Littérature scientifique sur le sujet « Point cloud denoising »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Point cloud denoising ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Point cloud denoising"

1

Hou, Wenguang, Taiwai Chan et Mingyue Ding. « Denoising point cloud ». Inverse Problems in Science and Engineering 20, no 3 (avril 2012) : 287–98. http://dx.doi.org/10.1080/17415977.2011.603087.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Si, Shuming, Han Hu, Yulin Ding, Xuekun Yuan, Ying Jiang, Yigao Jin, Xuming Ge, Yeting Zhang, Jie Chen et Xiaocui Guo. « Multiscale Feature Fusion for the Multistage Denoising of Airborne Single Photon LiDAR ». Remote Sensing 15, no 1 (2 janvier 2023) : 269. http://dx.doi.org/10.3390/rs15010269.

Texte intégral
Résumé :
Compared with the existing modes of LiDAR, single-photon LiDAR (SPL) can acquire terrain data more efficiently. However, influenced by the photon-sensitive detectors, the collected point cloud data contain a large number of noisy points. Most of the existing denoising techniques are based on the sparsity assumption of point cloud noise, which does not hold for SPL point clouds, so the existing denoising methods cannot effectively remove the noisy points from SPL point clouds. To solve the above problems, we proposed a novel multistage denoising strategy with fused multiscale features. The multiscale features were fused to enrich contextual information of the point cloud at different scales. In addition, we utilized multistage denoising to solve the problem that a single-round denoising could not effectively remove enough noise points in some areas. Interestingly, the multiscale features also prevent an increase in false-alarm ratio during multistage denoising. The experimental results indicate that the proposed denoising approach achieved 97.58%, 99.59%, 95.70%, and 77.92% F1-scores in the urban, suburban, mountain, and water areas, respectively, and it outperformed the existing denoising methods such as Statistical Outlier Removal. The proposed approach significantly improved the denoising precision of airborne point clouds from single-photon LiDAR, especially in water areas and dense urban areas.
Styles APA, Harvard, Vancouver, ISO, etc.
3

ZHAO, Fu-qun. « Hierarchical point cloud denoising algorithm ». Optics and Precision Engineering 28, no 7 (2020) : 1618–25. http://dx.doi.org/10.37188/ope.20202807.1618.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Liang, Xin He, Jin Liang et Chen Guo. « Scatter Point Cloud Denoising Based on Self-Adaptive Optimal Neighborhood ». Advanced Materials Research 97-101 (mars 2010) : 3631–36. http://dx.doi.org/10.4028/www.scientific.net/amr.97-101.3631.

Texte intégral
Résumé :
We present a scatter point cloud denoising method, which can reduce noise effectively, while preserving mesh features such as sharp edges and corners. The method consists of two stages. Firstly, noisy points normal are filtered iteratively; second, location noises of points are reduced. How to select proper denoising neighbors is a key problem for scatter point cloud denoising operation. The local shape factor which related to the surface feature is proposed. By using the factor, we achieved the shape adaptive angle threshold and adaptive optimal denoising neighbor. Normal space and location space is denoising using improved trilateral filter in adaptive angle threshold. A series of numerical experiment proved the new denoising algorithm in this paper achieved more detail feature and smoother surface.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Li, Zhiyuan, Jian Wang, Zhenyu Zhang, Fengxiang Jin, Juntao Yang, Wenxiao Sun et Yi Cao. « A Method Based on Improved iForest for Trunk Extraction and Denoising of Individual Street Trees ». Remote Sensing 15, no 1 (25 décembre 2022) : 115. http://dx.doi.org/10.3390/rs15010115.

Texte intégral
Résumé :
Currently, the street tree resource survey using Mobile laser scanning (MLS) represents a hot spot around the world. Refined trunk extraction is an essential step for 3D reconstruction of street trees. However, due to scanning errors and the effects of occlusion by various types of features in the urban environment, street tree point cloud data processing has the problem of excessive noise. For the noise points that are difficult to remove using statistical methods in close proximity to the tree trunk, we propose an adaptive trunk extraction and denoising method for street trees based on an improved iForest (Isolation Forest) algorithm. Firstly, to extract the individual tree trunk points, the trunk and the crown are distinguished from the individual tree point cloud through point cloud slicing. Next, the iForest algorithm is improved by conducting automatic calculation of the contamination and further used to denoise the tree trunk point cloud. Finally, the method is validated with five datasets of different scenes. The results indicate that our method is robust and effective in extracting and denoising tree trunks. Compared with the traditional Statistical Outlier Removal (SOR) filter and Radius filter denoising methods, the denoising accuracy of the proposed method can be improved by approximately 30% for noise points close to tree trunks. Compared to iForest, the proposed method automatically calculates the contamination, improving the automation of the algorithm. Our method can provide more precise trunk point clouds for 3D reconstruction of street trees.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Leal, Esmeide, German Sanchez-Torres et John W. Branch. « Sparse Regularization-Based Approach for Point Cloud Denoising and Sharp Features Enhancement ». Sensors 20, no 11 (5 juin 2020) : 3206. http://dx.doi.org/10.3390/s20113206.

