Littérature scientifique sur le sujet « Polymers laser welding »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Polymers laser welding ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Polymers laser welding"

1

Nonhof, C. J. « Laser welding of polymers ». Polymer Engineering and Science 34, no 20 (octobre 1994) : 1547–49. http://dx.doi.org/10.1002/pen.760342005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Olowinsky, Alexander, et Andreas Rösner. « Laser Welding of Polymers ». Laser Technik Journal 9, no 2 (avril 2012) : 52–56. http://dx.doi.org/10.1002/latj.201290023.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Korab, M. G., M. V. Iurzhenko, A. V. Vashchuk et I. K. Senchenkov. « Modeling of thermal processes in laser welding of polymers ». Paton Welding Journal 2021, no 11 (28 novembre 2021) : 3–8. http://dx.doi.org/10.37434/tpwj2021.11.01.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Duley, W. W., et R. E. Mueller. « CO2 laser welding of polymers ». Polymer Engineering and Science 32, no 9 (mai 1992) : 582–85. http://dx.doi.org/10.1002/pen.760320903.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Dave, Foram, Muhammad Mahmood Ali, Richard Sherlock, Asokan Kandasami et David Tormey. « Laser Transmission Welding of Semi-Crystalline Polymers and Their Composites : A Critical Review ». Polymers 13, no 5 (24 février 2021) : 675. http://dx.doi.org/10.3390/polym13050675.

Texte intégral
Résumé :
The present review provides an overview of the current status and future perspectives of one of the smart manufacturing techniques of Industry 4.0, laser transmission welding (LTW) of semi-crystalline (SC) polymers and their composites. It is one of the most versatile techniques used to join polymeric components with varying thickness and configuration using a laser source. This article focuses on various parameters and phenomena such as inter-diffusion and microstructural changes that occur due to the laser interaction with SC polymers (specifically polypropylene). The effect of carbon black (size, shape, structure, thermal conductivity, dispersion, distribution, etc.) in the laser absorptive part and nucleating agent in the laser transmissive part and its processing conditions impacting the weld strength is discussed in detail. Among the laser parameters, laser power, scanning speed and clamping pressure are considered to be the most critical. This review also highlights innovative ideas such as incorporating metal as an absorber in the laser absorptive part, hybrid carbon black, dual clamping device, and an increasing number of scans and patterns. Finally, there is presented an overview of the essential characterisation techniques that help to determine the weld quality. This review demonstrates that LTW has excellent potential in polymer joining applications and the challenges including the cost-effectiveness, innovative ideas to provide state-of-the-art design and fabrication of complex products in a wide range of applications. This work will be of keen interest to other researchers and practitioners who are involved in the welding of polymers.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Fayroz A. Sabah. « WELDING OF THERMOPLASTIC MATERIALS USING CO2 LASER ». Diyala Journal of Engineering Sciences 5, no 1 (1 juin 2012) : 40–51. http://dx.doi.org/10.24237/djes.2012.05104.

Texte intégral
Résumé :
The welding of thermoplastics using CO2 laser achieved, two different types of thermoplastic materials used which are; Perspex (PMMA) which is the abbreviation of polymethyl methacrylate and (HDPE) which is the abbreviation of high density polyethylene. Similar or different materials can be welded together by laser beam but in this work similar polymers have been welded (i.e PMMA tube to PMMA tube and HDPE plate to HDPE plate). Mechanical properties for these materials measured after welding, two CW CO2 lasers were used in the welding process have the wavelength of 10.6µm. The maximum power of the 1st one is 16W, and for the 2nd one is 25W. The experimental result showed that the penetration depth increases with increasing laser output when the welding speed is constant. Also a relation between spot width and depth calculated using MATLAB software program version 6.5 taken into account the effect of the following parameters, power used in welding, melting temperature of the materials, welding speed and the spot diameter of the laser beam.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kumar, Nitesh, Nikhil Kumar et Asish Bandyopadhyay. « A State-of-the-Art Review of Laser Welding of Polymers - Part I : Welding Parameters ». Welding Journal 100, no 7 (1 juillet 2021) : 221–28. http://dx.doi.org/10.29391/2021.100.019.

Texte intégral
Résumé :
Polymers are widely used in automotive parts and fields like mechatronics and biomedical engineering because of their excellent properties, such as high durability and light weight. Welding of polymers has grown to be an important field of research due to its relevance among products of everyday life. Through transmission laser welding (TTLW) has been frequently selected by the contemporary re-searchers in the field of welding as it is relatively modern and more efficient than other welding processes. This pa-per reviews the influence of different processing parameters, including laser power, scanning speed, standoff distance, and clamping pressure. The present article is expected to provide the reader with a comprehensive under-standing of TTLW and research on the aforementioned four welding parameters in TTLW. The significance of finite element modeling, a few simulation studies, different optimization approaches, morphological characteristics, and other behaviors of laser welded polymers will be included in the next part of the review.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Penilla, E. H., L. F. Devia-Cruz, A. T. Wieg, P. Martinez-Torres, N. Cuando-Espitia, P. Sellappan, Y. Kodera, G. Aguilar et J. E. Garay. « Ultrafast laser welding of ceramics ». Science 365, no 6455 (22 août 2019) : 803–8. http://dx.doi.org/10.1126/science.aaw6699.

Texte intégral
Résumé :
Welding of ceramics is a key missing component in modern manufacturing. Current methods cannot join ceramics in proximity to temperature-sensitive materials like polymers and electronic components. We introduce an ultrafast pulsed laser welding approach that relies on focusing light on interfaces to ensure an optical interaction volume in ceramics to stimulate nonlinear absorption processes, causing localized melting rather than ablation. The key is the interplay between linear and nonlinear optical properties and laser energy–material coupling. The welded ceramic assemblies hold high vacuum and have shear strengths comparable to metal-to-ceramic diffusion bonds. Laser welding can make ceramics integral components in devices for harsh environments as well as in optoelectronic and/or electronic packages needing visible-radio frequency transparency.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Scolaro, Cristina, Annamaria Visco, Lorenzo Torrisi, Nancy Restuccia et Eugenio Pedullà. « Modification induced by laser irradiation on physical features of plastics materials filled with nanoparticles ». EPJ Web of Conferences 167 (2018) : 05008. http://dx.doi.org/10.1051/epjconf/201816705008.

Texte intégral
Résumé :
The Thermal Laser Welding (TLW) process involves localized heating at the interface of two pieces of plastic that will be joined. Polymeric materials of Ultra High Molecular Weight Polyethylene (UHMWPE), both pure and containing nanostructures at different concentrations (titanium and silver nanoparticles), were prepared as thin foils in order to produce an interface between a substrate transparent to the infrared laser wavelength and an highly absorbent substrate, in order to be welded by the laser irradiation. The used diode laser operates at 970 nm wavelength, in continuum, with a maximum energy of 100 mJ, for times of the order of 1 -60 s, with a spot of 300 μm of diameter. The properties of the polymers and of nanocomposite sheets, before and after the laser welding process, were measured in terms of optical characteristics, wetting ability, surface roughness and surface morphology.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Bak, Helle Østergren, Bjarne Enrico Nielsen, Anne Jeppesen, Theis Brock‐Nannestad, Christian Benedikt Orea Nielsen et Michael Pittelkow. « Laser welding of polymers using unsymmetrical squaraine dyes ». Journal of Polymer Science Part A : Polymer Chemistry 56, no 19 (28 septembre 2018) : 2245–54. http://dx.doi.org/10.1002/pola.29196.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Polymers laser welding"

1

Kennish, Yolanda Christina. « Development and modelling of a new laser welding process for polymers ». Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620051.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

NICOSIA, CARMELO. « Study and design of hollow core wave guide for LASER beam propagation ». Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2872351.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Rout, Soumya Sambit. « Laser welding of biodegradable polyglycolic acid (PGA) based polymer felt scaffolds ». Thesis, Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/1000.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kritskiy, Anton. « Laser Welding of Nylon Tubes to Plates Using Conical Mirrors ». Thesis, 2009. http://hdl.handle.net/1974/2601.

Texte intégral
Résumé :
Laser transmission welding of polymers is a relatively new joining technique. It is based on the fact that the majority of thermoplastics are transparent to infrared radiation. A laser beam passes through the transparent part, and is then absorbed by a part rendered absorbent by additives such as carbon black. Absorbed laser energy is transformed into heat that melts the polymer at the interface between two parts, thus forming a weld. Many industrial applications have quite a complex geometry. This may often make it impossible to irradiate small elements of the joint interface directly. One of the possible solutions for this problem is to employ an oblique mirror to redirect a laser beam to the desired direction. In present work, transparent nylon tubes were welded to absorbing nylon plaques using a conical mirror inserted in the tube. The effects of the laser power, the angular motion speed, and the number of cycles on the joint shear strength were examined. Additionally, a two–dimensional axi-symmetric transient finite element heat transfer model was developed and evaluated. It simulated the temperature developed in the specimen during the welding cycle; the model was validated with the welding and mechanical testing results. The experimental results demonstrated good joint strength, confirming the feasibility of this technique. It was also found that welding at a lower laser beam power and a higher rotational speed allowed higher maximum weld strengths to be achieved at the expense of longer cycle time and higher energy consumption. Simulation of the temperature demonstrated that varying of the rotational speed at constant laser power does not change the overall temperature rise trend.
Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2009-08-14 23:12:18.491
Styles APA, Harvard, Vancouver, ISO, etc.
5

Schulz, Jörn-Eric [Verfasser]. « Werkstoff-, Prozess- und Bauteiluntersuchungen zum Laserdurchstrahlschweißen von Kunststoffen = Material, process and component investigations at laser beam welding of polymers / vorgelegt von Jörn-Eric Schulz ». 2002. http://d-nb.info/96756025X/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

KHOSRAVI, SINA. « LASER TRANSMISSION WELDING OF POLYBUTYLENE TEREPHTHALATE AND POLYETHYLENE TEREPHTHALATE BLENDS ». Thesis, 2010. http://hdl.handle.net/1974/6005.

Texte intégral
Résumé :
Laser Transmission Welding (LTW) involves localized heating at the interface of two pieces of plastic (a laser transparent plastic and laser absorbing plastic) to be joined. It produces strong, hermetically sealed welds with minimal thermal and mechanical stress, no particulates and very little flash. An ideal transparent polymer for LTW must have: a low laser absorbance to avoid energy loss, a low level of laser scattering so it can provide a maximum energy flux at the weld interface and also have a high resistance to thermal degradation. The objective of the project was to analyze the effect of blend ratios of polybutylene terephthalate and polyethylene terephthalate (PBT/PET) on these laser welding characteristics. The blends were manufactured by DSM (Netherlands). They were characterized using Differential Scanning Calorimetry (DSC) and Thermal Gravimetry Analysis (TGA). The latter technique was used to estimate the order (n), activation energy (ΔH) and frequency factor (A’) of the degradation reaction of the polymer blends. The normalized power profile of the laser after passing through the transparent polymer was measured using a novel non-contact technique and modeled using a semi-empirical model developed by Dr.Chen. Adding more PET ratio to the blend, did not change beam profile of the transmitted beam significantly. Laser welding experiments were conducted in which joints were made while varying laser power and scanning speed. Measuring the weld strength and width showed that the blends containing PET have higher strength in comparison to pure PBT. The temperature-time profile at the interface during welding was predicted using a commercial FEM code. This information was combined with the degradation rate data to estimate the relative amount of degraded material at the weld interface. It showed that increasing the ratio of PET in the blend makes it more resistant against thermal degradation which can be one of the reasons the PET containing blends reach higher weld strengths when compared to pure PBT.
Thesis (Master, Chemical Engineering) -- Queen's University, 2010-08-31 10:03:42.167
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Polymers laser welding"

1

Chen, Zhanwen. Materials Science and Manufacturing Engineering. Trans Tech Publications, Limited, 2021.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Materials Science and Manufacturing Engineering. Trans Tech Publications, Limited, 2021.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Polymers laser welding"

1

Kumar, Nitesh, Nikhil Kumar et Asish Bandyopadhyay. « Nd:YVO4 Laser Welding of Two Transparent Polymers in Lap Joint Configuration ». Dans Lecture Notes on Multidisciplinary Industrial Engineering, 35–43. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9099-0_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Klein, Rolf. « Laser Polymer Welding ». Dans Laser Technology, 209–68. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119185031.ch6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hopmann, Christian, Simon Bölle et Lorenz Reithmayr. « Prediction of the Bond Strength of Thermoplastics Welded by Laser Transmission Welding ». Dans Advances in Polymer Processing 2020, 247–57. Berlin, Heidelberg : Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-60809-8_20.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Brosda, Maximilian, Phong Nguyen, Alexander Olowinsky et Arnold Gillner. « Investigations on the Influence of Beam Shaping in Laser Transmission Welding of Multi-layer Polymer Films with Wavelength-Adapted Diode Laser Beam Sources ». Dans Advanced Structured Materials, 91–100. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2957-3_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Rudrapati, Ramesh. « Parametric Studies on Transmission Laser Welding of Acrylics ». Dans Acrylate Polymers for Advanced Applications. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.89080.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Kumar, Dhiraj, Bappa Acherjee et Arunanshu Shekhar Kuar. « Laser Transmission Welding : A Novel Technology to Join Polymers ». Dans Reference Module in Materials Science and Materials Engineering. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-820352-1.00126-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Mwema, Fredrick M., et Esther T. Akinlabi. « Metal-Arc Welding Technologies for Additive Manufacturing of Metals and Composites ». Dans Advances in Civil and Industrial Engineering, 94–105. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-4054-1.ch005.

Texte intégral
Résumé :
Additive manufacturing (AM) technology has been extensively embraced due to its capability to produce components at lower cost while achieving complex detail. There has been considerable emphasis on the development of low-cost AM technologies and investigation of production of various materials (metals, polymers, etc.) through AM processes. The most developed techniques for AM of products include stereolithography (SLA), fused deposition modelling (FDM), laser technologies, wire-arc welding techniques, and so forth. In this chapter, a review of the wire-arc welding-based technologies for AM is provided in two-fold perspective: (1) the advancement of the arc welding process as an additive manufacturing technology and (2) the progress in the production of metal/alloys and composites through these technologies. The chapter will provide important insights into the application of arc welding technology in additive manufacturing of metals and composites for advanced applications in the era of Industry 4.0.
Styles APA, Harvard, Vancouver, ISO, etc.
8

« 9. Process overview, experimental study and Taguchi quality loss function analysis of laser transmission welding of thermoplastics ». Dans Polymers and Composites Manufacturing, 153–66. De Gruyter, 2020. http://dx.doi.org/10.1515/9783110655049-009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

« The effects of excimer laser irradiation on the surface morphology and self-adhesion properties of some engineering polymers as evaluated by ultrasonic welding ». Dans Polymer Surface Modification : Relevance to Adhesion, Volume 3, 193–252. CRC Press, 2004. http://dx.doi.org/10.1201/b12183-15.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Melhem, George Nadim. « Aerospace Fasteners : Use in Structural Applications ». Dans Encyclopedia of Aluminum and Its Alloys. Boca Raton : CRC Press, 2019. http://dx.doi.org/10.1201/9781351045636-140000240.

Texte intégral
Résumé :
Aircraft components need to be selected and manufactured to adequately combat the environment, temperature, loading, compatibility, and so on. When structural materials such as aluminum alloys or fiber-reinforced polymer composites need to be joined in aircraft, the selection of fasteners, bolts, rivets, adhesives, and other methods need to be quantitatively assessed in order that the correct design for the component and joining method is identified. There is a variety of fasteners, bolts, and rivets, made using a variety of materials. Aluminum rivets are often used to join aluminum components in an aircraft. Rivets do not perform well under tension loading, but perform better in shear, thus limiting the application specifically for these purposes. Bolts are designed to clamp material together, and even though the bolt may be adequate to support a particular structure and load requirement, consideration must also be given to the modulus of elasticity and stiffness of the components that are being clamped together. Therefore, an understanding of each of the materials being clamped or joined together is necessary. Bolts manufactured from steel, for instance, have coatings applied in order to help protect them from corrosion. The use of composites translates to a reduced number of rivets and fasteners to be used. Drilling of holes into composites to insert fasteners poses many challenges because the fibers are damaged, a region of high stress concentration may be formed, and the hole is a site for the ingress of water or moisture. The insertion of aluminum fasteners or the contact of aluminum components with carbon fibers creates galvanic corrosion due to the large difference in electrical potential. Titanium alloy (Ti-6Al-4V) is a typical fastener where there is composite joining due to its better compatibility (elimination of galvanic corrosion) and increased strength properties. Substitution of rivets and fasteners for welding is also on the increase in aircraft because laser beam welding (LBW) and friction stir welding both reduce cracking, porosity, and better properties achieved due to deeper penetration, and reduce the heat-affected zone which would typically be undesirable with conventional arc welding such as metal inert gas and tungsten inert gas welding. The shear and compressive stresses are increased, and fatigue cracking, weight, and cost are also reduced as a result of LBW, including the elimination of stresses and corrosion associated with rivets and the elimination of adhesives. Dissimilar metals such as the 7000 series and the 2000 series can be joined with a filler metal compatible to both metals to mitigate galvanic corrosion.
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Polymers laser welding"

1

Bachmann, Friedrich G., et Ulrich A. Russek. « Laser welding of polymers using high-power diode lasers ». Dans Laser Processing of Advanced Materials and Laser Microtechnologies, sous la direction de Friedrich H. Dausinger, Vitali I. Konov, Vladimir Y. Baranov et Vladislav Y. Panchenko. SPIE, 2003. http://dx.doi.org/10.1117/12.515630.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Doe, Simon, et Peter Roberts. « Transmission laser welding of polymers using laser additives ». Dans PICALO 2006 : 2nd Pacific International Conference on Laser Materials Processing, Micro, Nano and Ultrafast Fabrication. Laser Institute of America, 2006. http://dx.doi.org/10.2351/1.5056975.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bachmann, Friedrich G., et Ulrich A. Russek. « Laser welding of polymers using high-power diode lasers ». Dans High-Power Lasers and Applications, sous la direction de Koji Sugioka, Malcolm C. Gower, Richard F. Haglund, Jr., Alberto Pique, Frank Traeger, Jan J. Dubowski et Willem Hoving. SPIE, 2002. http://dx.doi.org/10.1117/12.470660.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ho, Ching-Yen, Moa-Yu Wen et Chung Ma. « Computer Simulation for Laser Welding of Thermoplastic Polymers ». Dans 2010 Second International Conference on Computer Engineering and Applications. IEEE, 2010. http://dx.doi.org/10.1109/iccea.2010.77.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Jansson, Anssi, Saara Kouvo, Antti Salminen et Veli Kujanpää. « The effect of parameters on laser transmission welding of polymers ». Dans ICALEO® 2003 : 22nd International Congress on Laser Materials Processing and Laser Microfabrication. Laser Institute of America, 2003. http://dx.doi.org/10.2351/1.5060071.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Abed, Stephane, Wolfgang Knapp, Martin Traub, Dieter Hoffmann, Reinhart Poprawe et Peter Loosen. « Development of simultaneous laser welding process applied to thermoplastic polymers ». Dans ICALEO® 2004 : 23rd International Congress on Laser Materials Processing and Laser Microfabrication. Laser Institute of America, 2004. http://dx.doi.org/10.2351/1.5060279.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kouvo, Saara, Anssi Jansson et Antti Salminen. « Laser welding of polymers – new innovations for joining 3D geometries ». Dans ICALEO® 2005 : 24th International Congress on Laser Materials Processing and Laser Microfabrication. Laser Institute of America, 2005. http://dx.doi.org/10.2351/1.5060518.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Laakso, Petri, Saara Ruotsalainen, Tuomas Purtonen, Hannu Minkkinen, Veli Kujanpää et Antti Salminen. « Simultaneous sub second laser welding of polymers with diffractive optics ». Dans ICALEO® 2010 : 29th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2010. http://dx.doi.org/10.2351/1.5062059.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ilie, Mariana, Jean-Cristophe Kneip, Simone Mattei et Alexandru Nichici. « Effects of laser beam scattering on through-transmission welding of polymers ». Dans ICALEO® 2005 : 24th International Congress on Laser Materials Processing and Laser Microfabrication. Laser Institute of America, 2005. http://dx.doi.org/10.2351/1.5060517.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ruotsalainen, Saara, Petri Laakso, Matti Manninen, Tuomas Purtonen, Veli Kujanpää et Antti Salminen. « TWINQUASI – A new method for quasi-simultaneous laser welding of polymers ». Dans ICALEO® 2012 : 31st International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2012. http://dx.doi.org/10.2351/1.5062454.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie