Littérature scientifique sur le sujet « Plasticità Hebbiana »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Plasticità Hebbiana ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Plasticità Hebbiana"
Yee, Ada X., Yu-Tien Hsu et Lu Chen. « A metaplasticity view of the interaction between homeostatic and Hebbian plasticity ». Philosophical Transactions of the Royal Society B : Biological Sciences 372, no 1715 (5 mars 2017) : 20160155. http://dx.doi.org/10.1098/rstb.2016.0155.
Texte intégralHsu, Yu-Tien, Jie Li, Dick Wu, Thomas C. Südhof et Lu Chen. « Synaptic retinoic acid receptor signaling mediates mTOR-dependent metaplasticity that controls hippocampal learning ». Proceedings of the National Academy of Sciences 116, no 14 (19 février 2019) : 7113–22. http://dx.doi.org/10.1073/pnas.1820690116.
Texte intégralFox, Kevin, et Michael Stryker. « Integrating Hebbian and homeostatic plasticity : introduction ». Philosophical Transactions of the Royal Society B : Biological Sciences 372, no 1715 (5 mars 2017) : 20160413. http://dx.doi.org/10.1098/rstb.2016.0413.
Texte intégralTurrigiano, Gina G. « The dialectic of Hebb and homeostasis ». Philosophical Transactions of the Royal Society B : Biological Sciences 372, no 1715 (5 mars 2017) : 20160258. http://dx.doi.org/10.1098/rstb.2016.0258.
Texte intégralCosta, Rui Ponte, Beatriz E. P. Mizusaki, P. Jesper Sjöström et Mark C. W. van Rossum. « Functional consequences of pre- and postsynaptic expression of synaptic plasticity ». Philosophical Transactions of the Royal Society B : Biological Sciences 372, no 1715 (5 mars 2017) : 20160153. http://dx.doi.org/10.1098/rstb.2016.0153.
Texte intégralZenke, Friedemann, et Wulfram Gerstner. « Hebbian plasticity requires compensatory processes on multiple timescales ». Philosophical Transactions of the Royal Society B : Biological Sciences 372, no 1715 (5 mars 2017) : 20160259. http://dx.doi.org/10.1098/rstb.2016.0259.
Texte intégralCard, H. C., C. R. Schneider et W. R. Moore. « Hebbian plasticity in mos synapses ». IEE Proceedings F Radar and Signal Processing 138, no 1 (1991) : 13. http://dx.doi.org/10.1049/ip-f-2.1991.0003.
Texte intégralMagee, Jeffrey C., et Christine Grienberger. « Synaptic Plasticity Forms and Functions ». Annual Review of Neuroscience 43, no 1 (8 juillet 2020) : 95–117. http://dx.doi.org/10.1146/annurev-neuro-090919-022842.
Texte intégralMiller, Kenneth D. « Derivation of Linear Hebbian Equations from a Nonlinear Hebbian Model of Synaptic Plasticity ». Neural Computation 2, no 3 (septembre 1990) : 321–33. http://dx.doi.org/10.1162/neco.1990.2.3.321.
Texte intégralGuzman-Karlsson, Mikael C., Jarrod P. Meadows, Cristin F. Gavin, John J. Hablitz et J. David Sweatt. « Transcriptional and epigenetic regulation of Hebbian and non-Hebbian plasticity ». Neuropharmacology 80 (mai 2014) : 3–17. http://dx.doi.org/10.1016/j.neuropharm.2014.01.001.
Texte intégralThèses sur le sujet "Plasticità Hebbiana"
GUIDALI, GIACOMO. « Cross-modal plasticity in sensory-motor cortices and non-invasive brain stimulation techniques : new ways to explore and modulate brain plasticity ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/306484.
Texte intégralIn the present doctoral thesis, I have explored whether Hebbian learning may rule the functioning of cross-modal and sensory-motor networks of the human brain. To this aim, during my doctorate, I have developed and tested two novel Paired Associative Stimulation (PAS) protocols, a class of non-invasive brain stimulation techniques in which a peripheral, sensory, stimulation is repeatedly paired with a Transcranial Magnetic Stimulation (TMS) pulse to induce Hebbian associative plasticity. The two PAS protocols presented in my thesis target sensory-motor networks with mirror functioning, exploiting a visuo-tactile (cross-modal PAS), and a visuo-motor pathway (mirror PAS), respectively. In the first chapter of the present work, after a brief introduction to the concept of Hebbian associative plasticity, I will provide an exhaustive review of PAS protocols targeting sensory-motor systems, proposing a classification in three macro-categories: within-system, cross-systems, and cortico-cortical protocols, according to the characteristics of the paired stimulations. In the second chapter, I will describe the principal properties of the Mirror Neuron System (MNS) also considering its cross-modal (i.e., visuo-tactile) characteristics and the plastic mechanisms that are been hypothesize at the ground of the development of mirror neurons’ matching properties. In the third chapter, I will introduce the cross-modal PAS (cm-PAS), a novel cross-systems PAS developed to exploit the visuo-tactile mirroring properties of the primary somatosensory cortex (S1) to induce Hebbian associative plasticity in such primary sensory region. In a series of three experiments, timing dependency (Experiment 1), cortical (Experiment 2), and visual specificity (Experiment 3) of the protocol have been tested, by measuring changes in participants’ tactile acuity. In Experiment 3, also possible neurophysiological changes within S1 has been assessed, recording somatosensory-evoked potentials (SEP). Then, in a fourth experiment, cm-PAS timing dependency has been further investigated, testing the hypothesis that anticipatory, predictive-like, mechanisms within S1 may play a central role in the effectiveness of the protocol. In the fourth chapter, a second cross-systems PAS will be introduced: the mirror PAS (m-PAS) which exploits visuo-motor mirroring properties of the human brain. Differently from the cm-PAS, this second protocol targets visuo-motor integration within the MNS and aims at induce a novel, atypical, motor resonance phenomena (assessed recording motor-evoked potentials – MEPs) following Hebbian learning. In three experiments, timing dependency (Experiment 1), visual (Experiment 2), and cortical specificity (Experiment 3) of the protocol have been tested. Furthermore, in the third experiment, the behavioral effects of the m-PAS are explored, using an imitative compatibility task exploiting automatic imitation phenomenon. Finally, in the conclusive chapter, I will discuss theoretical, methodological, and clinical outcomes and future perspectives that arise from these two protocols and the related results.
Soares, Cary. « Mechanisms of Synaptic Homeostasis and their Influence on Hebbian Plasticity at CA1 Hippocampal Synapses ». Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35508.
Texte intégralBartsch, Armin P. « Orientation maps in primary visual cortex a Hebbian model of intracortical and geniculocortical plasticity / ». [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=962125733.
Texte intégralLjaschenko, Dmitrij [Verfasser], Mafred [Gutachter] Heckmann et Erich [Gutachter] Buchner. « Hebbian plasticity at neuromuscular synapses of Drosophila / Dmitrij Ljaschenko. Gutachter : Mafred Heckmann ; Erich Buchner ». Würzburg : Universität Würzburg, 2014. http://d-nb.info/1108780482/34.
Texte intégralGasselin, Célia. « Plasticités hebbienne et homéostatique de l'excitabilité intrinsèque des neurones de la région CA1 de l'hippocampe=hebbian and homeostatic plasticity of intrinsic excitability in hippocampal CA1 neurons ». Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM5047.
Texte intégralSynaptic plasticity has been considered for decades as the main substrate of functional plasticity in the brain. Recently, experimental evidences suggest that long-lasting regulation of intrinsic neuronal excitability may also account for activity-dependent plasticity. Indeed, voltage-dependent ionic channels strongly regulate intrinsic excitability and inputs integration and their regulation was found to be essential in learning process. However, activity-dependent regulation of the hyperpolarization-activated ionic current (Ih) and its consequences for future plasticity remain unclear, so as the presence of any voltage-dependent conductances regulation in inhibitory neurons. In the first part of this thesis, we report the characterization of the induction and expression mechanisms of Long-Term Potentiation of Intrinsic Excitability (LTP-IE) in CA1 parvalbumin-positive basket interneurons. In a second part, the role of Ih in the homeostatic regulation of intrinsic neuronal excitability induced by global manipulations of neuronal activity was reported. In the third experimental study, we showed that the magnitude of Long-term Depression (LTD) determines the sign of Ih regulation in CA1 pyramidal neurons. In conclusion, this thesis shows that in both excitatory and inhibitory neurons, activity-dependent regulations of voltage-dependent conductances help to maintain a relative stability in the network activity
Bouchacourt, Flora. « Hebbian mechanisms and temporal contiguity for unsupervised task-set learning ». Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066379/document.
Texte intégralDepending on environmental demands, humans performing in a given task are able to exploit multiple concurrent strategies, for which the mental representations are called task-sets. We examine a candidate model for a specific human experiment, where several stimulus-response mappings, or task-sets, need to be learned and monitored. The model is composed of two interacting networks of mixed-selective neural populations. The decision network learns stimulus-response associations, but cannot learn more than one task-set. Its activity drives synaptic plasticity in a second network that learns event statistics on a longer timescale. When patterns in stimulus-response associations are detected, an inference bias to the decision network guides successive behavior. We show that a simple unsupervised Hebbian mechanism in the second network is sufficient to learn an implementation of task-sets. Their retrieval in the decision network improves performance. The model predicts abrupt changes in behavior depending on the precise statistics of previous responses, corresponding to positive (task-set retrieval) or negative effects on performance. The predictions are borne out by the data, and enable to identify subjects who have learned the task structure. The inference signal correlates with BOLD activity in the fronto-parietal network. Within this network, dorsomedial and dorsolateral prefrontal nodes are preferentially recruited when task-sets are recurrent: activity in these regions may provide a bias to decision circuits when a task-set is retrieved. These results show that Hebbian mechanisms and temporal contiguity may parsimoniously explain the learning of rule-guided behavior
Albers, Christian [Verfasser], Klaus [Akademischer Betreuer] Pawelzik et Stefan [Akademischer Betreuer] Bornholdt. « Functional Implications of Synaptic Spike Timing Dependent Plasticity and Anti-Hebbian Membrane Potential Dependent Plasticity / Christian Albers. Gutachter : Klaus Pawelzik ; Stefan Bornholdt. Betreuer : Klaus Pawelzik ». Bremen : Staats- und Universitätsbibliothek Bremen, 2015. http://d-nb.info/107560947X/34.
Texte intégralTully, Philip. « Spike-Based Bayesian-Hebbian Learning in Cortical and Subcortical Microcircuits ». Doctoral thesis, KTH, Beräkningsvetenskap och beräkningsteknik (CST), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-205568.
Texte intégralQC 20170421
Fiorentino, Domenico. « Interazione visuo-acustica e fenomeni di plasticità sinaptica : studio mediante un modello di rete neurale applicato al ventriloquismo ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/4863/.
Texte intégralCappelli, Simona. « Modello di rete neurale per lo studio di fenomeni di integrazione visuoacustica in soggetti sani e patologici ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amslaurea.unibo.it/3275/.
Texte intégralChapitres de livres sur le sujet "Plasticità Hebbiana"
Hayashi, Yasunori, Ken-ichi Okamoto, Miquel Bosch et Kensuke Futai. « Roles of Neuronal Activity-Induced Gene Products in Hebbian and Homeostatic Synaptic Plasticity, Tagging, and Capture ». Dans Synaptic Plasticity, 335–54. Vienna : Springer Vienna, 2012. http://dx.doi.org/10.1007/978-3-7091-0932-8_15.
Texte intégralBrown, Thomas H., et Sumantra Chattarji. « Hebbian Synaptic Plasticity : Evolution of the Contemporary Concept ». Dans Models of Neural Networks, 287–314. New York, NY : Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-4320-5_8.
Texte intégralvan der Lee, Tim, Georgios Exarchakos et Sonia Heemstra de Groot. « In-network Hebbian Plasticity for Wireless Sensor Networks ». Dans Internet and Distributed Computing Systems, 79–88. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34914-1_8.
Texte intégralBrown, T. H., Y. Zhao et V. Leung. « Hebbian Plasticity ». Dans Encyclopedia of Neuroscience, 1049–56. Elsevier, 2009. http://dx.doi.org/10.1016/b978-008045046-9.00796-8.
Texte intégral« Hebbian Synaptic Plasticity ». Dans Encyclopedia of the Sciences of Learning, 1419. Boston, MA : Springer US, 2012. http://dx.doi.org/10.1007/978-1-4419-1428-6_2204.
Texte intégralTrappenberg, Thomas P. « Associators and synaptic plasticity ». Dans Fundamentals of Computational Neuroscience, 133–66. 3e éd. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780192869364.003.0006.
Texte intégralYuste, Rafael. « The Cortical Microcircuit as a Recurrent Neural Network ». Dans Handbook of Brain Microcircuits, sous la direction de Gordon M. Shepherd et Sten Grillner, 47–58. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190636111.003.0004.
Texte intégralSong, Sen. « Hebbian Learning and Spike-Timing-Dependent Plasticity ». Dans Computational Neuroscience. Chapman and Hall/CRC, 2003. http://dx.doi.org/10.1201/9780203494462.ch11.
Texte intégral« Hebbian Learning and Spike-Timing-Dependent Plasticity ». Dans Computational Neuroscience, 320–56. Chapman and Hall/CRC, 2003. http://dx.doi.org/10.1201/9780203494462-18.
Texte intégralBoraud, Thomas. « The Winner Takes It All ». Dans How the Brain Makes Decisions, 31–34. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198824367.003.0004.
Texte intégralActes de conférences sur le sujet "Plasticità Hebbiana"
Thangarasa, Vithursan, Thomas Miconi et Graham W. Taylor. « Enabling Continual Learning with Differentiable Hebbian Plasticity ». Dans 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020. http://dx.doi.org/10.1109/ijcnn48605.2020.9206764.
Texte intégralMagotra, Arjun, et Juntae kim. « Transfer Learning for Image Classification Using Hebbian Plasticity Principles ». Dans CSAI2019 : 2019 3rd International Conference on Computer Science and Artificial Intelligence. New York, NY, USA : ACM, 2019. http://dx.doi.org/10.1145/3374587.3375880.
Texte intégralAntonietti, Alberto, Vasco Orza, Claudia Casellato, Egidio D'Angelo et Alessandra Pedrocchi. « Implementation of an Advanced Frequency-Based Hebbian Spike Timing Dependent Plasticity ». Dans 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2019. http://dx.doi.org/10.1109/embc.2019.8856489.
Texte intégralScott, J. Campbell, Thomas F. Hayes, Ahmet S. Ozcan et Winfried W. Wilcke. « Synaptic plasticity in an artificial Hebbian network exhibiting continuous, unsupervised, rapid learning ». Dans the 7th Annual Neuro-inspired Computational Elements Workshop. New York, New York, USA : ACM Press, 2019. http://dx.doi.org/10.1145/3320288.3320292.
Texte intégralDasgupta, Sakyasingha, Florentin Worgotter, Jun Morimoto et Poramate Manoonpong. « Neural Combinatorial Learning of Goal-Directed Behavior with Reservoir Critic and Reward Modulated Hebbian Plasticity ». Dans 2013 IEEE International Conference on Systems, Man and Cybernetics (SMC 2013). IEEE, 2013. http://dx.doi.org/10.1109/smc.2013.174.
Texte intégralFernando, Subha, et Koichi Yamada. « Spike-timing dependent plasticity with release probability supported to eliminate weight boundaries and to balance the excitation of Hebbian neurons ». Dans 2012 Joint 6th Intl. Conference on Soft Computing and Intelligent Systems (SCIS) and 13th Intl. Symposium on Advanced Intelligent Systems (ISIS). IEEE, 2012. http://dx.doi.org/10.1109/scis-isis.2012.6505006.
Texte intégralEnikov, Eniko T., Juan-Antonio Escareno et Micky Rakotondrabe. « Image Schema Based Landing and Navigation for Rotorcraft MAV-s ». Dans ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51450.
Texte intégral