Texte intégral
Résumé :
Denoising the point cloud is fundamental for reconstructing high quality surfaces with details in order to eliminate noise and outliers in the 3D scanning process. The challenges for a denoising algorithm are noise reduction and sharp features preservation. In this paper, we present a new model to reconstruct and smooth point clouds that combine L1-median filtering with sparse L1 regularization for both denoising the normal vectors and updating the position of the points to preserve sharp features in the point cloud. The L1-median filter is robust to outliers and noise compared to the mean. The L1 norm is a way to measure the sparsity of a solution, and applying an L1 optimization to the point cloud can measure the sparsity of sharp features, producing clean point set surfaces with sharp features. We optimize the L1 minimization problem by using the proximal gradient descent algorithm. Experimental results show that our approach is comparable to the state-of-the-art methods, as it filters out 3D models with a high level of noise, but keeps their geometric features.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Nex, F., et M. Gerke. « Photogrammetric DSM denoising ». ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-3 (11 août 2014) : 231–38. http://dx.doi.org/10.5194/isprsarchives-xl-3-231-2014.

Texte intégral
Résumé :
Image matching techniques can nowadays provide very dense point clouds and they are often considered a valid alternative to LiDAR point cloud. However, photogrammetric point clouds are often characterized by a higher level of random noise compared to LiDAR data and by the presence of large outliers. These problems constitute a limitation in the practical use of photogrammetric data for many applications but an effective way to enhance the generated point cloud has still to be found. <br><br> In this paper we concentrate on the restoration of Digital Surface Models (DSM), computed from dense image matching point clouds. A photogrammetric DSM, i.e. a 2.5D representation of the surface is still one of the major products derived from point clouds. Four different algorithms devoted to DSM denoising are presented: a standard median filter approach, a bilateral filter, a variational approach (TGV: Total Generalized Variation), as well as a newly developed algorithm, which is embedded into a Markov Random Field (MRF) framework and optimized through graph-cuts. The ability of each algorithm to recover the original DSM has been quantitatively evaluated. To do that, a synthetic DSM has been generated and different typologies of noise have been added to mimic the typical errors of photogrammetric DSMs. The evaluation reveals that standard filters like median and edge preserving smoothing through a bilateral filter approach cannot sufficiently remove typical errors occurring in a photogrammetric DSM. The TGV-based approach much better removes random noise, but large areas with outliers still remain. Our own method which explicitly models the degradation properties of those DSM outperforms the others in all aspects.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Mugner, E., et N. Seube. « DENOISING OF 3D POINT CLOUDS ». ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W17 (29 novembre 2019) : 217–24. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w17-217-2019.

Texte intégral
Résumé :
Abstract. A method to remove random errors from 3D point clouds is proposed. It is based on the estimation of a local geometric descriptor of each point. For mobile mapping LiDAR and airborne LiDAR, a combined standard mesurement uncertainty of the LiDAR system may supplement a geometric approach. Our method can be applied to any point cloud, acquired by a fixed, a mobile or an airborne LiDAR system. We present the principle of the method and some results from various LiDAR system mounted on UAVs. A comparison of a low-cost LiDAR system and a high-grade LiDAR system is performed on the same area, showing the benefits of applying our denoising algorithm to UAV LiDAR data. We also present the impact of denoising as a pre-processing tool for ground classification applications. Finaly, we also show some application of our denoising algorithm to dense point clouds produced by a photogrammetry software.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Liu, Q., X. Jin, Y. J. Yang, Y. C. Zou et W. Zhang. « Optimization of point cloud preprocessing algorithm for equipped vehicles ». Journal of Physics : Conference Series 2383, no 1 (1 décembre 2022) : 012080. http://dx.doi.org/10.1088/1742-6596/2383/1/012080.

Texte intégral
Résumé :
In view of the fact that the point cloud 3D model will be interfered by environmental factors, measurement methods and other random factors in the process of data scanning and acquisition, there will be some invalid points, outliers and internal noise points. In this paper, a point cloud denoising method based on adaptive density clustering and statistical filtering is proposed to process vehicle point cloud data. which can effectively preserve vehicle features while obtaining optimal denoising effect. Compared with the existing point cloud noise processing algorithms, this algorithm can remove noise better, and has shorter time-consuming and good applicability.
Styles APA, Harvard, Vancouver, ISO, etc.
10

CUI Xin, 崔. 鑫., 闫秀天 YAN Xiu-tian et 李世鹏 LI Shi-peng. « Feature-preserving scattered point cloud denoising ». Optics and Precision Engineering 25, no 12 (2017) : 3169–78. http://dx.doi.org/10.3788/ope.20172512.3169.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Point cloud denoising"

1

Lee, Kai-wah, et 李啟華. « Mesh denoising and feature extraction from point cloud data ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B42664330.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lee, Kai-wah. « Mesh denoising and feature extraction from point cloud data ». Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B42664330.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

IRFAN, MUHAMMAD ABEER. « Joint geometry and color denoising for 3D point clouds ». Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2912976.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Point cloud denoising"

1

Zaman, Faisal, Ya Ping Wong et Boon Yian Ng. « Density-Based Denoising of Point Cloud ». Dans 9th International Conference on Robotic, Vision, Signal Processing and Power Applications, 287–95. Singapore : Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1721-6_31.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Pistilli, Francesca, Giulia Fracastoro, Diego Valsesia et Enrico Magli. « Learning Graph-Convolutional Representations for Point Cloud Denoising ». Dans Computer Vision – ECCV 2020, 103–18. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58565-5_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Li, Yushi, et George Baciu. « PC-OPT : A SfM Point Cloud Denoising Algorithm ». Dans Lecture Notes in Computer Science, 280–91. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62362-3_25.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Mao, Aihua, Zihui Du, Yu-Hui Wen, Jun Xuan et Yong-Jin Liu. « PD-Flow : A Point Cloud Denoising Framework with Normalizing Flows ». Dans Lecture Notes in Computer Science, 398–415. Cham : Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-20062-5_23.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Siyong, Fu, et Wu Lushen. « Denoising Point Cloud Based on the Connexity of Spatial Grid ». Dans Advances in Intelligent Systems and Computing, 12–19. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00214-5_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Castillo, Edward, Jian Liang et Hongkai Zhao. « Point Cloud Segmentation and Denoising via Constrained Nonlinear Least Squares Normal Estimates ». Dans Mathematics and Visualization, 283–99. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34141-0_13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Morales, Rixio, Yunhong Wang et Zhaoxiang Zhang. « Unstructured Point Cloud Surface Denoising and Decimation Using Distance RBF K-Nearest Neighbor Kernel ». Dans Advances in Multimedia Information Processing - PCM 2010, 214–25. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15696-0_20.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Chen, Lei, Yuan Yuan et Shide Song. « Hierarchical Denoising Method of Crop 3D Point Cloud Based on Multi-view Image Reconstruction ». Dans Computer and Computing Technologies in Agriculture XI, 416–27. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-06137-1_38.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Point cloud denoising"

1

Gao, Xianz, Wei Hu et Zongming Guo. « Graph-Based Point Cloud Denoising ». Dans 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM). IEEE, 2018. http://dx.doi.org/10.1109/bigmm.2018.8499090.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Luo, Shitong, et Wei Hu. « Score-Based Point Cloud Denoising ». Dans 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2021. http://dx.doi.org/10.1109/iccv48922.2021.00454.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Huang, Wenming, Yuanwang Li, Peizhi Wen et Xiaojun Wu. « Algorithm for 3D Point Cloud Denoising ». Dans 2009 Third International Conference on Genetic and Evolutionary Computing (WGEC 2009). IEEE, 2009. http://dx.doi.org/10.1109/wgec.2009.139.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Almonacid, Jonathan, Celia Cintas, Claudio Derieux et Mirtha Lewis. « Point Cloud Denoising using Deep Learning ». Dans 2018 Argentine Congress of Computer Science and Research Development (CACIDI). IEEE, 2018. http://dx.doi.org/10.1109/cacidi.2018.8584185.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Luo, Shitong, et Wei Hu. « Differentiable Manifold Reconstruction for Point Cloud Denoising ». Dans MM '20 : The 28th ACM International Conference on Multimedia. New York, NY, USA : ACM, 2020. http://dx.doi.org/10.1145/3394171.3413727.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Shang, Xin, Rong Ye, Hui Feng et Xueqin Jiang. « Robust Feature Graph for Point Cloud Denoising ». Dans 2022 7th International Conference on Communication, Image and Signal Processing (CCISP). IEEE, 2022. http://dx.doi.org/10.1109/ccisp55629.2022.9974370.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Smítka, Václav, et Martin Štroner. « 3D scanner point cloud denoising by near points surface fitting ». Dans SPIE Optical Metrology 2013, sous la direction de Fabio Remondino, Mark R. Shortis, Jürgen Beyerer et Fernando Puente León. SPIE, 2013. http://dx.doi.org/10.1117/12.2020254.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Xing, Jinrui, Hui Yuan, Chen Chen et Tian Guo. « Wiener Filter-Based Point Cloud Adaptive Denoising for Video-based Point Cloud Compression ». Dans MM '22 : The 30th ACM International Conference on Multimedia. New York, NY, USA : ACM, 2022. http://dx.doi.org/10.1145/3552457.3555733.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Phuong, Nguyen Thi Huu, Dang Van Duc et Nguyen Truong Xuan. « LIDAR POINT CLOUD DENOISING METHOD USING NOMINAL POINT SPACING (NPS) ». Dans THE 14TH NATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED INFORMATION TECHNOLOGY RESEARCH. Nhà xuất bản Khoa học tự nhiên và Công nghệ, 2021. http://dx.doi.org/10.15625/vap.2021.0073.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Li, Xiaozhi, et Xiaojiu Li. « 3D Body Point Cloud Data Denoising and Registration ». Dans 2009 Second International Conference on Intelligent Computation Technology and Automation. IEEE, 2009. http://dx.doi.org/10.1109/icicta.2009.376.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie