Mauray, Alexis. « Etude des propriétés de transport de mousse dans des modèles de milieux poreux ». Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI120/document.
Texte intégralIn enhanced oil recovery (EOR), foams are injected in porous media to improve oil recovery efficiency. The objective is to limit viscous fingering thanks to the high effective viscosity of the foam at low capillary number Ca. Foam is produced by the co-injection of a gas and a solution of surfactants. This thesis focuses on foam formation and transport mechanisms in model porous media using a heterogeneous micromodel made in NOA. Foam formation is studied using two different approaches. The first one consists in studying a co-injection of two fluids thanks to a jet flowing in the center of the system. This experiment shows that the less wetting fluids is dispersed in the other one when the capillary number is higher than 10-5. A second set of experiments is conducted by injected a pre-formed train of big bubbles in model a porous media. The bubbles divide until they reach a diameter of the order of to the pore size, for high enough capillary numbers Ca. Besides, we studied the transport properties of foam in similar model porous media. Direct measurements show that the pressure drop induces by the flow can be at Ca=10-6 as high as 3000 times the pressure corresponding to water injected at the same injection flow rate. This ratio decreases with capillary number. An analysis of the preferential paths by direct observations shows that, for low relative gas flow rate, only a few paths are active. However, an increase of the capillary number or if relative gas flow rate leads to a homogenization of the flow in the medium. Thanks to different simple models of straight or wavy channels, we measure that the pressure drop induced by a single bubble is in good agreement with Bretherton’s law, and scales as Ca2/3. However, in wavy channels the pressure drop due to a single bubble deviates from this prediction and exhibits a plateau at Ca lower than 10-4. In this regime, the motion of the bubble is usually intermittent. Finally, we focus on foam formation and transport properties in presence of oil. Our observations lead to the conclusion that for our setup and surfactant formulations, oil has a negligible influence
Barari, Farzad. « Metal foam regenerators : heat transfer and pressure drop in porous metals ». Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/6366/.
Texte intégralLivres sur le sujet "Porous foam"
Perkowitz, S. Universal foam : From Cappuccino to the cosmos. New York : Walker & Co., 2000.
Trouver le texte intégralAharonov, Einat. Solid-fluid interactions in porous media : Processes that form rocks. [Woods Hole, Mass : Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Joint Program in Oceanography/Applied Ocean Science and Engineering, 1996.
Trouver le texte intégralAharonov, Einat. Solid-fluid interactions in porous media : Processes that form rocks. [Woods Hole, Mass : Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Joint Program in Oceanography/Applied Ocean Science and Engineering, 1996.
Trouver le texte intégralVipin, Kumar, American Society of Mechanical Engineers. Materials Division. et International Mechanical Engineering Congress and Exposition (1998 : Anaheim, Calif.), dir. Porous, cellular and microcellular materials : Presented at the 1998 ASME International Mechanical Engineering Congress and Exposition, November 15-20, 1998, Anaheim, California. New York, N.Y : American Society of Mechanical Engineers, 1998.
Trouver le texte intégralVipin, Kumar, American Society of Mechanical Engineers. Materials Division. et International Mechanical Engineering Congress and Exposition (2000 : Orlando, Fla.), dir. Porous, cellular and microcellular materials 2000 : Presented at the 2000 ASME International Mechanical Engineering Congress and Exposition, November 5-10, 2000, Orlando, Florida. New York, N.Y : American Society of Mechanical Engineers, 2000.
Trouver le texte intégralMeeting, Royal Society (Great Britain) Discussion. Engineered foams and porous materials : Papers of a discussion meeting issue organised and edited by Anthony Kelly ... [et al.]. London : The Royal Society, 2006.
Trouver le texte intégralDukhan, Nihad, dir. Proceedings of the 11th International Conference on Porous Metals and Metallic Foams (MetFoam 2019). Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42798-6.
Texte intégralOlagunju, M. O. A study of efficient recovery of liquid from fine air-liquid mists of the form generated in gas turbine bearing chambers using a rotating porous disc. London : University of East London, 1998.
Trouver le texte intégralCarey, Neil. Masks of the Koranko Poro : Form, function, and comparison to the Toma. Amherst, MA : Ethnos Publications, 2007.
Trouver le texte intégralTimchenko, Tat'yana, et Evgenia Filatova. Customs clearance of container shipping. ru : Publishing Center RIOR, 2019. http://dx.doi.org/10.29039/01886-6.
Texte intégralChapitres de livres sur le sujet "Porous foam"
Rossen, William R. « Foam in Porous Media ». Dans Foams and Emulsions, 335–48. Dordrecht : Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9157-7_20.
Texte intégralShirley, Arthur I. « Foam Formation in Porous Media ». Dans ACS Symposium Series, 234–57. Washington, DC : American Chemical Society, 1988. http://dx.doi.org/10.1021/bk-1988-0373.ch012.
Texte intégralFlumerfelt, Raymond W., et John Prieditis. « Mobility of Foam in Porous Media ». Dans ACS Symposium Series, 295–325. Washington, DC : American Chemical Society, 1988. http://dx.doi.org/10.1021/bk-1988-0373.ch015.
Texte intégralBenali, Benyamine. « The Flow of Supercritical CO2 Foam for Mobility Control ». Dans Album of Porous Media, 94. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23800-0_76.
Texte intégralRose, Lauren, Natalia Shmakova, Natalya Penkovskaya, Benjamin Dollet, Christophe Raufaste et Stéphane Santucci. « Quasi-Two-Dimensional Foam Flowthrough and Around a Permeable Obstacle ». Dans Album of Porous Media, 93. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23800-0_75.
Texte intégralAtteia, Olivier, Henri Bertin, Nicolas Fatin-Rouge, Emily Fitzhenry, Richard Martel, Clément Portois, Thomas Robert et Alexandre Vicard. « Application of Foams as a Remediation and Blocking Agent ». Dans Advances in the Characterisation and Remediation of Sites Contaminated with Petroleum Hydrocarbons, 591–622. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-34447-3_17.
Texte intégralKovscek, A. R., et C. J. Radke. « Fundamentals of Foam Transport in Porous Media ». Dans Advances in Chemistry, 115–63. Washington, DC : American Chemical Society, 1994. http://dx.doi.org/10.1021/ba-1994-0242.ch003.
Texte intégralGuo, Feng, et Saman A. Aryana. « Foam Flooding in a Heterogeneous Porous Medium ». Dans Advances in Petroleum Engineering and Petroleum Geochemistry, 65–67. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01578-7_16.
Texte intégralDünger, Udo, Herbert Weber et Hans Buggisch. « A Simple Model for a Fluid-Filled Open-Cell Foam ». Dans Porous Media : Theory and Experiments, 269–84. Dordrecht : Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4579-4_17.
Texte intégralTram, N. X. T., M. Maruta, K. Tsuru, S. Matsuya et K. Ishikawa. « Hydrothermal Conversion of Calcite Foam to Carbonate Apatite ». Dans Advances in Bioceramics and Porous Ceramics VI, 59–65. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118807811.ch5.
Texte intégralActes de conférences sur le sujet "Porous foam"
Randall, O., I. Tsitsimpelis, D. Folley, A. Kennedy et M. J. Joyce. « A Porous Metal Foam Collimator for Robotic Tasks ». Dans 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), 1. IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10655806.
Texte intégralGauglitz, P. A., F. Friedmann, S. I. Kam et W. R. Rossen. « Foam Generation in Porous Media ». Dans SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers, 2002. http://dx.doi.org/10.2118/75177-ms.
Texte intégralChacko, Z. « Thermal Conductivity of Steel-Steel Composite Metal Foam through Computational Modeling ». Dans Porous Metals and Metallic Foams. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903094-3.
Texte intégralCance, J. C. « Characterization of 316L Stainless Steel Composite Metal Foam Joined by Solid-State Welding Technique ». Dans Porous Metals and Metallic Foams. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903094-2.
Texte intégralAmoafo-Yeboah, N. T. « Surface Emissivity Effect on the Performance of Composite Metal Foam against Torch Fire Environment ». Dans Porous Metals and Metallic Foams. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903094-1.
Texte intégralLiu, Dianbin, L. M. Castanier et W. E. Brigham. « Displacement by Foam in Porous Media ». Dans SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1992. http://dx.doi.org/10.2118/24664-ms.
Texte intégralRakesh, M. « Numerical Investigation on Deformation Behavior of Aluminium Foams with in situ Composite Particles ». Dans Porous Metals and Metallic Foams. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903094-6.
Texte intégralMare, Esmari. « Analytical Determination of the Geometrical Properties of Open-Celled Metal Foams Under Compression ». Dans Porous Metals and Metallic Foams. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903094-5.
Texte intégralKovscek, A. R., T. W. Patzek et C. J. Radke. « Simulation of Foam Transport in Porous Media ». Dans SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1993. http://dx.doi.org/10.2118/26402-ms.
Texte intégralHong, Jung Hwa, Soojin Lee, Jun-Mo Hong, Yoon-Keun Bae, Seung-Kwon Kim et Joonghee Kim. « Porous Elastic Behavior of Open-Cell Foam ». Dans International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States : SAE International, 1998. http://dx.doi.org/10.4271/980965.
Texte intégralRapports d'organisations sur le sujet "Porous foam"
Zhang, Z. F., Vicky L. Freedman et Lirong Zhong. Foam Transport in Porous Media - A Review. Office of Scientific and Technical Information (OSTI), novembre 2009. http://dx.doi.org/10.2172/1016458.
Texte intégralKovscek, A. R., T. W. Patzek et C. J. Radke. Simulation of foam displacement in porous media. Office of Scientific and Technical Information (OSTI), août 1993. http://dx.doi.org/10.2172/10192495.
Texte intégralKovscek, A. R., et C. J. Radke. Fundamentals of foam transport in porous media. Office of Scientific and Technical Information (OSTI), octobre 1993. http://dx.doi.org/10.2172/10192736.
Texte intégralCohen, D., T. W. Patzek et C. J. Radke. Mobilization of trapped foam in porous media. Office of Scientific and Technical Information (OSTI), juin 1996. http://dx.doi.org/10.2172/285487.
Texte intégralLiu, Dianbin, et W. E. Brigham. Transient foam flow in porous media with CAT Scanner. Office of Scientific and Technical Information (OSTI), mars 1992. http://dx.doi.org/10.2172/5573805.
Texte intégralLiu, Dianbin, et W. E. Brigham. Transient foam flow in porous media with CAT Scanner. Office of Scientific and Technical Information (OSTI), mars 1992. http://dx.doi.org/10.2172/10132657.
Texte intégralKovscek, A. R., et C. J. Radke. A comprehensive description of transient foam flow in porous media. Office of Scientific and Technical Information (OSTI), janvier 1993. http://dx.doi.org/10.2172/10103735.
Texte intégralCohen, D., T. W. Patzek et C. J. Radke. Experimental tracking of the evolution of foam in porous media. Office of Scientific and Technical Information (OSTI), juillet 1996. http://dx.doi.org/10.2172/274165.
Texte intégralBergeron, V., M. E. Fagan et C. J. Radke. A generalized entering coefficient to characterize foam stability against oil in porous media. Office of Scientific and Technical Information (OSTI), novembre 1992. http://dx.doi.org/10.2172/10192717.
Texte intégralBergeron, V., M. E. Fagan et C. J. Radke. Generalized entering coefficients : A criterion for foam stability against oil in porous media. Office of Scientific and Technical Information (OSTI), septembre 1993. http://dx.doi.org/10.2172/10192744.
Texte intégral