Articles de revues sur le sujet « Polyimide P84 »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Polyimide P84.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Polyimide P84 ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Widiastuti, Nurul, Triyanda Gunawan, Hamzah Fansuri, Wan Norharyati Wan Salleh, Ahmad Fauzi Ismail et Norazlianie Sazali. « P84/ZCC Hollow Fiber Mixed Matrix Membrane with PDMS Coating to Enhance Air Separation Performance ». Membranes 10, no 10 (28 septembre 2020) : 267. http://dx.doi.org/10.3390/membranes10100267.

Texte intégral
Résumé :
This research introduces zeolite carbon composite (ZCC) as a new filler on polymeric membranes based on the BTDA-TDI/MDI (P84) co-polyimide for the air separation process. The separation performance was further improved by a polydimethylsiloxane (PDMS) coating to cover up the surface defect. The incorporation of 1 wt% ZCC into P84 co-polyimide matrix enhanced the O2 permeability from 7.12 to 18.90 Barrer (2.65 times) and the O2/N2 selectivity from 4.11 to 4.92 Barrer (19.71% improvement). The PDMS coating on the membrane further improved the O2/N2 selectivity by up to 60%. The results showed that the incorporation of ZCC and PDMS coating onto the P84 co-polyimide membrane was able to increase the overall air separation performance.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Gunawan, Triyanda, Taufik Qodar Romadiansyah, Rika Wijiyanti, Wan Norharyati Wan Salleh et Nurul Widiastuti. « Zeolite templated carbon : Preparation, characterization and performance as filler material in co-polyimide membranes for CO2/CH4 separation ». Malaysian Journal of Fundamental and Applied Sciences 15, no 3 (25 juin 2019) : 407–13. http://dx.doi.org/10.11113/mjfas.v15n3.1461.

Texte intégral
Résumé :
Zeolite templated carbon (ZTC), a structurally unique carbon material was used as new fillers for the preparation of composite polymeric membrane derived from BTDA-TDI/MDI (P84) co-polyimide. The thermal stability of membrane, the structure evolution, morphology and topology, as well as gas separation performance of modified membranes were investigated. Zeolite-Y, a hard template for ZTC, was synthesized via hydrothermal method. The ZTC was synthesized via impregnation of sucrose as carbon precursor into zeolite pore and followed by carbonization at 800°C. The zeolite template was removed through acid treatment to obtain ZTC, which was used as fillers for membrane preparation. The membrane was prepared using P84 co-polyimide as membrane precursor via phase inversion process. Synthesized materials were characterized using SEM, XRD, N2 adsorption-desorption isotherm and TEM. The thermal stability of membrane was improved by the addition of ZTC. As the result of ZTC loading into P84 co-polyimide membrane, the gas permeability of CO2 increased thirty-four times, as well as the CO2/CH4 selectivity boosted from 0.76 to 5.23. The ordered pore structure in ZTC plays important role in increasing the permeability and selectivity performances of the P84 co-polyimide membrane.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Gunawan, Triyanda, Retno Puji Rahayu, Rika Wijiyanti, Wan Norharyati Wan Salleh et Nurul Widiastuti. « P84/Zeolite-Carbon Composite Mixed Matrix Membrane for CO2/CH4 Separation ». Indonesian Journal of Chemistry 19, no 3 (29 mai 2019) : 650. http://dx.doi.org/10.22146/ijc.35727.

Texte intégral
Résumé :
Mixed Matrix Membranes (MMMs) which consist of 0.3 wt.% Zeolite-Carbon Composite (ZCC) dispersed in BTDA-TDI/MDI (P84 co-polyimide) have been prepared through phase inversion method by using N-methyl-2-pyrrolidone (NMP) as a solvent. Membranes were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Thermogravimetric Analysis (TGA), and Fourier Transform Infrared (FTIR). Membrane performance was measured by a single gas permeation of CO2 and CH4. The maximum permeability of CO2 and CH4, which up to 12.67 and 6.03 Barrer, respectively. P84/ZCC mixed matrix membrane also showed a great enhancement in ideal selectivity of CO2/CH4 2.10 compared to the pure P84 co-polyimide membrane.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Sánchez-Laínez, Javier, Inés Gracia-Guillén, Beatriz Zornoza, Carlos Téllez et Joaquín Coronas. « Thin supported MOF based mixed matrix membranes of Pebax® 1657 for biogas upgrade ». New Journal of Chemistry 43, no 1 (2019) : 312–19. http://dx.doi.org/10.1039/c8nj04769c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Han, Runlin, Kui Wu et Lingfeng Xu. « Facile Preparation of Loose P84 Copolyimide/GO Composite Membrane with Excellent Selectivity and Solvent Resistance ». Polymers 14, no 7 (27 mars 2022) : 1353. http://dx.doi.org/10.3390/polym14071353.

