Articles de revues sur le sujet « Polypyridyl complex »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Polypyridyl complex.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Polypyridyl complex ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Martínez-Alonso, Marta, et Gilles Gasser. « Ruthenium polypyridyl complex-containing bioconjugates ». Coordination Chemistry Reviews 434 (mai 2021) : 213736. http://dx.doi.org/10.1016/j.ccr.2020.213736.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Martin, Aaron, Aisling Byrne, Ciarán Dolan, Robert J. Forster et Tia E. Keyes. « Solvent switchable dual emission from a bichromophoric ruthenium–BODIPY complex ». Chemical Communications 51, no 87 (2015) : 15839–41. http://dx.doi.org/10.1039/c5cc07135f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Margonis, Caroline M., Marissa Ho, Benjamin D. Travis, William W. Brennessel et William R. McNamara. « Iron polypyridyl complex adsorbed on carbon surfaces for hydrogen generation ». Chemical Communications 57, no 62 (2021) : 7697–700. http://dx.doi.org/10.1039/d1cc02131a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Singh, Vikram, Prakash Chandra Mondal, Megha Chhatwal, Yekkoni Lakshmanan Jeyachandran et Michael Zharnikov. « Catalytic oxidation of ascorbic acid via copper–polypyridyl complex immobilized on glass ». RSC Adv. 4, no 44 (2014) : 23168–76. http://dx.doi.org/10.1039/c4ra00817k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

He, Chixian, Shiwen Yu, Shuye Ma, Zining Liu, Lifeng Yao, Feixiang Cheng et Pinhua Liu. « A Novel Ruthenium(II) Polypyridyl Complex Bearing 1,8-Naphthyridine as a High Selectivity and Sensitivity Fluorescent Chemosensor for Cu2+ and Fe3+ Ions ». Molecules 24, no 22 (7 novembre 2019) : 4032. http://dx.doi.org/10.3390/molecules24224032.

Texte intégral
Résumé :
A novel ruthenium(II) polypyridyl complex bearing 1,8-naphthyridine was successfully designed and synthesized. This complex was fully characterized by EI-HRMS, NMR, and elemental analyses. The recognition properties of the complex for various metal ions were investigated. The results suggested that the complex displayed high selectivity and sensitivity for Cu2+ and Fe3+ ions with good anti-interference in the CH3CN/H2O (1:1, v/v) solution. The fluorescent chemosensor showed obvious fluorescence quenching when the Cu2+ and Fe3+ ions were added. The detection limits of Cu2+ and Fe3+ were 39.9 nmol/L and 6.68 nmol/L, respectively. This study suggested that this Ru(II) polypyridyl complex can be used as a high selectivity and sensitivity fluorescent chemosensor for Cu2+ and Fe3+ ions.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lee, Sze Koon, Mio Kondo, Go Nakamura, Masaya Okamura et Shigeyuki Masaoka. « Low-overpotential CO2 reduction by a phosphine-substituted Ru(ii) polypyridyl complex ». Chemical Communications 54, no 50 (2018) : 6915–18. http://dx.doi.org/10.1039/c8cc02150c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Pierroz, Vanessa, Riccardo Rubbiani, Christian Gentili, Malay Patra, Cristina Mari, Gilles Gasser et Stefano Ferrari. « Dual mode of cell death upon the photo-irradiation of a RuIIpolypyridyl complex in interphase or mitosis ». Chemical Science 7, no 9 (2016) : 6115–24. http://dx.doi.org/10.1039/c6sc00387g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Yamaguchi, Eiji, Nao Taguchi et Akichika Itoh. « Ruthenium polypyridyl complex-catalysed aryl alkoxylation of styrenes : improving reactivity using a continuous flow photo-microreactor ». Reaction Chemistry & ; Engineering 4, no 6 (2019) : 995–99. http://dx.doi.org/10.1039/c9re00061e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Li, Shuang, Gang Xu, Yuhua Zhu, Jian Zhao et Shaohua Gou. « Bifunctional ruthenium(ii) polypyridyl complexes of curcumin as potential anticancer agents ». Dalton Transactions 49, no 27 (2020) : 9454–63. http://dx.doi.org/10.1039/d0dt01040e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Azar, Daniel F., Hassib Audi, Stephanie Farhat, Mirvat El-Sibai, Ralph J. Abi-Habib et Rony S. Khnayzer. « Phototoxicity of strained Ru(ii) complexes : is it the metal complex or the dissociating ligand ? » Dalton Transactions 46, no 35 (2017) : 11529–32. http://dx.doi.org/10.1039/c7dt02255g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Liao, Xiangwen, Guijuan Jiang, Jintao Wang, Xuemin Duan, Zhouyuji Liao, Xiaoli Lin, Jihong Shen, Yanshi Xiong et Guangbin Jiang. « Two ruthenium polypyridyl complexes functionalized with thiophen : synthesis and antibacterial activity against Staphylococcus aureus ». New Journal of Chemistry 44, no 40 (2020) : 17215–21. http://dx.doi.org/10.1039/d0nj02944k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Lieske, Lauren E., Arnold L. Rheingold et Charles W. Machan. « Electrochemical reduction of carbon dioxide with a molecular polypyridyl nickel complex ». Sustainable Energy & ; Fuels 2, no 6 (2018) : 1269–77. http://dx.doi.org/10.1039/c8se00027a.

Texte intégral
Résumé :
The synthesis and reactivity of a molecular nickel(ii) complex 1 with the polypyridyl ligand framework N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine under electrochemically reducing conditions in the presence of CO2 is reported.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Viere, Erin J., Ashley E. Kuhn, Margaret H. Roeder, Nicholas A. Piro, W. Scott Kassel, Timothy J. Dudley et Jared J. Paul. « Spectroelectrochemical studies of a ruthenium complex containing the pH sensitive 4,4′-dihydroxy-2,2′-bipyridine ligand ». Dalton Transactions 47, no 12 (2018) : 4149–61. http://dx.doi.org/10.1039/c7dt04554a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Zhao, Xueze, Mingle Li, Wen Sun, Jiangli Fan, Jianjun Du et Xiaojun Peng. « An estrogen receptor targeted ruthenium complex as a two-photon photodynamic therapy agent for breast cancer cells ». Chemical Communications 54, no 51 (2018) : 7038–41. http://dx.doi.org/10.1039/c8cc03786h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Gill, Martin R., Michael G. Walker, Sarah Able, Ole Tietz, Abirami Lakshminarayanan, Rachel Anderson, Rod Chalk et al. « An 111In-labelled bis-ruthenium(ii) dipyridophenazine theranostic complex : mismatch DNA binding and selective radiotoxicity towards MMR-deficient cancer cells ». Chemical Science 11, no 33 (2020) : 8936–44. http://dx.doi.org/10.1039/d0sc02825h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Ocakoglu, Kasim, et Salih Okur. « Humidity sensing properties of novel ruthenium polypyridyl complex ». Sensors and Actuators B : Chemical 151, no 1 (novembre 2010) : 223–28. http://dx.doi.org/10.1016/j.snb.2010.09.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Brewster, Timothy P., Wendu Ding, Nathan D. Schley, Nilay Hazari, Victor S. Batista et Robert H. Crabtree. « Thiocyanate Linkage Isomerism in a Ruthenium Polypyridyl Complex ». Inorganic Chemistry 50, no 23 (5 décembre 2011) : 11938–46. http://dx.doi.org/10.1021/ic200950e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Vilvamani, Narayanasamy, Tarkeshwar Gupta, Rinkoo Devi Gupta et Satish Kumar Awasthi. « Bottom-up molecular-assembly of Ru(ii)polypyridyl complex-based hybrid nanostructures decorated with silver nanoparticles : effect of Ag nitrate concentration ». RSC Adv. 4, no 38 (2014) : 20024–30. http://dx.doi.org/10.1039/c4ra01347f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Shi, Hongdong, Tiantian Fang, Yao Tian, Hai Huang et Yangzhong Liu. « A dual-fluorescent nano-carrier for delivering photoactive ruthenium polypyridyl complexes ». Journal of Materials Chemistry B 4, no 27 (2016) : 4746–53. http://dx.doi.org/10.1039/c6tb01070a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Xiong, Zushuang, Jing-Xiang Zhong, Zhennan Zhao et Tianfeng Chen. « Biocompatible ruthenium polypyridyl complexes as efficient radiosensitizers ». Dalton Transactions 48, no 13 (2019) : 4114–18. http://dx.doi.org/10.1039/c9dt00333a.

Texte intégral
Résumé :
A biocompatible ruthenium polypyridyl complex has been rationally designed, which could self-assemble into nanoparticles in aqueous solution to enhance the solubility and biocompatibility, and could synergistically realize simultaneous cancer chemo-radiotherapy.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Mori, Kohsuke, Masayoshi Kawashima et Hiromi Yamashita. « Visible-light-enhanced Suzuki–Miyaura coupling reaction by cooperative photocatalysis with an Ru–Pd bimetallic complex ». Chem. Commun. 50, no 93 (2014) : 14501–3. http://dx.doi.org/10.1039/c4cc03682d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Mede, Tina, Michael Jäger et Ulrich S. Schubert. « “Chemistry-on-the-complex” : functional RuIIpolypyridyl-type sensitizers as divergent building blocks ». Chemical Society Reviews 47, no 20 (2018) : 7577–627. http://dx.doi.org/10.1039/c8cs00096d.

Texte intégral
Résumé :
Ruthenium polypyridyl type complexes are potent photoactive compounds, and have found – among others – a broad range of important applications in the fields of biomedical diagnosis and phototherapy, energy conversion schemes such as dye-sensitized solar cells (DSSCs) and molecular assemblies for tailored photo-initiated processes.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Du, Enming, Xunwu Hu, Sona Roy, Peng Wang, Kieran Deasy, Toshiaki Mochizuki et Ye Zhang. « Taurine-modified Ru(ii)-complex targets cancerous brain cells for photodynamic therapy ». Chemical Communications 53, no 44 (2017) : 6033–36. http://dx.doi.org/10.1039/c7cc03337k.

Texte intégral
Résumé :
Symmetrical taurine modification not only enhances the intracellular affinity of a polypyridyl Ru-complex to cancer cells, but also boosts the quantum yield in a pH-independent manner without sacrificing water solubility for cytosolic photosensitizers of photodynamic therapy, with prominent efficacy in cancerous brain cells.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Vilvamani, Narayanasamy, Rinkoo Devi Gupta et Satish Kumar Awasthi. « Ru(ii)–polypyridyl complex-grafted silica nanohybrids : versatile hybrid materials for Raman spectroscopy and photocatalysis ». RSC Advances 5, no 18 (2015) : 13451–61. http://dx.doi.org/10.1039/c4ra14202k.

Texte intégral
Résumé :
Ru(ii)–polypyridyl complex-grafted silica nanohybrids were prepared with and without Ag NP cores, and these materials are demonstrated as substrates for plasmon-based on-resonance Raman scattering studies and as photocatalysts.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Zhou, Xue-Quan, Anja Busemann, Michael S. Meijer, Maxime A. Siegler et Sylvestre Bonnet. « The two isomers of a cyclometallated palladium sensitizer show different photodynamic properties in cancer cells ». Chemical Communications 55, no 32 (2019) : 4695–98. http://dx.doi.org/10.1039/c8cc10134e.

Texte intégral
Résumé :
This report demonstrates that changing the position of the carbon-metal bond in a polypyridyl cyclopalladated complex, i.e. going from PdL1 (N^N^C^N) to PdL2 (N^N^N^C), dramatically influences the photodynamic properties of the complex in cancer cells.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Queyriaux, N., K. Abel, J. Fize, J. Pécaut, M. Orio et L. Hammarström. « From non-innocent to guilty : on the role of redox-active ligands in the electro-assisted reduction of CO2 mediated by a cobalt(ii)-polypyridyl complex ». Sustainable Energy & ; Fuels 4, no 7 (2020) : 3668–76. http://dx.doi.org/10.1039/d0se00570c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Liu, Yanming, Xinfei Fan, Animesh Nayak, Ying Wang, Bing Shan, Xie Quan et Thomas J. Meyer. « Steering CO2electroreduction toward ethanol production by a surface-bound Ru polypyridyl carbene catalyst on N-doped porous carbon ». Proceedings of the National Academy of Sciences 116, no 52 (10 décembre 2019) : 26353–58. http://dx.doi.org/10.1073/pnas.1907740116.

Texte intégral
Résumé :
Electrochemical reduction of CO2to multicarbon products is a significant challenge, especially for molecular complexes. We report here CO2reduction to multicarbon products based on a Ru(II) polypyridyl carbene complex that is immobilized on an N-doped porous carbon (RuPC/NPC) electrode. The catalyst utilizes the synergistic effects of the Ru(II) polypyridyl carbene complex and the NPC interface to steer CO2reduction toward C2 production at low overpotentials. In 0.5 M KHCO3/CO2aqueous solutions, Faradaic efficiencies of 31.0 to 38.4% have been obtained for C2 production at −0.87 to −1.07 V (vs. normal hydrogen electrode) with 21.0 to 27.5% for ethanol and 7.1 to 12.5% for acetate. Syngas is also produced with adjustable H2/CO mole ratios of 2.0 to 2.9. The RuPC/NPC electrocatalyst maintains its activity during 3-h CO2-reduction periods.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Unjaroen, Duenpen, Johann B. Kasper et W. R. Browne. « Reversible photochromic switching in a Ru(ii) polypyridyl complex ». Dalton Trans. 43, no 45 (2014) : 16974–76. http://dx.doi.org/10.1039/c4dt02430c.

Texte intégral
Résumé :
Fully reversible photoswitching of the coordination mode of the ligand MeN4Py (1,1-di(pyridin-2-yl)-N,N′-bis(pyridin-2-yl-methyl)-ethan-1-amine) in its ruthenium(ii) complex with visible light is reported.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Puckett, Cindy A., et Jacqueline K. Barton. « Mechanism of Cellular Uptake of a Ruthenium Polypyridyl Complex† ». Biochemistry 47, no 45 (11 novembre 2008) : 11711–16. http://dx.doi.org/10.1021/bi800856t.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Mazuryk, Olga, Franck Suzenet, Claudine Kieda et Małgorzata Brindell. « The biological effect of the nitroimidazole derivative of a polypyridyl ruthenium complex on cancer and endothelial cells ». Metallomics 7, no 3 (2015) : 553–66. http://dx.doi.org/10.1039/c5mt00037h.

Texte intégral
Résumé :
The studied Ru polypyridyl complexes are ca. ten times more cytotoxic against breast cancer (4T1) and human lung adenocarcinoma epithelial cells (A549) than cisplatin and have a distinct impact on cell adhesion, migration and endothelial cell vasculature.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Martín Morales, Elena, Yannick Coppel, Pierre Lecante, Iker del Rosal, Romuald Poteau, Jérôme Esvan, Pierre Sutra, Karine Philippot et Alain Igau. « When organophosphorus ruthenium complexes covalently bind to ruthenium nanoparticles to form nanoscale hybrid materials ». Chemical Communications 56, no 29 (2020) : 4059–62. http://dx.doi.org/10.1039/d0cc00442a.

Texte intégral
Résumé :
A schematic view of the nano hybrid material [RuPMe]+–RuNP in solution (left) and theoretical modeling of the covalent coordination mode of the organophosphorus polypyridyl ruthenium [RuPMe]+ complex at the RuNP surface (right).
Styles APA, Harvard, Vancouver, ISO, etc.
32

O’Neill, Luke, Laura Perdisatt et Christine O’Connor. « Structure-Property Relationships for a Series of Ruthenium(II) Polypyridyl Complexes Elucidated through Raman Spectroscopy ». Journal of Spectroscopy 2018 (1 novembre 2018) : 1–11. http://dx.doi.org/10.1155/2018/3827130.

Texte intégral
Résumé :
A series of ruthenium polypyridyl complexes were studied using Raman spectroscopy supported by UV/Vis absorption, luminescence spectroscopy, and luminescence lifetime determination by time-correlated single photon counting (TCSPC). The complexes were characterised to determine the influence of the variation of the conjugation across the main polypyridyl ligand. The systematic and sequential variation of the main polypyridyl ligand, 2-(4-formylphenyl)imidazo[4,5-f][1,10]phenanthroline (FPIP), 2-(4-cyanophenyl)imidazo[4,5-f][1,10]phenanthroline (CPIP), 2-(4-bromophenyl)imidazo[4,5-f][1,10]phenanthroline (BPIP), and 2-(4-nitrophenyl)imidazo[4,5-f][1,10]phenanthroline (NPIP) ligands, allowed the monitoring of very small changes in the ligands electronic nature. Complexes containing a systematic variation of the position (para, meta, and ortho) of the nitrile terminal group on the ligand (the para being 2-(4-cyanophenyl)imidazo[4,5-f][1,10]phenanthroline (p-CPIP), the meta 2-(3-cyanophenyl)imidazo[4,5-f][1,10]phenanthroline (m-CPIP) and 2-(2-cyanophenyl)imidazo[4,5-f][1,10]phenanthroline (o-CPIP)) were also characterised. Absorption, emission characteristics, and luminescence yields were calculated and correlated with structural variation. It was found that both the electronic changes in the aforementioned ligands showed very small spectral changes with an accompanying complex relationship when examined with traditional electronic methods. Stokes shift and Raman spectroscopy were then employed as a means to directly gauge the effect of polypyridyl ligand change on the conjugation and vibrational characteristics of the complexes. Vibrational coherence as measured as a function of the shifted frequency of the imizodale bridge was shown to accurately describe the electronic coherence and hence vibrational cooperation from the ruthenium centre to the main polypyridyl ligand. The well-defined trends established and elucidated though Raman spectroscopy show that the variation of the polypyridyl ligand can be monitored and tailored. This allows for a greater understanding of the electronic and excited state characteristics of the ruthenium systems when traditional electronic spectroscopy lacks the sensitivity.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Ramachandran, Mohanraj, Sambandam Anandan et Muthupandian Ashokkumar. « A luminescent on–off probe based calix[4]arene linked through triazole with ruthenium(ii) polypyridine complexes to sense copper(ii) and sulfide ions ». New Journal of Chemistry 43, no 25 (2019) : 9832–42. http://dx.doi.org/10.1039/c9nj01632e.

Texte intégral
Résumé :
The supramolecular sensor Ru2L was designed by joining a bis-ruthenium(ii) polypyridyl complex with a p-tert-butyl calix[4]arene platform through a 1,2,3-triazole linker and used for sensing of copper(ii) and sulfide ions by fluorescence.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Azad, Uday Pratap, Dharmendra Kumar Yadav, Vellaichamy Ganesan et Frank Marken. « Hydrophobicity effects in iron polypyridyl complex electrocatalysis within Nafion thin-film electrodes ». Physical Chemistry Chemical Physics 18, no 33 (2016) : 23365–73. http://dx.doi.org/10.1039/c6cp04758k.

Texte intégral
Résumé :
Four polypyridyl redox catalysts Fe(bp)32+, Fe(ph)32+, Fe(dm)32+, and Fe(tm)32+ (with bp, ph, dm, and tm representing 2,2′-bipyridine, 1,10-phenanthroline, 4,4′-dimethyl-2,2′-bipyridine, and 3,4,7,8-tetramethyl-1,10-phenanthroline, respectively) are investigated for the electrocatalytic oxidation of three analytes (nitrite, arsenite, and isoniazid).
Styles APA, Harvard, Vancouver, ISO, etc.
35

Guo, Xusheng, Chao Li, Weibo Wang, Baowen Zhang, Yuanjun Hou, Xuesong Wang et Qianxiong Zhou. « Electronic effects on polypyridyl Co complex-based water reduction catalysts ». RSC Advances 11, no 39 (2021) : 24359–65. http://dx.doi.org/10.1039/d1ra02435c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Polson, Matthew I. J., Garry S. Hanan, Nicholas J. Taylor, Bernold Hasenknopf et Ren� Thouvenot. « The first solid state structure of a triruthenium polypyridyl complex ». Chemical Communications, no 11 (2004) : 1314. http://dx.doi.org/10.1039/b401276c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Horn, Sabine, Hamid M. Y. Ahmed, Helen P. Hughes, Suraj Soman, Wesley R. Browne et Johannes G. Vos. « Photoinduced ligand isomerisation in a pyrazine-containing ruthenium polypyridyl complex ». Photochemical & ; Photobiological Sciences 9, no 7 (2010) : 985. http://dx.doi.org/10.1039/c0pp00054j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Deshpande, Megha S., Anupa A. Kumbhar et Avinash S. Kumbhar. « Hydrolytic Cleavage of DNA by a Ruthenium(II) Polypyridyl Complex ». Inorganic Chemistry 46, no 14 (juillet 2007) : 5450–52. http://dx.doi.org/10.1021/ic070331d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Marin, Veronica, Elisabeth Holder, Michael A. R. Meier, Richard Hoogenboom et Ulrich S. Schubert. « A Mixed Ruthenium Polypyridyl Complex Containing a PEG-Bipyridine Macroligand ». Macromolecular Rapid Communications 25, no 7 (avril 2004) : 793–98. http://dx.doi.org/10.1002/marc.200300299.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Maeda, Kazuhiko, Takayoshi Oshima et Osamu Ishitani. « Emission spectroscopy of a ruthenium(ii) polypyridyl complex adsorbed on calcium niobate lamellar solids and nanosheets ». Physical Chemistry Chemical Physics 17, no 27 (2015) : 17962–66. http://dx.doi.org/10.1039/c5cp02050f.

Texte intégral
Résumé :
Electron injection from the excited state of a Ru(ii) polypyridyl complex occurs not only in the conduction band of HCa2Nb3O10 but also surface traps whose density is strongly dependent on both the morphological feature and the preparation method of HCa2Nb3O10.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Soliman, Nancy, Vincent Sol, Tan-Sothea Ouk, Christophe M. Thomas et Gilles Gasser. « Encapsulation of a Ru(II) Polypyridyl Complex into Polylactide Nanoparticles for Antimicrobial Photodynamic Therapy ». Pharmaceutics 12, no 10 (13 octobre 2020) : 961. http://dx.doi.org/10.3390/pharmaceutics12100961.

Texte intégral
Résumé :
Antimicrobial photodynamic therapy (aPDT) also known as photodynamic inactivation (PDI) is a promising strategy to eradicate pathogenic microorganisms such as Gram-positive and Gram-negative bacteria. This therapy relies on the use of a molecule called photosensitizer capable of generating, from molecular oxygen, reactive oxygen species including singlet oxygen under light irradiation to induce bacteria inactivation. Ru(II) polypyridyl complexes can be considered as potential photosensitizers for aPDT/PDI. However, to allow efficient treatment, they must be able to penetrate bacteria. This can be promoted by using nanoparticles. In this work, ruthenium-polylactide (RuPLA) nanoconjugates with different tacticities and molecular weights were prepared from a Ru(II) polypyridyl complex, RuOH. Narrowly-dispersed nanoparticles with high ruthenium loadings (up to 53%) and an intensity-average diameter < 300 nm were obtained by nanoprecipitation, as characterized by dynamic light scattering (DLS). Their phototoxicity effect was evaluated on four bacterial strains (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa) and compared to the parent compound RuOH. RuOH and the nanoparticles were found to be non-active towards Gram-negative bacterial strains. However, depending on the tacticity and molecular weight of the RuPLA nanoconjugates, differences in photobactericidal activity on Gram-positive bacterial strains have been evidenced whereas RuOH remained non active.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Liao, Guojian, Zhengyuan Ye, Yunlu Liu, Bin Fu et Chen Fu. « Octahedral ruthenium (II) polypyridyl complexes as antimicrobial agents against mycobacterium ». PeerJ 5 (27 avril 2017) : e3252. http://dx.doi.org/10.7717/peerj.3252.

Texte intégral
Résumé :
Tuberculosis is one of the world’s deadliest infectious disease with 1.5 millions deaths annually. It is imperative to discover novel compounds with potent activity against M. tuberculosis. In this study, susceptibilities of M. smegmatis to the octahedral ruthenium(II) polypyridyl complexes, 1 {[(bpy)3Ru] (PF6)2 (bpy = 2,2′-bipyridine)}, 2 {[(phen)2Ru(dppz)](PF6)2 (phen = 1,10-phenanthroline, dppz = dipyridophenazine)} and 3 {[(phen)3Ru](PF6)2} were measured by broth microdilution and reported as the MIC values. Toxicities of complex 3 to LO2 and hepG2 cell lines were also measured. Complex 2 inhibited the growth of M. smegmatis with MIC value of 2 µg/mL, while complex 3 was bactericidal with MIC value of 26 µg/mL. Furthermore, the bactericidal activity of complex 3 was dependent on reactive oxygen species production. Complex 3 showed no cytotoxicity against LO2 and hepG2 cell lines at concentration as high as 64 µg/mL, paving the way for further optimization and development as a novel antibacterial agent for the treatment of M. tuberculosis infection.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Chen, Tianfeng, Wen-Jie Mei, Yum-Shing Wong, Jie Liu, Yanan Liu, Huang-Song Xie et Wen-Jie Zheng. « Chiral ruthenium polypyridyl complexes as mitochondria-targeted apoptosis inducers ». MedChemComm 1, no 1 (2010) : 73–75. http://dx.doi.org/10.1039/c0md00060d.

Texte intégral
Résumé :
A series of chiral ruthenium polypyridyl complexes have been synthesized and evaluated for their in vitro anticancer activities. Λ-[Ru(bpy)2(o-tFMPIP)]Cl2·3H2O was identified as a novel complex that was able to induce mitochondria-mediated apoptosis in melanoma A375 cells through regulation of Bcl-2 family members and activation of caspases.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Patterson, Bradley T., et F. Richard Keene. « Synthetic Routes to Ruthenium(II) Species Containing Carboxylate-Functionalized 2,2′-Bipyridine Ligands ». Australian Journal of Chemistry 51, no 11 (1998) : 999. http://dx.doi.org/10.1071/c98090.

Texte intégral
Résumé :
Two methods are reported for the incorporation of carboxylate substituents on polypyridyl ligands coord- inated to ruthenium(II) centres. In the first, a precursor complex is synthesized with ethoxycarbonyl groups which are subsequently base-hydrolysed to produce the carboxylate in high yield (–CO2Et → –CO2H). In the second method, ruthenyl (RuIV =O) species were used to chemically catalyse the electochemical oxidation of methyl substituents on the ligands of a precursor complex to produce the target carboxylate species (–CH3 → –CO2H).
Styles APA, Harvard, Vancouver, ISO, etc.
45

Døssing, Anders, Søren M. Kristensen, Hans Toftlund, Juliusz A. Wolny, Terje Thomassen, Benita H. Forngren, Tobias Forngren et al. « A Fluxional Lanthanum(III) Polypyridyl Complex. A Nuclear Magnetic Resonance Investigation. » Acta Chemica Scandinavica 53 (1999) : 575–80. http://dx.doi.org/10.3891/acta.chem.scand.53-0575.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

McQuaid, Kane T., Shuntaro Takahashi, Lena Baumgaertner, David J. Cardin, Neil G. Paterson, James P. Hall, Naoki Sugimoto et Christine J. Cardin. « Ruthenium Polypyridyl Complex Bound to a Unimolecular Chair-Form G-Quadruplex ». Journal of the American Chemical Society 144, no 13 (24 mars 2022) : 5956–64. http://dx.doi.org/10.1021/jacs.2c00178.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Ganesan, V., et R. Ramaraj. « Extrazeolite Electron Transfer at Zeolite-Encapsulated Polypyridyl Metal Complex Coated Electrodes ». Langmuir 14, no 9 (avril 1998) : 2497–501. http://dx.doi.org/10.1021/la970658z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Rai, Surabhi, Karunamay Majee, Manaswini Raj, Asit Pahari, Jully Patel et Sumanta Kumar Padhi. « Electrocatalytic proton and water reduction by a Co(III) polypyridyl complex ». Polyhedron 159 (février 2019) : 127–34. http://dx.doi.org/10.1016/j.poly.2018.11.053.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Thangavel, Nandhini, Indhumathi Jayakumar, Mukund Ravichandran, Vaidyanathan Vaidyanathan Ganesan et Balachandran Unni Nair. « Photocrosslinking of collagen using Ru(II)-polypyridyl complex functionalized gold nanoparticles ». Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy 215 (mai 2019) : 196–202. http://dx.doi.org/10.1016/j.saa.2019.02.098.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Fin, Lan, et Pin Yang. « Synthesis and DNA binding studies of cobalt (III) mixed-polypyridyl complex ». Journal of Inorganic Biochemistry 68, no 2 (novembre 1997) : 79–83. http://dx.doi.org/10.1016/s0162-0134(97)00004-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie