Littérature scientifique sur le sujet « Polymer backbone »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Polymer backbone ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Polymer backbone"
Saha, Debasish, Karthik R. Peddireddy, Jürgen Allgaier, Wei Zhang, Simona Maccarrone, Henrich Frielinghaus et Dieter Richter. « Amphiphilic Comb Polymers as New Additives in Bicontinuous Microemulsions ». Nanomaterials 10, no 12 (2 décembre 2020) : 2410. http://dx.doi.org/10.3390/nano10122410.
Texte intégralKot, E., R. K. K. Saini, L. R. R. Norman et A. Bismarck. « Novel Drag-Reducing Agents for Fracturing Treatments Based on Polyacrylamide Containing Weak Labile Links in the Polymer Backbone ». SPE Journal 17, no 03 (4 septembre 2012) : 924–30. http://dx.doi.org/10.2118/141257-pa.
Texte intégralKanatieva, Anastasiia Yu, Dmitry A. Alentiev, Valeria E. Shiryaeva, Alexander A. Korolev et Alexander A. Kurganov. « Impact of the Polymer Backbone Structure on the Separation Properties of New Stationary Phases Based on Tricyclononenes ». Polymers 14, no 23 (24 novembre 2022) : 5120. http://dx.doi.org/10.3390/polym14235120.
Texte intégralPark, Kyung Sun, Justin J. Kwok, Rishat Dilmurat, Ge Qu, Prapti Kafle, Xuyi Luo, Seok-Heon Jung et al. « Tuning conformation, assembly, and charge transport properties of conjugated polymers by printing flow ». Science Advances 5, no 8 (août 2019) : eaaw7757. http://dx.doi.org/10.1126/sciadv.aaw7757.
Texte intégralLi, Zongze, Gregory M. Treich, Mattewos Tefferi, Chao Wu, Shamima Nasreen, Sydney K. Scheirey, Rampi Ramprasad, Gregory A. Sotzing et Yang Cao. « High energy density and high efficiency all-organic polymers with enhanced dipolar polarization ». Journal of Materials Chemistry A 7, no 25 (2019) : 15026–30. http://dx.doi.org/10.1039/c9ta03601f.
Texte intégralLv, Lei, Xiaofen Wang, Tao Dong, Xinlong Wang, Xiaoxi Wu, Lei Yang et Hui Huang. « Significantly improving the efficiency of polymer solar cells through incorporating noncovalent conformational locks ». Materials Chemistry Frontiers 1, no 7 (2017) : 1317–23. http://dx.doi.org/10.1039/c6qm00296j.
Texte intégralWang, Yu, Yudong Wang, Sushant Sahu, August A. Gallo et Xiao-Dong Zhou. « Efficient Synthesis of High-Performance Anion Exchange Membranes by Applying Clickable Tetrakis(dialkylamino)phosphonium Cations ». Polymers 15, no 2 (9 janvier 2023) : 352. http://dx.doi.org/10.3390/polym15020352.
Texte intégralHou, Qiong, Jie Luo, Sui Lian Luo, Hong Zhu et Guang Shi. « White Electroluminescence from a Single Fluorene-Based Copolymer ». Advanced Materials Research 160-162 (novembre 2010) : 732–36. http://dx.doi.org/10.4028/www.scientific.net/amr.160-162.732.
Texte intégralChen, Bing, Zhanhai Xiao, Yanhu Li, Lei Yu, Wei Yang et Jiwen Feng. « Bipolar π-conjugation interrupted host polymers by metal-free superacid-catalyzed polymerization for single-layer electrophosphorescent diodes ». RSC Adv. 4, no 91 (2014) : 50027–34. http://dx.doi.org/10.1039/c4ra06540a.
Texte intégralO’Harra, Kathryn E., Danielle M. Noll, Irshad Kammakakam, Emily M. DeVriese, Gala Solis, Enrique M. Jackson et Jason E. Bara. « Designing Imidazolium Poly(amide-amide) and Poly(amide-imide) Ionenes and Their Interactions with Mono- and Tris(imidazolium) Ionic Liquids ». Polymers 12, no 6 (30 mai 2020) : 1254. http://dx.doi.org/10.3390/polym12061254.
Texte intégralThèses sur le sujet "Polymer backbone"
Pollino, Joel Matthew. « The "Universal Polymer Backbone" concept ». Diss., Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/available/etd-11112004-143714/unrestricted/pollino%5Fjoel%5Fm%5F200412%5Fphd.pdf.pdf.
Texte intégralWeck, Marcus, Committee Chair ; Jones, Christopher, Committee Member ; Collard, David, Committee Member ; Liotta, Charles, Committee Member ; Bunz, Uwe, Committee Member. Includes bibliographical references.
Daglen, Bevin Colleen 1977. « Factors affecting the photodegradation rates of polymers that contain (cyclopentadienyl-(carbon monoxide)-molybdenum) in the backbone ». Thesis, University of Oregon, 2008. http://hdl.handle.net/1794/8567.
Texte intégralThere are compelling economic and environmental reasons for using degradable plastics in selected applications and considerable research is now devoted to devising new photodegradable polymers with improved performance. Controlling the degradation of these materials in a prescribed fashion is still a difficult problem because the parameters that influence degradation rates are not completely understood. In order to predict polymer lifetimes, to manipulate when a polymer starts to degrade, and to control the rate of degradation, it is necessary to identify the experimental parameters that affect polymer degradation rates and to understand how these parameters affect degradation. This dissertation describes the results of experiments designed to gain fundamental insight into the factors that affect the rate of polymer photodegradation. The key experimental strategy employed was the incorporation of organometallic dimers into the backbone of the polymer chains, specifically, [CpRMo(CO) 3 ] 2 (CpR = a substituted cyclopentadienyl (· 5 -C 5 H 4 R)). Incorporating these organometallic units into a polymer chain make the polymer photodegradable because the metal-metal bond can be cleaved with visible light. The photogenerated metal radicals can then be trapped by O 2 or chlorine, resulting in degradation of the polymer. Another benefit from incorporating this chromophore into the polymer backbone is that it provides the experimentalist with a convenient spectroscopic handle to monitor degradation rates. Using these model polymers, several experimental factors that can affect polymer photodegradation rates have been explored. For example, experiments showed that radical trap concentration affects degradation rates below, but not above, the polymer glass transition temperature. In addition, degradation rates as a function of irradiation temperature, tensile stress, and time-dependent morphology changes were explored for various polymers. The results of these studies suggest that the ability of the photogenerated radicals to escape the radical cage is the dominant factor in determining photodegradation efficiencies. This dissertation includes previously published and unpublished co-authored material.
Adviser: David R. Tyler
Farooq, Fauzia. « The stereoselective synthesis of side-chain liquid crystalline poly(ethyleneoxide)s possessing backbone chirality ». Thesis, University of Hull, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343153.
Texte intégralANDREOSSO, IVAN. « FUNCTIONALIZATION OF UNSATURATED POLYMERS BACKBONE FOR TYRE COMPOUNDING APPLICATION ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241275.
Texte intégralOne of the main applications in which elastomeric polymers are used is as a structural component in the formulation of tire compounds. However, to match the required performance standards for the final product, it is necessary to introduce inorganic components (fillers) (Silica and Carbon Black) into the polymer matrix. From this point of view, the compatibility between the polymeric and inorganic phases is, therefore, an aspect of crucial importance. In this context the present PhD project is set up, which aims to develop an innovative strategy to improve the final composite through the introduction of functional groups on the polymer matrix able to interact with the inorganic components present in a compound. First, the opportunities offered by the literature to find a reactivity able to affect the unsaturated bonds present in the polymer matrix were explored. In particular, three possible alternatives have been identified: 1) 1,3-dipolar cycloaddition 2) Tiol-Ene type reactions 3) Alder-Ene type reactions After having verified the strengths and weaknesses of each reactivity, the most promising one has been to be based on an Alder-Ene reaction, which involves the interaction between an olefin (bearing hydrogen in an allyl position) and an electron-poor enophile. The enophilic compound we studied as a model system was 4-phenyl-1,2,4-triazoline-3,5-dione (PhTAD). This system, once anchored on the polymer, has a secondary amide group, able to modify locally the polarity of the matrix and, at the same time, able to interact through hydrogen bonds with inorganic fillers such as silica. The research activity has been focused on the chemical modification, with PhTAD, of commercial unsaturated polymers. These modified polymers, with different amounts of functionalizer, were then characterized by a multitechnical approach (DSC, TGA, FT-IR and swelling tests) and subsequently introduced into the mixture. The rheological properties of the compounds obtained were evaluated both with an oscillating disk rheometer (ODR), and by dynamic mechanical analysis at variable temperatures (DMTA) and by analyzing stress-strain curves. Preliminary attempts have been performed to resolve the critical issues that emerged when using PhTAD as a functionalization agent. First, it was necessary to optimize the amount introduced into the mixture, arriving, at best, to obtain composites in which the values of the G' module were comparable with the industrial reference standards, which are based on the use of compatibilizing agents such as TESPT, with a slight contextual deterioration of the values such as tanδ or the Payne effect, indicating an effective interaction between the polymer matrix functionalized with silica fillers, even if not yet optimally. Moreover, one of the major intrinsic problems to be solved in the use of a molecule such as PhTAD lies in its high reactivity which makes it impossible to operate in bulk, directly on the pristine polymer. The last part of the project was then dedicated to the synthesis of functionalizers of a similar nature, based on diazenics, but less reactive, in order to make the reaction occur on the polymer directly in the formulation phase, at the temperatures normally used to process compounds (≈140 °C), thus avoiding the difficulty due to operating in solution. The successful functionalization of a model oligomeric system with ethyl (anilinocarbonyl) diazenecarboxylate has allowed to demonstrate the validity of the idea of a thermally stimulated mass functionalization, opening to the possibility of using other molecular systems, that can be tuned specifically to perform a specific function within the compound.
Kub, Christopher. « Hyperbranched conjugated polymers : an investigation into the synthesis, properties and postfunctionalization of hyperbranched poly(phenylene vinylene-phenylene ethynylene)s ». Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34838.
Texte intégralGikonyo, Barnabas Kimaru. « Silicon backbone polymers as nerve growth substrates : an odyssey / ». Available to subscribers only, 2007. http://proquest.umi.com/pqdweb?did=1481666341&sid=3&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Texte intégral"Department of Chemistry and Biochemistry." Keywords: Polysilane, Silicon backbone polymers, PC-12 cell growth, Nerve cell growth, Fibronectin, Polymers, Nerve growth substrates. Includes bibliographical references (p. 131-142). Also available online.
Nur, Yusuf. « Electrochemical Polymerization Of Trihaloalkane Monomers To Form Branched C-backbone Polymers ». Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613168/index.pdf.
Texte intégraland thus a single step cheap, safe and easy method was introduced to scientists and manufacturers in diamond science. The resulting polymers were heated upon 1000oC under nitrogen atmosphere for 24 hours yielding in the formation of diamond and diamond-like carbon. Results indicated that both diamond films and powders were successfully produced from polycarbynes. Diamonds formed from the polymers were characterized via optical microscope, SEM, X-ray and Raman spectroscopy. All results shown in thesis are completely consistent with studies previously done for polycarbynes and diamond.
Rust, Tarik [Verfasser]. « Stimuli-Responsive Backbone-Degradable (Co-)Polymers for Drug Delivery / Tarik Rust ». Paderborn : Universitätsbibliothek, 2021. http://d-nb.info/1237748437/34.
Texte intégralOkerio, Jaspher Mosomi. « Synthesis of fluorescent polymers with coumarin backbones by "click" polymerization ». Thesis, Nelson Mandela Metropolitan University, 2013. http://hdl.handle.net/10948/d1020132.
Texte intégralBabur, Tamoor [Verfasser]. « Structure and relaxation dynamics of comb-like polymers with rigid backbone / Tamoor Babur ». Halle, 2017. http://d-nb.info/1139253743/34.
Texte intégralLivres sur le sujet "Polymer backbone"
L, St Clair Terry, et Langley Research Center, dir. LARC-IA : A flexible backbone polyimide. Hampton, Va : National Aeronautics and Space Administration, Langley Research Center, 1990.
Trouver le texte intégralL, St Clair Terry, et Langley Research Center, dir. LARC-IA : A flexible backbone polyimide. Hampton, Va : National Aeronautics and Space Administration, Langley Research Center, 1990.
Trouver le texte intégralL, St Clair Terry, et Langley Research Center, dir. LARC-IA : A flexible backbone polyimide. Hampton, Va : National Aeronautics and Space Administration, Langley Research Center, 1990.
Trouver le texte intégralMark, James E., Dale W. Schaefer et Gui Lin. The Polysiloxanes. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780195181739.001.0001.
Texte intégralChapitres de livres sur le sujet "Polymer backbone"
Wohlfarth, Ch. « Second virial coefficient of polyphenylene (5 backbone phenylene rings per repeat unit) ». Dans Polymer Solutions, 1045–71. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02890-8_655.
Texte intégralYang, Jiyuan, et Jindřich Kopeček. « Backbone Degradable and Coiled-Coil Based Macromolecular Therapeutics ». Dans Bioinspired and Biomimetic Polymer Systems for Drug and Gene Delivery, 1–28. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527672752.ch1.
Texte intégralTyler, David R., Jeffrey J. Wolcott, Gregory F. Nieckarz et Steve C. Tenhaeff. « New Class of Photochemically Reactive Polymers Containing Metal—Metal Bonds Along the Polymer Backbone ». Dans ACS Symposium Series, 481–96. Washington, DC : American Chemical Society, 1994. http://dx.doi.org/10.1021/bk-1994-0572.ch036.
Texte intégralPugh, Coleen, et Virgil Percec. « Effect of the Polymer Backbone on the Thermotropic Behavior of Side-Chain Liquid Crystalline Polymers ». Dans ACS Symposium Series, 97–118. Washington, DC : American Chemical Society, 1988. http://dx.doi.org/10.1021/bk-1988-0364.ch008.
Texte intégralKim, Myoung-Hee, Jun Lee, Myong-Shik Cho et Hee-Gweon Woo. « High Functional Inorganic Polymers Containing Main Group 13 – 16 Elements in the Polymer Backbone Chain ». Dans Advanced Functional Materials, 65–101. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19077-3_3.
Texte intégralAydin, Omer, Dilek Kanarya, Ummugulsum Yilmaz et Cansu Ümran Tunç. « Determination of Optimum Ratio of Cationic Polymers and Small Interfering RNA with Agarose Gel Retardation Assay ». Dans Methods in Molecular Biology, 117–28. New York, NY : Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2010-6_7.
Texte intégralNabeshima, Y., Z. L. Ding, G. H. Chen, A. S. Hoffman, H. Taira, K. Kataoka et T. Tsuruta. « Slow Release of Heparin from a Hydrogel Made from Polyamine Chains Grafted to a Temperature-Sensitive Polymer Backbone ». Dans Advanced Biomaterials in Biomedical Engineering and Drug Delivery Systems, 315–16. Tokyo : Springer Japan, 1996. http://dx.doi.org/10.1007/978-4-431-65883-2_93.
Texte intégralWulff, Günter. « Optically Active Vinyl Polymers with Backbone Chirality ». Dans Recent Advances in Mechanistic and Synthetic Aspects of Polymerization, 399–408. Dordrecht : Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3989-9_32.
Texte intégralChivers, T. « S-Polymers with Organic Groups in the Backbone ». Dans Inorganic Reactions and Methods, 180. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145326.ch92.
Texte intégralLukeman, Philip. « Nucleic Acid Nanotechnology : Modified Backbones and Topological Polymer Templates ». Dans DNA and RNA Nanobiotechnologies in Medicine : Diagnosis and Treatment of Diseases, 225–40. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-662-45775-7_9.
Texte intégralActes de conférences sur le sujet "Polymer backbone"
Herman, W. N., J. A. Cline, J. M. Hoover, A. Chafin, G. A. Lindsay et K. J. Wynne. « Nonlinear Optical Properties of Self-Assembled Mainchain Polymer Films ». Dans Organic Thin Films for Photonic Applications. Washington, D.C. : Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.md.28.
Texte intégralSchellenberg, F. M., R. L. Byer et R. D. Miller. « Substituted polysilanes for integrated optics ». Dans Integrated Photonics Research. Washington, D.C. : Optica Publishing Group, 1990. http://dx.doi.org/10.1364/ipr.1990.mf5.
Texte intégralTsustumi, Naoto, Osamu Matsumoto, Wataru Sakai et Tsuyoshi Kiyotsukuri. « Novel Nonlinear Optical Polymers for Second Harmonic Generation ». Dans Organic Thin Films for Photonic Applications. Washington, D.C. : Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.md.5.
Texte intégralBannaron, Alisa, Andrew Mark Spring et Shiyoshi Yokoyama. « Electro-optic (EO) polymer with highly thermal stable norbornene-based polymer backbone (Conference Presentation) ». Dans Organic Photonic Materials and Devices XXI, sous la direction de Christopher E. Tabor, François Kajzar et Toshikuni Kaino. SPIE, 2019. http://dx.doi.org/10.1117/12.2508328.
Texte intégralSoares, João A., et Paolo Zunino. « A Multiscale Mixture Model for Polymer Degradation and Erosion ». Dans ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19251.
Texte intégralTeng, C. C., D. R. Haas, H. T. Man et H. N. Yoon. « Guided-Wave Polymeric Electro-Optic Modulators ». Dans Integrated and Guided Wave Optics. Washington, D.C. : Optica Publishing Group, 1988. http://dx.doi.org/10.1364/igwo.1988.wd7.
Texte intégralAkle, Barbar J., Mike Hickner, Donald J. Leo et James E. McGrath. « Electroactive Polymers Based on Novel Ionomers ». Dans ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43561.
Texte intégralVenugopal, Vinithra, Hao Zhang et Vishnu-Baba Sundaresan. « A Chemo-Mechanical Constitutive Model for Conducting Polymers ». Dans ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/smasis2013-3218.
Texte intégralTsutsumi, Naoto, Osamu Matsumoto et Wataru Sakai. « Orientational Relaxation of NLO Dipole Moments Transversely Aligned to the Main Backbone in the Linear Polyurethane ». Dans Organic Thin Films for Photonic Applications. Washington, D.C. : Optica Publishing Group, 1997. http://dx.doi.org/10.1364/otfa.1997.the.5.
Texte intégralGipson, Kyle G., Philip J. Brown, Kathryn A. Stevens et Christopher L. Cox. « Properties, Characterization and Fiber Extrusion Simulation of Novel Amorphous Polymers for Optical Application ». Dans ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11544.
Texte intégralRapports d'organisations sur le sujet "Polymer backbone"
Percec, Virgil, Dimitris Tomazos et Reginal A. Willingham. The Influence of the Polymer Backbone Flexibility on the Phase Transitions of Side Chain Liquid Crystal Polymers Containing 6-(4-Methoxy-Beta-Metylstyryl) Phenoxy)Hexyl Side Groups. Fort Belvoir, VA : Defense Technical Information Center, mai 1989. http://dx.doi.org/10.21236/ada208821.
Texte intégralMatyjaszewski, Krzysztof. Catalysts and Initiators as Instruments Controlling Structure of Polymers with Inorganic Backbone. Fort Belvoir, VA : Defense Technical Information Center, mai 1991. http://dx.doi.org/10.21236/ada235350.
Texte intégralCarpita, Nicholas C., Ruth Ben-Arie et Amnon Lers. Pectin Cross-Linking Dynamics and Wall Softening during Fruit Ripening. United States Department of Agriculture, juillet 2002. http://dx.doi.org/10.32747/2002.7585197.bard.
Texte intégral