Texte intégral
Résumé :
In this study, multilayer graphene oxide (GO) was used to prepare the functional layer of polyimide/GO composite membrane with polyimide (P84) used as the supporting layer. Chitosan added in the functional layer was utilized to adjust the selectivity of the composite membrane. The effects of GO and chitosan contents on membrane morphology and separation performance were investigated in detail. The composite membrane showed high rejection to Congo red and Methyl orange with high flux but low rejection to Na2SO4 and MgCl2 at 0.2 MPa and ambient temperature. The membrane exhibited excellent solvent resistance in N,N-dimethylacetamide (DMAc) after being crosslinked with 0.5 wt.% triethylene tetramine. The result means that a highly selective and solvent-resistant P84/GO composite membrane was prepared with the facile filtration preparation method.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Yusoff, Izzati Izni, Rosiah Rohani, Nadiah Khairul Zaman, Mohd Usman Mohd Junaidi, Abdul Wahab Mohammad et Zamardina Zainal. « Durable pressure filtration membranes based on polyaniline-polyimide P84 blends ». Polymer Engineering & ; Science 59, S1 (27 avril 2018) : E82—E92. http://dx.doi.org/10.1002/pen.24862.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Qiao, Xiangyi, et Tai-Shung Chung. « Diamine modification of P84 polyimide membranes for pervaporation dehydration of isopropanol ». AIChE Journal 52, no 10 (2006) : 3462–72. http://dx.doi.org/10.1002/aic.10964.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Sazali, Norazlianie, Wan Norharyati Wan Salleh, Nor Hafiza Ismail, Ahmad Fauzi Ismail, Murakami Hideyuki et Yuji Iwamoto. « The influence of coating-carbonization cycles toward P84 co-polyimide/nanocrystalline cellulose ». Comptes Rendus Chimie 22, no 11-12 (novembre 2019) : 779–85. http://dx.doi.org/10.1016/j.crci.2019.09.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Etxeberria-Benavides, Miren, Oguz Karvan, Freek Kapteijn, Jorge Gascon et Oana David. « Fabrication of Defect-Free P84® Polyimide Hollow Fiber for Gas Separation : Pathway to Formation of Optimized Structure ». Membranes 10, no 1 (25 décembre 2019) : 4. http://dx.doi.org/10.3390/membranes10010004.

Texte intégral
Résumé :
The elimination of the additional defect healing post-treatment step in asymmetric hollow fiber manufacturing would result in a significant reduction in membrane production cost. However, obtaining integrally skinned polymeric asymmetric hollow fiber membranes with an ultrathin and defect-free selective layer is quite challenging. In this study, P84® asymmetric hollow fiber membranes with a highly thin (~56 nm) defect-free skin were successfully fabricated by fine tuning the dope composition and spinning parameters using volatile additive (tetrahydrofuran, THF) as key parameters. An extensive experimental and theoretical study of the influence of volatile THF addition on the solubility parameter of the N-methylpyrrolidone/THF solvent mixture was performed. Although THF itself is not a solvent for P84®, in a mixture with a good solvent for the polymer, like N-Methyl-2-pyrrolidone (NMP), it can be dissolved at high THF concentrations (NMP/THF ratio > 0.52). The as-spun fibers had a reproducible ideal CO2/N2 selectivity of 40, and a CO2 permeance of 23 GPU at 35 °C. The fiber production can be scaled-up with retention of the selectivity.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Han, Runlin, Xiaobing Liu, Min Chen, Xufeng Ma, Yuhang Zhang et Yan Sui. « Facile preparation of P84® polyimide affinity membrane with high adsorption of bilirubin ». DESALINATION AND WATER TREATMENT 204 (2020) : 82–92. http://dx.doi.org/10.5004/dwt.2020.26253.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Li, Xue, et Tai-Shung Chung. « Thin-film composite P84 co-polyimide hollow fiber membranes for osmotic power generation ». Applied Energy 114 (février 2014) : 600–610. http://dx.doi.org/10.1016/j.apenergy.2013.10.037.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Qiao, Xiangyi, Tai-Shung Chung et Raj Rajagopalan. « Zeolite filled P84 co-polyimide membranes for dehydration of isopropanol through pervaporation process ». Chemical Engineering Science 61, no 20 (octobre 2006) : 6816–25. http://dx.doi.org/10.1016/j.ces.2006.07.024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Tin, Pei Shi, Tai-Shung Chung, Ye Liu et Rong Wang. « Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide ». Carbon 42, no 15 (2004) : 3123–31. http://dx.doi.org/10.1016/j.carbon.2004.07.026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Wang, Pin, Cuiming Wu, Mengjie Sun, Xu Zhang et Yonghui Wu. « Porous P84 co-polyimide anion exchange membranes for diffusion dialysis application to recover acids ». DESALINATION AND WATER TREATMENT 108 (2018) : 40–48. http://dx.doi.org/10.5004/dwt.2018.21949.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Sazali, N., W. N. W. Salleh, A. F. Ismail, K. Kadirgama et F. E. C. Othman. « P84 Co-Polyimide Based-Tubular Carbon Membrane : Effect of Heating Rates on Helium Separations ». Solid State Phenomena 280 (août 2018) : 308–11. http://dx.doi.org/10.4028/www.scientific.net/ssp.280.308.

Texte intégral
Résumé :
Helium is one of the most valuable gases with unique features and properties as well as widely used in various applications. Generally, most of the helium sources was extracted from natural gas and it is very crucial to develop efficient technology for helium recovery from natural gas sources, in order to overcome the deficit of the helium supply. Up to now, there are various available traditional separation methods for helium recovery, however these methods possessed several disadvantages such as expensive in cost and energy intensive. Recently, gas separation by using membranes have been utilized and showed potential in recovering and purifying helium from natural gas. This method directly separating the helium from the methane through natural gas liquefaction process where in this process the helium is recovered from the nitrogen rejection unit (NRU) exit gas. Due to the potential benefits that can be obtained from this membrane-based separation method, this current study is aiming to provide more comprehensive scientific reports on the effects of preparation parameters on the performance of tubular carbon membranes (TCMs) for helium separation. In this study, the carbonization heating rate was varied from 1 to 7°C/min by controlling the final temperature at 800°C under Argon environment for all polymeric tubular membranes. The permeation performance of the resultant TCMs have been determined by using a single permeation apparatus. It is necessary to fine-tuning the carbonization conditions in order to obtain the desired permeation properties. From the results, it can be concluded that the most optimum heating rate was found to be at 3°C/min with 463.86±3.12 selectivity of He/N2separation.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Sari, Pusfita, Triyanda Gunawan, Wan Norharyati Wan Salleh, Ahmad Fauzi Ismail et Nurul Widiastuti. « Simple Method to Enhance O2/N2 Separation on P84 co-polyimide Hollow Fiber Membrane ». IOP Conference Series : Materials Science and Engineering 546 (26 juin 2019) : 042042. http://dx.doi.org/10.1088/1757-899x/546/4/042042.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Mangindaan, Dave W., Nelson Minyang Woon, Gui Min Shi et Tai Shung Chung. « P84 polyimide membranes modified by a tripodal amine for enhanced pervaporation dehydration of acetone ». Chemical Engineering Science 122 (janvier 2015) : 14–23. http://dx.doi.org/10.1016/j.ces.2014.09.014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Zsigmond, Andras, et Jiri Libich. « The Effect of Electrode Binders to Electrochemical Properties of Negative Electrode Materials ». ECS Transactions 105, no 1 (30 novembre 2021) : 35–42. http://dx.doi.org/10.1149/10501.0035ecst.

Texte intégral
Résumé :
This paper deals with various types of electrode binders used in lithium-ion batteries. The electrode binders play important role in battery, the binders directly affect almost all aspect of electrode characteristics. As the one of the most import parameter is the electrode charge-discharge long term stability. The three binders have been tested in context of negative electrode in lithium-ion battery. The natural graphite has been chosen as an active electrode material. The natural graphite takes majority as negative electrode material on commercial market with lithium-ion batteries. The three kind of binders was established for testing: polyvinylidene fluoride (PVDF), styrene-butadiene rubber (SBR) and polyimide P84. The influence of these binders on charge-discharge stability are evaluated and described in this paper.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Abdi, Zelalem Gudeta, Jyh-Chien Chen et Tai-Shung Chung. « Infiltration of 3D-macrocycles to integrally skinned asymmetric P84 co-polyimide membranes for boron removal ». Desalination 540 (octobre 2022) : 115988. http://dx.doi.org/10.1016/j.desal.2022.115988.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Zhang, Chuanyang, Shuai Xue, Guosheng Wang, Cuiming Wu et Yonghui Wu. « Production of lactobionic acid by BMED process using porous P84 co-polyimide anion exchange membranes ». Separation and Purification Technology 173 (février 2017) : 174–82. http://dx.doi.org/10.1016/j.seppur.2016.08.013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Liu, Ruixue, Xiangyi Qiao et Tai-Shung Chung. « The development of high performance P84 co-polyimide hollow fibers for pervaporation dehydration of isopropanol ». Chemical Engineering Science 60, no 23 (décembre 2005) : 6674–86. http://dx.doi.org/10.1016/j.ces.2005.05.066.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Abdi, Zelalem Gudeta, Juin-Yih Lai et Tai-Shung Chung. « Green modification of P84 co-polyimide with β-cyclodextrin for separation of dye/salt mixtures ». Desalination 549 (mars 2023) : 116365. http://dx.doi.org/10.1016/j.desal.2022.116365.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Mangindaan, Dave W., Gui Min Shi et Tai-Shung Chung. « Pervaporation dehydration of acetone using P84 co-polyimide flat sheet membranes modified by vapor phase crosslinking ». Journal of Membrane Science 458 (mai 2014) : 76–85. http://dx.doi.org/10.1016/j.memsci.2014.01.030.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Sazali, N., W. N. W. Salleh et A. F. Ismail. « Carbon tubular membranes from nanocrystalline cellulose blended with P84 co-polyimide for H2 and He separation ». International Journal of Hydrogen Energy 42, no 15 (avril 2017) : 9952–57. http://dx.doi.org/10.1016/j.ijhydene.2017.01.128.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Sun, Mengjie, Meng Li, Xu Zhang, Cuiming Wu et Yonghui Wu. « Graphene oxide modified porous P84 co-polyimide membranes for boron recovery by bipolar membrane electrodialysis process ». Separation and Purification Technology 232 (février 2020) : 115963. http://dx.doi.org/10.1016/j.seppur.2019.115963.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Sazali, N., W. N. W. Salleh, A. F. Ismail, K. C. Wong et Y. Iwamoto. « Exploiting pyrolysis protocols on BTDA-TDI/MDI (P84) polyimide/nanocrystalline cellulose carbon membrane for gas separations ». Journal of Applied Polymer Science 136, no 1 (27 août 2018) : 46901. http://dx.doi.org/10.1002/app.46901.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Sazali, Norazlianie, Mohd Syafiq Sharip, Haziqatulhanis Ibrahim, Wan Norharyati Wan Salleh, Nur Izwanne Mahyon, Kumaran Kadirgama, Zawati Harun et Norsuhailizah Sazali. « The performance of CO2/N2 separation on P84/NCC-based tubular carbon membrane under different carbonization conditions ». Malaysian Journal of Fundamental and Applied Sciences 15, no 3 (25 juin 2019) : 447–50. http://dx.doi.org/10.11113/mjfas.v15n3.1177.

Texte intégral
Résumé :
In this study, the influence of carbonization environment on the performance of Tubular Carbon Membrane (TCMs) was explored. P84 co-polyimide/Nanocrystalline cellulose-based TCMs were synthesized by dip-coating technique. The permeation properties of TCMs were determined by employing pure gas of CO2 and N2. Heat treatment processes were carried out under different environment (Argon, Nitrogen, and Helium) with the flow rate of 200 ml/min to boost the membrane’s performance. The carbonization process was performed at a consistent carbonization temperature of 800oC under heating rate of 3oC/min. Carbonization under Argon environment was found to be the best condition for PI/NCC-based TCMs preparation with the permeance of 3.22±3.21and 213.56±2.17 GPU for N2, and CO2 gases, respectively. This membrane exhibited the uppermost CO2/N2 selectivity of 66.32±2.18. TCMs prepared under Ar environment experienced less weight loss while exhibiting highest CO2/N2 selectivity as compared to those prepared under He and N2 environment.
Styles APA, Harvard, Vancouver, ISO, etc.
28

REN, J. « Membrane structure control of BTDA-TDI/MDI (P84) co-polyimide asymmetric membranes by wet-phase inversion process ». Journal of Membrane Science 241, no 2 (octobre 2004) : 305–14. http://dx.doi.org/10.1016/j.memsci.2004.06.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Qiao, Xiangyi, Tai-Shung Chung et K. P. Pramoda. « Fabrication and characterization of BTDA-TDI/MDI (P84) co-polyimide membranes for the pervaporation dehydration of isopropanol ». Journal of Membrane Science 264, no 1-2 (novembre 2005) : 176–89. http://dx.doi.org/10.1016/j.memsci.2005.04.034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Qiao, Xiangyi, et Tai-Shung Chung. « Fundamental Characteristics of Sorption, Swelling, and Permeation of P84 Co-polyimide Membranes for Pervaporation Dehydration of Alcohols ». Industrial & ; Engineering Chemistry Research 44, no 23 (novembre 2005) : 8938–43. http://dx.doi.org/10.1021/ie050836g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Shen, Yi, et Aik Chong Lua. « Structural and transport properties of BTDA-TDI/MDI co-polyimide (P84)–silica nanocomposite membranes for gas separation ». Chemical Engineering Journal 188 (avril 2012) : 199–209. http://dx.doi.org/10.1016/j.cej.2012.01.043.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Liu, Huanmin, Chongchong She, Jiaming Gao et Kun Chen. « Study on the Application of Fluorinated Polyimide in the Acidic Corrosion Protection of 3-nitro-1,2,4-trizole-5-one (NTO)-Based Explosive Formulations ». Polymers 16, no 12 (7 juin 2024) : 1624. http://dx.doi.org/10.3390/polym16121624.

Texte intégral
Résumé :
3-nitro-1,2,4-triazol-5-one (NTO) has been widely used as a kind of insensitive single-compound explosive owing to its excellent balance between safety and explosive energy. To reduce its possible acid corrosion and extend its application to insensitive ammunition, acid protection research on NTO-based explosives is significant. Traditionally, the acid protection effect was evaluated by metal corrosion, which is time-consuming and qualitative. An efficient and quantitative method is desirable for evaluating the acid protection effect and exploring novel protection materials. Herein, a polyimide of 4,4’-(hexafluoroisopropene)diphthalic anhydride (6FDA)/2,2-bis(trifluoromethyl)-4,4-diaminobiphenyl (TFMB) was synthesized by replacing the 4,4’-diaminodiphenyl ether (ODA) monomer with a TFMB monomer to act as an acid-protective coating material for NTO-based explosives. Compared with three other coating materials, polyvinylidene fluoride (PVDF), polyetherimide (PEI), and copolyimide (P84), the fluorinated polyimide exhibits the best acid protection effect. Moreover, a new method was constructed to obtain the pH time-dependent curve in order to evaluate efficiently the acid protection effect of the polymer materials. By the virtue of molecular dynamic simulation (Materials Studio 2023), the interfacial effects of the coating materials with NTO-based explosives were obtained. The study provides an interpretation of the acid protection effect on the molecular level, suggesting that the higher content of fluorine atoms is beneficial for stabilizing the active hydrogen atom of the NTO by forming intermolecular hydrogen bonds.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Choi, Seung-Hak, Johannes C. Jansen, Franco Tasselli, Giuseppe Barbieri et Enrico Drioli. « In-line formation of chemically cross-linked P84® co-polyimide hollow fibre membranes for H2/CO2 separation ». Separation and Purification Technology 76, no 2 (13 décembre 2010) : 132–39. http://dx.doi.org/10.1016/j.seppur.2010.09.031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Sun, Mengjie, Meng Li, Pin Wang, Xu Zhang, Cuiming Wu et Yonghui Wu. « Production of N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid by BMED process using porous P84 co-polyimide membranes ». Chemical Engineering Research and Design 137 (septembre 2018) : 467–77. http://dx.doi.org/10.1016/j.cherd.2018.07.039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Sazali, N., W. N. W. Salleh, A. F. Ismail, K. Kadirgama, F. E. C. Othman et N. H. Ismail. « Impact of stabilization environment and heating rates on P84 co-polyimide/nanocrystaline cellulose carbon membrane for hydrogen enrichment ». International Journal of Hydrogen Energy 44, no 37 (août 2019) : 20924–32. http://dx.doi.org/10.1016/j.ijhydene.2018.06.039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Widyanto, A. R., I. S. Caralin, Nurul Widiastuti, Triyanda Gunawan, Rika Wijiyanti, A. F. Ismail, W. N. W. Salleh, Mikihiro Nomura et Kohei Suzuki. « Investigating Hydrocarbon Gases Permeability Through Hollow Fiber Hybrid Carbon Membrane ». Journal of Applied Membrane Science & ; Technology 28, no 1 (28 mars 2024) : 27–46. http://dx.doi.org/10.11113/amst.v28n1.284.

Texte intégral
Résumé :
Hydrocarbon separation from natural gases is a critical procedure in the chemical and petrochemical industries. This study used hollow fiber carbon membranes (HFCMs) made from a commercially available co-polyimide, P84, with zeolite-carbon composite (ZCC) as a filler to separate light hydrocarbons like CH4/C3H8 and CH4/C2H6. The Arrhenius technique was used to evaluate the effects of temperature fluctuations (298, 323, and 373 K) on the membrane. X-ray diffraction exhibited a characteristic graphite peak at 2θ ~ 44°, indicating the creation of an effective carbon membrane. SEM investigation revealed the compactness of both pristine and hybrid carbon membrane structures. The operating temperature has a significant influence on the gas penetration through the membrane when evaluating gas permeation. The hybrid carbon membrane has the highest permeability for CH4, C2H6, and C3H8 at 373 K. (81.86, 61.82, and 58.28 Barrer, respectively). The carbon membrane also showed greatest selectivity for CH4/C3H8 and CH4/C2H6 at 323 K (2.24 and 2.04, respectively). Adsorption and surface diffusion were the membrane's transport mechanisms. By adding filler to the membrane, the gas permeability was temperature dependent.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Cheng, Jiu-Hua, You-Chang Xiao, Cuiming Wu et Tai-Shung Chung. « Chemical modification of P84 polyimide as anion-exchange membranes in a free-flow isoelectric focusing system for protein separation ». Chemical Engineering Journal 160, no 1 (15 mai 2010) : 340–50. http://dx.doi.org/10.1016/j.cej.2010.02.058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

WANG, K., T. CHUNG et R. RAJAGOPALAN. « Dehydration of tetrafluoropropanol (TFP) by pervaporation via novel PBI/BTDA-TDI/MDI co-polyimide (P84) dual-layer hollow fiber membranes ». Journal of Membrane Science 287, no 1 (5 janvier 2007) : 60–66. http://dx.doi.org/10.1016/j.memsci.2006.10.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Davood Abadi Farahani, Mohammad Hossein, Dan Hua et Tai-Shung Chung. « Cross-linked mixed matrix membranes consisting of carboxyl-functionalized multi-walled carbon nanotubes and P84 polyimide for organic solvent nanofiltration (OSN) ». Separation and Purification Technology 186 (octobre 2017) : 243–54. http://dx.doi.org/10.1016/j.seppur.2017.06.021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Yang, Qian, Tai-Shung Chung, Youchang Xiao et Kaiyu Wang. « The development of chemically modified P84 Co-polyimide membranes as supported liquid membrane matrix for Cu(II) removal with prolonged stability ». Chemical Engineering Science 62, no 6 (mars 2007) : 1721–29. http://dx.doi.org/10.1016/j.ces.2006.12.022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Sazali, N., W. N. W. Salleh, A. F. Ismail, N. H. Ismail, F. Aziz, N. Yusof et H. Hasbullah. « Effect of stabilization temperature during pyrolysis process of P84 co-polyimide-based tubular carbon membrane for H2/N2 and He/N2 separations ». IOP Conference Series : Materials Science and Engineering 342 (avril 2018) : 012027. http://dx.doi.org/10.1088/1757-899x/342/1/012027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Davood Abadi Farahani, Mohammad Hossein, et Tai-Shung Chung. « Solvent resistant hollow fiber membranes comprising P84 polyimide and amine-functionalized carbon nanotubes with potential applications in pharmaceutical, food, and petrochemical industries ». Chemical Engineering Journal 345 (août 2018) : 174–85. http://dx.doi.org/10.1016/j.cej.2018.03.153.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Xin, Yishuang, et Fengxiang Yin. « Influence of Water on the Recovery of Lube Oil Dewaxing Solvent Using P84 Polyimide Membrane : A Combination of Experiment and Molecular Simulation ». ChemistrySelect 5, no 6 (13 février 2020) : 2094–102. http://dx.doi.org/10.1002/slct.201904145.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Baneshi, Mohammad Mehdi, Abdol Mohammad Ghaedi, Azam Vafaei, Daryoush Emadzadeh, Woei Jye Lau, Hossein Marioryad et Arsalan Jamshidi. « A high-flux P84 polyimide mixed matrix membranes incorporated with cadmium-based metal organic frameworks for enhanced simultaneous dyes removal : Response surface methodology ». Environmental Research 183 (avril 2020) : 109278. http://dx.doi.org/10.1016/j.envres.2020.109278.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Editor-in-Chief. « RETRACTION : The influence of coating-carbonization cycles toward P84 co-polyimide/nanocrystalline cellulose [C. R. Chimie, 2019, 22, no. 11-12, 779-785] ». Comptes Rendus. Chimie 23, no 4-5 (10 novembre 2020) : 359. http://dx.doi.org/10.5802/crchim.43.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Ren, Jizhong, Zhansheng Li et Rong Wang. « Effects of the thermodynamics and rheology of BTDA-TDI/MDI co-polyimide (P84) dope solutions on the performance and morphology of hollow fiber UF membranes ». Journal of Membrane Science 309, no 1-2 (février 2008) : 196–208. http://dx.doi.org/10.1016/j.memsci.2007.10.026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Davood Abadi Farahani, Mohammad Hossein, Dan Hua et Tai-Shung Chung. « Cross-linked mixed matrix membranes (MMMs) consisting of amine-functionalized multi-walled carbon nanotubes and P84 polyimide for organic solvent nanofiltration (OSN) with enhanced flux ». Journal of Membrane Science 548 (février 2018) : 319–31. http://dx.doi.org/10.1016/j.memsci.2017.11.037.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Ren, Jizhong, Zhansheng Li, Fook-Sin Wong et Dongfei Li. « Development of asymmetric BTDA-TDI/MDI (P84) co-polyimide hollow fiber membranes for ultrafiltration : the influence of shear rate and approaching ratio on membrane morphology and performance ». Journal of Membrane Science 248, no 1-2 (février 2005) : 177–88. http://dx.doi.org/10.1016/j.memsci.2004.09.031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

LI, Y., T. CHUNG, Z. HUANG et S. KULPRATHIPANJA. « Dual-layer polyethersulfone (PES)/BTDA-TDI/MDI co-polyimide (P84) hollow fiber membranes with a submicron PES–zeolite beta mixed matrix dense-selective layer for gas separation ». Journal of Membrane Science 277, no 1-2 (1 juin 2006) : 28–37. http://dx.doi.org/10.1016/j.memsci.2005.10.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Heydari, Shokofeh, et Vahid Pirouzfar. « The influence of synthesis parameters on the gas selectivity and permeability of carbon membranes : empirical modeling and process optimization using surface methodology ». RSC Advances 6, no 17 (2016) : 14149–63. http://dx.doi.org/10.1039/c5ra27772h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie