Thèses sur le sujet « Porosi luminescenti »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 28 meilleures thèses pour votre recherche sur le sujet « Porosi luminescenti ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
PEREGO, JACOPO. « Functional Porous Materials : Tailored Adsorption Properties, Flexibility and Advanced Optical Applications ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/263593.
Texte intégralThe research activity focused on the design, synthesis and characterization of porous organic and hybrid materials. Porous materials for selective gas adsorption and storage. Tailored porous organic frameworks bearing different functional groups have been investigated via gas adsorption analyses and in situ spectroscopic techniques to understand the interaction between the guest phase and the primary adsorption sites installed on pore walls. Specifically, aliphatic amines interact strongly with carbon dioxide molecules resulting in an isosteric heat of adsorption as high as 54 kJ/mol at low loading and this close-contact interaction has been characterized with 2D heterocorrelated NMR sppectroscopy. Hyper.crosslinked polymers and porous organic frameworks have been synthetized and their performance towards high pressure (up to 180 bar) methane adsorption have been evaluated to assess their potential applications in adsorbed natural gas technology (ANG). During a period at Bernal institute (Limerick, Ireland) under the supervision of Prof. M. J. Zaworotko, I developed novel switching metal-organic frameworks that display guest-induced phase transitions between close phases and a porous open phase. During the close to open phase transitions the coordination sphere of the zinc cations inside the structures changes from a square pyramidal to a tetrahedral geometry. Moreover, the threshold pressure for gas adsorption can be manipulated through a mixed-linker approach. These materials are currently investigated for applications in gas storage and separation. Metal-organic frameworks with intrinsic dynamics. Metal organic frameworks built up with rigid aliphatic linkers have been developed and their adsorptive and thermal properties fully characterized. These materials display ultra-fast rotational dynamic even at very low temperature. An in-depth solid state NMR study has been conducted to understand the fast rotation of the organic strut and the influence of guest species hosted inside the pores on its dynamic. Organic and hybrid materials for photonic applications. Emitting porous aromatic frameworks (ePAFs) nanoparticles containing highly fluorescent diphenylanthracene moieties have been developed. This materials display high photoluminescence quantum yield and a fast exciton diffusion inside the amorphous framework. When these nanoparticles are suspended in a solution of a suitable sensitizer the mixture display highly efficient sensitized triplet-triplet annihilation up-conversion with quantum yield up to 15 %. Moreover, PAFs with integrated sensitizers (i-ePAFs) display sensitized up-conversion working as an autonomous nanodevice. Metal-organic frameworks with diphenylanthracene units and zirconium oxo-hydroxo clusters have been developed and their luminescence and radioluminescence have been characterized. These nanocrystals have been embedded in polymeric matrixes to generate efficient and innovative scintillating materials with fast response for x-ray and gamma-ray detection.
Chang, Dahge Chiadin. « Estudo da morfologia do silicio poroso luminescente com nucleação diamantifera ». [s.n.], 1999. http://repositorio.unicamp.br/jspui/handle/REPOSIP/261189.
Texte intégralTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-07-25T01:27:47Z (GMT). No. of bitstreams: 1 Chang_DahgeChiadin_D.pdf: 9826585 bytes, checksum: 5734a3b6b43a08b7eb8b54729d1abb13 (MD5) Previous issue date: 1999
Resumo: Foi realizado um estudo de caracterização do silício poroso luminescente feito por corrosão eletroquímica visando sua cobertura com diamante. Foram utilizados eletrólitos com misturas de HF/H2O e de HF/C2H5OH/H2O em diferentes proporções, diferentes tempos de corrosão e com densidades de corrente entre 10 mA.cm-2 a 30 mA.cm-2. A morfologia do silício poroso foi analisada por microscopia de força atômica dentro do próprio meio líquido para estudo quantitativo da variação da porosidade com os parâmetros da anodização. Os filmes de silício poroso foram recobertos com diamante depositado em diferentes temperaturas e tempos. Observamos que a estrutura de silício poroso/diamante apresenta luminescência na temperatura ambiente mas não pudemos identificar se a forma gausssiana da luminescência é devida ao silício poroso ou ao diamante
Abstract: A study of the properties of anodically etched porous silicon was made prior to and following its coating with diamond. Mixtures of HF/H2O and of HF/C2H5OH/H2O were used as electrolytes in different proportions, for different corrosion times and with current densities in the range of 10 mA.cm-2 to 30 mA.cm-2. The porous silicon morphology was analyzed in-situ (liquid-phase) by atomic force microscopy to study of the variation of the porosity with the anodization parameters. The porous silicon films were covered with diamond deposited at different temperatures and times. It was observed that the porous silicon/diamond structure presents room temperature photoluminescence but it was not possible to determine whether the gausssian shape of the luminescence spectra was due to the porous silicon or to the diamond coating
Doutorado
Doutor em Engenharia Elétrica
Tosin, Marcelo Carvalho. « Sintese e caracterização do silicio poroso e de novos revestimentos luminescentes ». [s.n.], 2001. http://repositorio.unicamp.br/jspui/handle/REPOSIP/260319.
Texte intégralTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-07-29T02:19:41Z (GMT). No. of bitstreams: 1 Tosin_MarceloCarvalho_D.pdf: 2129034 bytes, checksum: 39ff2fe9e6e37b45b74c5731f165aca3 (MD5) Previous issue date: 2001
Doutorado
Morais, Alysson Ferreira. « Preparação e estudo de nanotubos luminescentes de hidróxidos duplos lamelares (LDH) contendo íons terras raras ». Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-20072018-102259/.
Texte intégralLayered double hydroxides are a class of lamellar compounds with chemical formula [M_(1-x)^II M_x^III (OH)_2 ] [A^(n-)]_(x/n).yH_2 O (with M^II and M^III being di and trivalent metals, respectively) that are formed by the stacking of positively charged mixed-valence metal hydroxide sheets intercalated by anionic species A^(n-). This work describes a new strategy for the synthesis of self-supporting mesoporous LDH nanotubes (Ø 20 nm and length >= 100 nm) by coprecipitation of Zn^(2+), Al^(3+) and Eu^(3+) around non-ionic worm-like micelles of Pluronic® P-123 in controlled pH. Subsequent extraction of the structure-directing agent with methanol results in a network of interconnected, well-defined, multi-walled and hollow cylindrical LDH nanotubes intercalated by the sensitizing ligand BTC (1,3,5-benzenetricarboxilate). The combination of Eu^(3+) in the hydroxide layers and BTC in the interlayers results in nanotubes with luminescence properties in a notable demonstration on how chemical and morphological changes in LDHs can lead to materials with tuned physico chemical properties that can be tailored towards a range of applications.
Meng, Qingguo. « Preparation, characterization and luminescent properties of organic-inorganic hybrids processed by wet impregnation of mesoporous silica ». Clermont-Ferrand 2, 2005. http://www.theses.fr/2005CLF22566.
Texte intégralCoulthard, Ian. « X-ray excited optical luminescence and chemical properties of porous silicon ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ31085.pdf.
Texte intégralHill, Deborah Ann. « X-ray excited optical luminescence (XEOL) and its application to porous silicon ». Thesis, University of Warwick, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302693.
Texte intégralCrowe, Jonathan William. « Design and Synthesis of Dehydrobenzoannulene Based Covalent Organic Frameworks ». The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1492098595103764.
Texte intégralZhao, Mingrui, et Manish Keswani. « Fabrication of Radially Symmetric Graded Porous Silicon using a Novel Cell Design ». NATURE PUBLISHING GROUP, 2016. http://hdl.handle.net/10150/614761.
Texte intégralLiu, Zhaoting. « Synthesis, characterization and properties of wood-templated oxides with hierarchical porous structures ». Troyes, 2009. http://www.theses.fr/2009TROY0004.
Texte intégralHierarchical porous materials have displayed important researching and application values at the fields of separation and purification, selective adsorption, optical function, and sensor design etc. Some preparation methods have been designed to fabricate porous materials. But these traditional methods have to use specific equipments and complicated techniques, and obtained porous materials have single pore size distributions with single functions. The morph-genetic transformation technology is a simple processing technology to fabricate re-fined hierarchical porous materials using organ-isms as template. The organisms in nature are the perfect unities of highly delicate structures and effectively complex functions through mil-lions of years of evolution and natural survival law, which prepare plentiful structural tem-plates for hierarchical porous materials. In the present work, wood-templated Fe2O3, ZnO and NiO with hierarchical porous structures were fabricated through replication wood’s morphology and structure. The synthetic mechanism was studied to optimize the parameters of morph-genetic technology, and wood-templated oxides with wood’s structures were fabricated successfully. The porous structures in multi-scales, the optical properties and the gas sensing properties of wood-templated oxides were researched in detail
Mihalcescu, Irina. « Analyse temporelle des mécanismes de luminescence du silicium poreux ». Université Joseph Fourier (Grenoble ; 1971-2015), 1994. http://www.theses.fr/1994GRE10210.
Texte intégralArroyos, Guilherme. « Síntese, caracterização e aplicações fotônicas de MOFs (metal-organic frameworks) de lantanídeos ». Universidade Estadual Paulista (UNESP), 2018. http://hdl.handle.net/11449/153184.
Texte intégralRejected by Ana Carolina Gonçalves Bet null (abet@iq.unesp.br), reason: Prezado Guilherme Arroyos, Solicitamos que realize a correção na submissão seguindo a orientação abaixo: Inclusão da Ficha Catalográfica no trabalho. Agradecemos a compreensão. on 2018-03-23T14:03:32Z (GMT)
Submitted by Guilherme Arroyos null (guiarroyos@gmail.com) on 2018-03-23T14:10:47Z No. of bitstreams: 1 DISSERTAÇÃO DE MESTRADO FINAL.pdf: 8591215 bytes, checksum: 599b8b89fcdc4e3ee1ee1be2261729c1 (MD5)
Approved for entry into archive by Ana Carolina Gonçalves Bet null (abet@iq.unesp.br) on 2018-03-23T17:23:06Z (GMT) No. of bitstreams: 1 arroyos_g_me_araiq_int.pdf: 8520705 bytes, checksum: 750f8f7bf0f7ffed7bba14f02afd5cf0 (MD5)
Made available in DSpace on 2018-03-23T17:23:06Z (GMT). No. of bitstreams: 1 arroyos_g_me_araiq_int.pdf: 8520705 bytes, checksum: 750f8f7bf0f7ffed7bba14f02afd5cf0 (MD5) Previous issue date: 2018-03-07
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Segundo a IUPAC, MOFs (Metal-Organic Frameworks) são definidos como polímeros de coordenação com uma estrutura aberta contendo cavidades potencialmente vazias. As MOFs podem ser sintetizadas utilizando íons lantanídeos como centros metálicos (LnMOFs) e por essa razão, apresentam luminescência somada às demais propriedades desta classe de materiais porosos. Dentro desse contexto, o objetivo deste trabalho foi a obtenção de LnMOFs visando aplicação na área de sensoriamento químico via luminescência. Os compostos foram sintetizados a partir dos cloretos de térbio (III), európio (III) e samário (III) hexahidratados (precursores metálicos) e dos ligantes ácidos malônico e 3,5-pirazoldicarboxílico. Os compostos de térbio e ligantes foram sintetizados em diferentes pHs, sendo que os valores iguais a 2, 4 e 5 conduziram a formação dos materiais TBM2, TBM4 e TBM5, respectivamente. Os sólidos de európio e samário foram sintetizados em pH igual a 5 (compostos EUM5 e SMM5, respectivamente). As sínteses foram realizadas utilizando micro-ondas e estufa solvotérmica. As amostras TBM4 e TBM5 obtidas via micro-ondas se organizam na forma de partículas com tamanhos entre 0,5 - 2 μm e morfologia esférica. Ensaios de caracterização demonstraram que se tratava do mesmo composto, exceto uma maior rugosidade nas partículas do TBM5. A cristalinidade do material foi baixa devido ao curto tempo de síntese, no entanto utilizando síntese solvotérmica (mais lenta) foi possível aumentar a cristalinidade. Há bandas características de ambos os ligantes na espectroscopia vibracional no infravermelho, assim como os deslocamentos de bandas ocasionados pela coordenação ao íon metálico. O composto apresentou boa estabilidade térmica, iniciando sua decomposição na temperatura de 455 °C. O material também apresentou intensa emissão de luz verde quando exposto à radiação ultravioleta. Esta propriedade de luminescência foi utilizada para os testes de sensoriamento de gás carbônico e íons cobre (II), apresentando variações na intensidade de emissão após exposição aos analitos. Após exposição ao CO2, a intensidade de luminescência aumentou, enquanto que após exposição ao Cu2+ a intensidade diminuiu, conforme a concentração. O composto EUM5 apresentou baixa intensidade de luminescência e o SMM5 não apresentou emissão de luz. O composto TBM2 via síntese solvotérmica foi obtido na forma de monocristais luminescentes. A técnica de difração de raios-X de monocristal elucidou a estrutura do material, onde foi possível observar que o ligante ácido malônico não coordenou neste caso. Foi investigada ainda nesse trabalho a influência da rota sintética e de alguns parâmetros experimentais (concentração dos reagentes, uso de modulador de coordenação) no tipo de produto formado.
According to IUPAC, MOFs (Metal-Organic Frameworks) are coordination polymers with an open structure containing potentially empty voids. MOFs can be synthesized using lanthanide ions as metal centers (LnMOFs) and therefore have luminescence added to the other properties of this porous materials class. In this context, the objective of this work was to obtain LnMOFs for chemical sensing application via luminescence. The compounds were synthesized from terbium (III), europium (III) and samarium (III) chlorides hexahydrates (metal precursors) and the malonic and 3,5-pyrazoledicarboxylic acid linkers. The compounds with terbium plus linkers were synthesized at different pHs, with values of 2, 4 and 5 leading to the formation of TBM2, TBM4 and TBM5 materials, respectively. The europium and samarium solids were synthesized at pH = 5 (compounds EUM5 and SMM5, respectively). The syntheses were microwave and solvothermic assisted. The TBM4 and TBM5 samples via microwave-assisted synthesis are organized in the form of particles with sizes between 0.5 - 2 μm and spherical morphology. Characterization tests showed both are the same compound, except for a greater roughness in the TBM5 particles. The crystallinity of the material was low due to the short synthesis time; however, by using solvothermic-assisted synthesis (slower) it was possible to increase the crystallinity. There are characteristic bands of both ligands in the infrared vibrational spectroscopy, as well as band displacements caused by coordination to the metal ion. The compound presented good thermal stability, initiating its decomposition at the temperature of 455.7 °C. The material also showed intense green light emission when exposed to ultraviolet radiation. This luminescence property was investigated for the carbon dioxide and copper (II) sensing tests, showing variations in emission intensity after exposure to analytes. After exposure to CO2, the intensity of luminescence increased, while after exposure to Cu2+ the intensity decreased, depending on the concentration. The compound EUM5 showed low luminescence intensity and SMM5 did not show emission. The TBM2 compound obtained via solvothermic synthesis organized itself in the form of luminescent single crystals. The single crystal X-ray diffraction technique elucidated the structure of the material, where it was possible to observe that the malonic acid binder did not coordinate in this case. The influence of the synthetic route and some experimental parameters (reagent concentration, use of coordination modulator) on the type of product were also investigated.
Gelloz, Bernard. « Contribution à l'étude des mécanismes de conduction du silicium poreux : application aux phénomènes de luminescence ». Université Joseph Fourier (Grenoble ; 1971-2015), 1997. http://www.theses.fr/1997GRE10153.
Texte intégralJuvenal, Frank. « Polymères de coordination luminescents 1D et 2D avec des ligands rigides contenant du Pt(II) montrants des propriétés d’adsorption du CO2 ». Mémoire, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/10578.
Texte intégralAbstract: The design of new functional materials has a long history. For the past two decades, the field of organic and inorganic polymers has attracted attention of researchers. More importantly, porous materials such as Metal Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs) as well as porous coordination polymers are now being intensively studied due to their potential applications including gas storage, gas separations, catalyst and sensing. On another hand, Pt-containing polymers have shown potential applications in solar cells and light emitting diodes. The masters’ thesis is mainly divided into three main sections presenting new results. In the first section; Chapter 2 mainly discusses the formation of coordination polymers with CuX salts (X= Cl, Br, I) and trans-[p-MeSC6H4C≡C-Pt(PMe3)2-C≡CC6H4SMe] (L1), in either PrCN or PhCN. The resulting polymers obtained were 2D (bidimensional) CPs or 1D (unidimensional) CPs in all cases. However, 2D CPs obtained when CuBr salt is used by either using PrCN or PhCN did not incorporate the solvents in their cavities. On the other hand, the 2D CP and the rest of 1D CPs obtained had either the crystallization molecules in the cavities or coordinated to the copper cluster. The copper-halide clusters were either the rhomboids Cu2X2 fragments or the step cubane Cu4I4. The photophysical measurements in the presence and absence of solvent crystallization molecules were performed. In addition, the porosity of the CPs was evaluated by adsorption isotherms. The vapochromism of the solvent-free 2D and 1D CPs were investigated as well as CO2 sorption measurements were perfomed. Furthermore, we then attempted to use CuCN and L1 in MeCN which is reported in the second section as Chapter 3. The obtained CP was unexpected as L1 broke and a cyanide (CN‾) ion coordinated to the Pt atom leading to the formation of zigzag 1D CP. The coordination bonds Cu-S or/and Cu([eta]2-C≡C) were generally observed with L1, but not in the CuCN case. Instead a 1D chain of (CuCN)n was made and the broken L1 now binds the chain via a Cu-N bond. The photophysical and thermal stability properties were studied. Lastly, the third section, Chapter 4 deals with a potential predictability of CP formation by using CuX salts (X= Cl, Br, I) and either trans-[p-MeSC6H4C≡C-Pt(PMe3)2-C≡CC6H4SMe] (L1) or trans-[p-MeSC6H4C≡C-Pt(PEt3)2-C≡CC6H4SMe] (L2) in MeCN as the solvent. The use of L1 resulted in either 2D or 1D CPs with the MeCN trapped inside of the cavities while L2 resulted in 1D CPs without MeCN being present in their cavities. The thermogravimetric, photophysical as well as gas sorption measurements (only for those with crystalisation molecules) were perfomed.
Toussaint, Kathleen. « Greffage de complexes de terres rares luminescents sur silicium cristallin et silicium nano-cristallin pour la détection de NO en phase gazeuse ». Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0107.
Texte intégralThis thesis is about the synthesis and characterization of luminescent nanostructures doped with rare earth ions that can be used as sensor for gases such as nitrogen monoxide (NO). Crystalline silicon, which is used as a substrate here, is a poor light emitter because of its indirect gap. It is challenging for the microelectronic and optical telecommunications industries to obtain optical properties, including emission, from this material. Thanks to quantum confinement in silicon nanostructures, a radiative emission can be obtained at room temperature. A possible way to enhance these properties is to modify the surface in such a way that it becomes optically active. In this work, complexes containing luminescent elements as lanthanides were grafted on the silicon surface. These elements are very interesting for optical applications because the wavelength of their emission peaks is almost independent of the environment and an emission from the blue to the near infrared can be obtained, depending on the rare earth. To produce inorganic/organic hybrid materials, different steps were developed and optimized during this work. So as to attach the rare-earth based complexes to the silicon surface, that surface is oxidized in order to generate reactive groups like silanols. A second required step is the functionalization of the surface by an aminosilane (APTES) which enables to link the silica surface and the complexes. To fix the optically active ions, it is necessary to complex the lanthanide ions with a ligand (DOTAGA) that can react with the ammine group to create a covalent bound of the complex. In this work, it is shown that the synthesized lanthanide complexes (Tb, Eu, Ce, Yb and Nd) are optically active and that after grafting on the silicon surface, Tb, Eu and Ce based complexes have a strong luminescence while Yb and Nd based complexes are weakly active. The same type of results are obtained when the complexes are grafted on porous silicon. Moreover, the effect of the environment, in particular a nitrogen oxide one, is studied on these samples in order to check whether they can be used as NO sensors
Laird, Mathilde. « Silsesquioxanes fonctionnalisés : des silsesquioxanes oligomériques parfaitement définis aux organosilices organisées par des agents structurants ». Thesis, Montpellier, Ecole nationale supérieure de chimie, 2019. http://www.theses.fr/2019ENCM0007.
Texte intégralSilsesquioxanes, which are a family of organic-inorganic hybrid silicas, can organize either in carefully controlled structures or polymerized networks. In this thesis, we approach the synthesis of such versatile structures in the following: (1) from monosilylated precursors to prepare oligomeric silsesquioxanes organized at the molecular scale and (2) from bridged organosilane precursors to obtain silsesquioxane networks organized at the mesoscale.Firstly, the synthesis of well-defined functional Janus tetrasilsesquioxanes with luminescent and coordinating functions on opposite faces is described. These tailored cyclic structures will be used for the modification of metal nanoparticle surfaces, which is particularly attractive for various applications such as imaging, sensing, catalysis, etc. Similarly, styryl-functionalized cage silsesquioxanes, including T8, T10, T12 and the first isolated T18 isomer, are prepared and fully characterized. In addition, T8 silsesquioxane with fluoride encapsulated within the cage (T8-F) is also synthesized and characterized. For the first time, the Si-F interaction is investigated as well as the functionalization of the T8-F and its integration into silica networks.Secondly, organization at the mesoscale is investigated, with particular focus on the controlled formation of pores in silsesquioxane networks. Surfactant templated bimodal periodic mesoporous organosilicas are synthesized from an organosilane precursor with bridging organic units, taking advantages of preferential partitioning of silanes within the various domains of block copolymer surfactant micelles. In addition, polysilylated dendrimers bearing degradable groups are prepared and their ability to generate functionalized pores by cleavage of the inner part of the dendrimer was demonstrated
Hory, Marie Anne. « Contribution à l'étude de la luminescence du silicium poreux : analyse infrarouge de la passivation de surface et effets de la polarisation électrique ». Université Joseph Fourier (Grenoble), 1995. http://www.theses.fr/1995GRE10150.
Texte intégralChen, Pengkun. « Titania and silica based hybrid porous nanomaterials : from synthesis to applications ». Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAF010/document.
Texte intégralMy PhD research focus on the synthesis, characterization and applications of silica, titania and zeolite based porous materials. Porous silica, titania and zeolite have been synthesized using different methodologies. Functionalized silica materials have been used for dye adsorption application which is useful for water treatment. A new cross-linked system and device have been created to enhance the adsorption ability and for large quantity of water treatment. By taking advantage of the pores, new method for Cu(0) cluster formation have been established. The photophysics of the Cu(0) clusters reduced from different copper source in different porous materials has been investigated. The use of the confinement for sensing has been demonstrated for small bio molecules, such as neurotransmitters. Several applications have been developed based on this artificial neurotransmitter receptors. Multi-functionalized mesoporous titania material has been used for bio-applications. Compare to the widely used silica material, its photoactivity could bring extra advantages. Finally, new types of hybrid organotitanium materials have been developed and their photocatalytic properties have been investigated
Brun, Nicolas. « Chimie intégrative pour la conception de matériaux poreux fonctionnels avancés et applications ». Phd thesis, Université Sciences et Technologies - Bordeaux I, 2010. http://tel.archives-ouvertes.fr/tel-00593936.
Texte intégralHsu, Ming-Yuh, et 許明裕. « Luminescence Properties of Porous Si and Porous SiGe ». Thesis, 1994. http://ndltd.ncl.edu.tw/handle/34516015906386793537.
Texte intégral國立交通大學
電子研究所
82
The luminescence properties of porous Si and porous SiGe was studied in this thesis. The SiGe alloy and related heterostructures have been a subject of intensive research recently because of the possibility of fabracting high speed devices. The porous SiGe and SiGe/Si heterostructures, however, were never throughly studied before. In this thesis, various porous Si and SiGe alloy layers with different thickness and compositions were investigated. The luminescence behavior was correlated with the layer parameters. It was found that the PL line width decreases as the porous layer become thicker indicating quantum behavior. The emission peak shifts toward long wavelength in SiGe samples as Ge composition increases. In SiGe/Si heterostructures, the intensity of the luminescence from SiGe increase dramatically as a result of carrier confinement provided by the heterostructure. The aging behaviors of porous Si and porous SiGe were also studied. We found that the luminescence intensity of SiGe has a much faster degradation rate than Si. From FTIR measurement, we found that the Si-H bonds are much weaker in SiGe than in Si. The breakdown of the Si-H bonds causes the degradation of luminescence in porous SiGe.
Kwong, Keri. « Encapsulation of luminescent polymers in porous alumina ». Thesis, 2001. http://hdl.handle.net/2429/11843.
Texte intégralTSENG, WEI-YU, et 曾偉毓. « The Study of Luminescence and Electrical Properties of the Porous Silicon ». Thesis, 2017. http://ndltd.ncl.edu.tw/handle/vguwpc.
Texte intégral大葉大學
電機工程學系
105
In this study, porous silicon flims are fabricated by electrochemical etching at room temperature. The silicon porosity was controlled by the dependence of current density etching of time. In the dependence of temperature, the energy gap is determined by photoluminescence measurement(PL). The surface morphology is analyzed by Scanning Electron Microscope(SEM) measurement. The electrical properties of porous silicon are measured by semiconductor devices parameter system. The influence of the different current density and different voltages in the band gap and the porosity are observed by setting 20 minutes etching time in the electric current from 1mA to 20mA. The variation of energy gap is about 0.16eV. The etching time is controlled from 5 minutes to 25 minutes at 5mA constant current. The shift of energy gap is about 0.11eV. Etching current density shows the blue-shift of the optical energy gap. The red-shift of energy gap is due to large porosity of porous silicon at the shorter etching time. The porous silicon energy gap is determined by temperature-dependent photoluminescence measurement(50K-300K).The activation energy of the porous silicon are figured out two characteristic features. The activation energy of below 200K is due to quantum tunneling effect. The activation energy is about 10.6meV at higher than 200K because of the influence of thermal effect.The electrical properties of porous silicon are measured by semiconductor devices parameter system. The result indicate that the porous silicon having the similar to schottky barrier diode in the negative bias. The reverse collapse voltage of -10.9V.
Zhang, Zhengwei. « The electrochemical synthesis and characterization of graphite intercalation compounds and luminescent porous silicon ». Thesis, 1995. http://hdl.handle.net/1957/34641.
Texte intégralHuang, Jack, et 黃志遠. « Luminescence properties of porous anodic alumina on Si substrates with metal interlayers ». Thesis, 2012. http://ndltd.ncl.edu.tw/handle/70584518585889759103.
Texte intégral長庚大學
電子工程學系
100
Porous anodic alumina (PAA) film which produced by the anodization technique has a nano-scale porous structure in mass production and the pore height and diameter are controllable. This work aims to study effect of current density on luminescence properties of porous anodic alumina. Metal interlayer was observed to have significant influences on porous anodic alumina. We used highly pure Al film (about 2.0 μm) which was deposited on the p-type silicon substrate and coated with a Ti and W metal interlayer (about 300 nm) by radio frequency sputtering. The anodization was carried out in 0.3 M oxalic acid solution at 5 °C temperature, 40 V for about 50 nm pores in diameter. A layer of thin Ti and W film was sandwiched between a silicon substrate and an Al film to form the Al/Ti/Si and Al/W/Si structure. Current–time (I–t) curve was obtained on a recorder. The PAA/Ti/Si and PAA/W/Si had current density higher than AAO/Si. Further studies into the growth kinetics of porous layers which formed by anodization in oxalic acid under galvanostatic conditions have shown that the rate of growth of the oxide layer increases with increasing current density. From the XRD experiment consequence can discover that PAA of higher current density have more Aluminum oxide in the inside different substance structure. Besides, we get the consequence from analyzing PL experiment when a current density rise, the PL intensity of F+ center getting increase and that because during re-crystallize, oxygen will make up the oxygen vacancy of Aluminum oxide’s inside and reduce F+ defect.
Jiang, Ping-Ju, et 江秉儒. « Room-temperature luminescence study of Er-doped porous silicon processed by rapid thermal oxidization ». Thesis, 2005. http://ndltd.ncl.edu.tw/handle/69999370934019477315.
Texte intégral國立交通大學
光電工程系所
93
We successfully employed rapid thermal oxidized porous silicon (PS) to create silicon nanocrystals (nc-Si). In order to observe the size and the characteristics, experiments on different samples were investigated via transmission electron microscope (TEM)、Raman scattering and photoluminescence. After that, we doped Er ions into silicon rich SiO2 (SRSO) structure and successfully observed the infrared photoluminescence at 1.54μm from Er ions. The relations between infrared photoluminescence and average size of nc-Si were discussed in this study. In this work, we controlled different current density to vary the silicon porosity. The different average size of nc-Si were formed by changing the silicon porosity and rapid thermal oxidization. We observe the red-shift of Raman scattering and the blue-shift of visible photoluminescence from the average size of nc-Si. The intensity of infrared photoluminescence at 1.54μm from Er ions would increase as the decreasing of the average size of nc-Si. This fact means that the Er ions are excited by energy transfer process from the excited nc-Si and the conversion efficiency has relations with the average size of nc-Si.
Chen, Yen Ju, et 陳彥儒. « Characterization of luminescence properties in the self-ordered porous anodic alumina grown by oxalic acid electrolytes ». Thesis, 2009. http://ndltd.ncl.edu.tw/handle/98260013509279929992.
Texte intégral長庚大學
光電工程研究所
97
Porous anodic alumina (PAA) film produced by the anodization technique has a nanoscale porous structure in mass production and the pore height and diameter are controllable and was applied in the fabrication of visible spectral range optical devices. In order to characterize the luminescence properties, we have formed the self-ordered PAA films which evaporated onto silicon substrates. In this work, the anomalous luminescence properties of carrier confinement in PAA films have been investigated by introducing oxalic acid electrolyte into the anodization technique. The temperature-dependent photoluminescence (PL) spectra were measured to characterize the recombination mechanisms. From the PL spectra of PAA films, it has found the asymmetrical luminescence profile in the blue emission region. It was used the Gaussian function to divided into two subbands which originate in two kinds of different oxygen-deficient defect centers, i.e., F+ (oxygen vacancy with only one electron) and F (oxygen vacancy with two electrons) centers, respectively. The density of the F centers is the largest on the surface, followed by a gradual decrease with an increase in the pore wall depth and electrolyte concentration. However, it was observed the reverse trend of the F+ centers. In strong contrast to a commonly expected trend of uniformly reduced non-radiative recombination with decreasing the lattice temperature, anomalous low-temperature PL growing and declining is observed between the F and F+ centers. The theoretical models are invoked to corroborate the anomalous temperature behaviors. All the calculations are agreement with the experimental observations.
Nikolov, Anastas [Verfasser]. « Determination of the composition and size of the luminescent particles in porous silicon by thermal effusion of hydrogen / Anastas Nikolov ». 2005. http://d-nb.info/978153650/34.
Texte intégralShinde, Satish Laxman. « Thermal Oxidation Strategies for the Synthesis of Binary Oxides and their Applications ». Thesis, 2014. http://etd.iisc.ernet.in/handle/2005/2899.
Texte intégral