Littérature scientifique sur le sujet « Polymersomes Janus »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Polymersomes Janus ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Polymersomes Janus"

1

Wang, Zhipeng, Floris P. J. T. Rutjes et Jan C. M. van Hest. « pH responsive polymersome Pickering emulsion for simple and efficient Janus polymersome fabrication ». Chem. Commun. 50, no 93 (2014) : 14550–53. http://dx.doi.org/10.1039/c4cc07048h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Li, Shanlong, Chunyang Yu et Yongfeng Zhou. « Computational design of Janus polymersomes with controllable fission from double emulsions ». Physical Chemistry Chemical Physics 22, no 43 (2020) : 24934–42. http://dx.doi.org/10.1039/d0cp04561f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Mihali, Voichita, Michal Skowicki, Daniel Messmer et Cornelia G. Palivan. « Clusters of polymersomes and Janus nanoparticles hierarchically self-organized and controlled by DNA hybridization ». Nano Today 48 (février 2023) : 101741. http://dx.doi.org/10.1016/j.nantod.2022.101741.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kuperkar, Ketan, Dhruvi Patel, Leonard Ionut Atanase et Pratap Bahadur. « Amphiphilic Block Copolymers : Their Structures, and Self-Assembly to Polymeric Micelles and Polymersomes as Drug Delivery Vehicles ». Polymers 14, no 21 (3 novembre 2022) : 4702. http://dx.doi.org/10.3390/polym14214702.

Texte intégral
Résumé :
Self-assembly of amphiphilic block copolymers display a multiplicity of nanoscale periodic patterns proposed as a dominant tool for the ‘bottom-up’ fabrication of nanomaterials with different levels of ordering. The present review article focuses on the recent updates to the self-association of amphiphilic block copolymers in aqueous media into varied core-shell morphologies. We briefly describe the block copolymers, their types, microdomain formation in bulk and micellization in selective solvents. We also discuss the characteristic features of block copolymers nanoaggregates viz., polymer micelles (PMs) and polymersomes. Amphiphilic block copolymers (with a variety of hydrophobic blocks and hydrophilic blocks; often polyethylene oxide) self-assemble in water to micelles/niosomes similar to conventional nonionic surfactants with high drug loading capacity. Double hydrophilic block copolymers (DHBCs) made of neutral block-neutral block or neutral block-charged block can transform one block to become hydrophobic under the influence of a stimulus (physical/chemical/biological), and thus induced amphiphilicity and display self-assembly are discussed. Different kinds of polymer micelles (viz. shell and core-cross-linked, core-shell-corona, schizophrenic, crew cut, Janus) are presented in detail. Updates on polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) are also provided. Polyion complexes (PICs) and polyion complex micelles (PICMs) are discussed. Applications of these block copolymeric micelles and polymersomes as nanocarriers in drug delivery systems are described.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Xiao, Qi, Naomi Rivera-Martinez, Calvin J. Raab, Jessica G. Bermudez, Matthew C. Good, Michael L. Klein et Virgil Percec. « Co-assembly of liposomes, Dendrimersomes, and Polymersomes with amphiphilic Janus dendrimers conjugated to Mono- and Tris-Nitrilotriacetic Acid (NTA, TrisNTA) enhances protein recruitment ». Giant 9 (mars 2022) : 100089. http://dx.doi.org/10.1016/j.giant.2021.100089.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Mihali, Voichita, Piotr Jasko, Michal Skowicki et Cornelia G. Palivan. « Controlled enzymatic reactions by programmed confinement in clusters of polymersomes and Janus nanoparticles ». Materials Today, septembre 2024. http://dx.doi.org/10.1016/j.mattod.2024.08.020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Chen, Chuanshuang, Guangyu Chu, Wanting He, Yannan Liu, Kai Dai, Jesus Valdez, Audrey Moores et al. « Janus Au‐Polymersome Heterostructure with Near‐Field Enhancement Effect for Implant‐Associated Infection Phototherapy ». Advanced Materials, 27 octobre 2022, 2207950. http://dx.doi.org/10.1002/adma.202207950.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Polymersomes Janus"

1

Equy, Eloïse. « Polymersomes Janus : conception rationnelle, préparation et fonctionnalisation asymétrique pour le développement de systèmes auto-propulsés de délivrance ciblée de médicaments ». Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0465.

Texte intégral
Résumé :
Mimer les propriétés des cellules vivantes dans des protocellules artificielles suscite un intérêt considérable, notamment pour reproduire la motilité et le mouvement directionnel dans des applications de thérapies « intelligentes ». En raison de leur morphologie vésiculaire et de leur stabilité, les polymersomes présentent un grand potentiel pour la délivrance de médicaments, et l'introduction d'une asymétrie est essentielle pour permettre leur auto-propulsion. Bien que plusieurs approches, telles que la séparation de phase au sein de la membrane, aient été utilisées pour créer des polymersomes asymétriques, le choix des polymères appropriés reste un défi. Cette thèse de doctorat vise à concevoir des polymersomes asymétriques, de type Janus, capables de s'auto-propulser grâce à la décomposition enzymatique du glucose. Nous décrivons le développement de vésicules géantes unilamellaires de type Janus (JGUVs) par séparation de phase au sein de la membrane de deux copolymères à blocs distincts composés de blocs hydrophobes chimiquement incompatibles. En utilisant la théorie de Flory-Huggins, nous démontrons que les copolymères peuvent être rationnellement sélectionnés et conçus pour s'auto-assembler en polymersomes asymétriques, avec une séparation de phase modulable selon des paramètres tels que la composition, la masse molaire et la température. Notre méthode prédictive s'est avérée efficace pour les techniques d'auto-assemblage avec et sans solvant, permettant l'élaboration de diagrammes de phase génériques corrélant l'énergie libre de mélange à la morphologie des polymersomes, fournissant ainsi des indications clés pour la conception de JGUVs. Nous montrons également que la présence de solvant lors de la formation des vésicules permet d'étendre la gamme des polymères incompatibles pouvant être utilisés. De plus, nous avons réussi à contrôler, grâce à l'extrusion, la taille des vésicules tout en préservant leur morphologie Janus et avons montré que les JGUVs ainsi obtenus pouvaient être stables pendant plusieurs mois. Enfin, nous avons fonctionnalisé asymétriquement les JGUVs avec l'enzyme glucose oxydase par chimie click, et une étude préliminaire sur leur dynamique en présence de glucose est présentée, fournissant des indications pour leur utilisation comme micromoteurs
Mimicking the properties of living cells in artificial protocells has attracted significant interest, particularly for replicating motility and directional swimming for applications in smart therapeutics. Due to their vesicular and stable morphology, polymersomes hold great promise for drug delivery, and the introduction of asymmetry is crucial to enable self-propulsion. While several approaches, such as phase separation within the membrane, have been used to create asymmetric polymersomes, the selection of appropriate polymers remains a challenge. This PhD thesis aims at designing asymmetric, Janus-like polymersomes capable of self-propulsion, and powered by enzymatic glucose decomposition. We describe the development of Janus Giant Unilamellar Vesicles (JGUVs) through phase separation within the membrane of two distinct block copolymers comprising chemically incompatible hydrophobic blocks. We demonstrate, using the Flory-Huggins theory, that copolymers can be rationally selected and designed to self-assemble into asymmetric polymersomes, with tunable phase separation driven by parameters such as composition, molecular weight, and temperature. Our predictive method proves to be effective for both solvent-free and solvent-switch self-assembly processes, enabling the elaboration of generic phase diagrams correlating mixing free energy with polymersome morphology, providing valuable insights for JGUVs design. We also evidence that the presence of solvent during the vesicle formation broadens the range of incompatible polymers that can be used. Additionally, we successfully control, thanks to extrusion, the vesicle size while preserving their Janus morphology and evidence that the resulting JGUVs could be stable for several months. Furthermore, we asymmetrically functionalized JGUVs with glucose oxidase enzymes via click-chemistry, and a preliminary study on their dynamic behavior in the presence of glucose is presented, looking forward to their potential use as micromotors
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie