Littérature scientifique sur le sujet « Plasmonic nanoantennas »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Plasmonic nanoantennas ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Plasmonic nanoantennas"

1

Sanders, Stephen, et Alejandro Manjavacas. « Nanoantennas with balanced gain and loss ». Nanophotonics 9, no 2 (25 février 2020) : 473–80. http://dx.doi.org/10.1515/nanoph-2019-0392.

Texte intégral
Résumé :
AbstractThe large cross sections and strong confinement provided by the plasmon resonances of metallic nanostructures make these systems an ideal platform to implement nanoantennas. Like their macroscopic counterparts, nanoantennas enhance the coupling between deep subwavelength emitters and free radiation, providing, at the same time, an increased directionality. Here, inspired by the recent works in parity-time symmetric plasmonics, we investigate how the combination of conventional plasmonic nanostructures with active materials, which display optical gain when externally pumped, can serve to enhance the performance of metallic nanoantennas. We find that the presence of gain, in addition to mitigating the losses and therefore increasing the power radiated or absorbed by an emitter, introduces a phase difference between the elements of the nanoantenna that makes the optical response of the system directional, even in the absence of geometrical asymmetry. Exploiting these properties, we analyse how a pair of nanoantennas with balanced gain and loss can enhance the far-field interaction between two dipole emitters. The results of this work provide valuable insight into the optical response of nanoantennas made of active and passive plasmonic nanostructures, with potential applications for the design of optical devices capable of actively controlling light at the nanoscale.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Barho, Franziska B., Fernando Gonzalez-Posada, Maria-Jose Milla, Mario Bomers, Laurent Cerutti, Eric Tournié et Thierry Taliercio. « Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin ». Nanophotonics 7, no 2 (11 novembre 2017) : 507–16. http://dx.doi.org/10.1515/nanoph-2017-0052.

Texte intégral
Résumé :
AbstractTailored plasmonic nanoantennas are needed for diverse applications, among those sensing. Surface-enhanced infrared absorption (SEIRA) spectroscopy using adapted nanoantenna substrates is an efficient technique for the selective detection of molecules by their vibrational spectra, even in small quantity. Highly doped semiconductors have been proposed as innovative materials for plasmonics, especially for more flexibility concerning the targeted spectral range. Here, we report on rectangular-shaped, highly Si-doped InAsSb nanoantennas sustaining polarization switchable longitudinal and transverse plasmonic resonances in the mid-infrared. For small array periodicities, the highest reflectance intensity is obtained. Large periodicities can be used to combine localized surface plasmon resonances (SPR) with array resonances, as shown in electromagnetic calculations. The nanoantenna arrays can be efficiently used for broadband SEIRA spectroscopy, exploiting the spectral overlap between the large longitudinal or transverse plasmonic resonances and narrow infrared active absorption features of an analyte molecule. We demonstrate an increase of the vibrational line intensity up to a factor of 5.7 of infrared-active absorption features of vanillin in the fingerprint spectral region, yielding enhancement factors of three to four orders of magnitude. Moreover, an optimized readout for SPR sensing is proposed based on slightly overlapping longitudinal and transverse localized SPR.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Klemm, Maciej. « Novel Directional Nanoantennas for Single-Emitter Sources and Wireless Nano-Links ». International Journal of Optics 2012 (2012) : 1–7. http://dx.doi.org/10.1155/2012/348306.

Texte intégral
Résumé :
Optical nanoantennas are emerging as one of the key components in the future nanophotonic and plasmonic circuits. The first optical nanoantennas were in a form of simple spherical nanoparticles. Recently more complex Yagi-Uda nanoantenna structures were demonstrated. These nanoantennas enhance radiation of single emitters and provide well-defined directional radiation. In this contribution, we present the novel design of the directional nanoantenna, which is excited from the propagating mode of the plasmonic waveguide. The nanoantenna design is based on thetravelling waveprinciple, well known at RF/microwave frequencies. By properly designing the propagating parts of the nanoantenna, a very efficient coupling to free space wave impedance can be achieved. Furthermore, the control over the radiation direction and beam width is relatively easy with this nanoantenna. Compared to the previously published Yagi-Uda designs, the new nanoantenna presented in this work has directivity three times higher.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Lereu, Aude L., Jacob P. Hoogenboom et Niek F. van Hulst. « Gap Nanoantennas toward Molecular Plasmonic Devices ». International Journal of Optics 2012 (2012) : 1–19. http://dx.doi.org/10.1155/2012/502930.

Texte intégral
Résumé :
Recently we have demonstrated that single fluorescent molecules can be used as non-perturbative vectorial probes of the local field. Here, we expand on such experiments exploiting fluorescence lifetime of single molecules to probe various types of gap nanoantennas. First, studies of the nanoantennas are carried out to evaluate the electric field. We then investigate hybrid systems composed by nanoantennas and randomly positioned fluorescent molecules. Finally, we present a fabrication scheme for the controlled placement of fluorescent molecules at welldefined positions with respect to the dimer nanoantenna, which is a more direct route to probe the local field in ana prioridetermined way.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Pacheco-Peña, Victor, Rúben A. Alves et Miguel Navarro-Cía. « From symmetric to asymmetric bowtie nanoantennas : electrostatic conformal mapping perspective ». Nanophotonics 9, no 5 (4 février 2020) : 1177–87. http://dx.doi.org/10.1515/nanoph-2019-0488.

Texte intégral
Résumé :
AbstractPlasmonic nanoantennas have revolutionized the way we study and modulate light–matter interaction. Due to nanofabrication limitations, dimer-type nanoantennas always exhibit some degree of asymmetry, which is desirable in some cases. For instance, in sensing applications, asymmetry is sometimes induced by design in plasmonic nanoantennas to favor higher order nonradiative modes with sharp Fano line shapes. Regardless of the actual origin of the asymmetry, unintentional or intentional, an analytical frame that can deal with it in a seamless manner would be beneficial. We resort to conformal mapping for this task and we track the influence of the degree of asymmetry of the circular sectors composing gold bowtie nanoantennas on the nonradiative Purcell enhancement of a nearby nanoemitter. This manuscript reviews the contributions of conformal mapping to plasmonic nanoantennas and illustrates the advantages of the elegant analytical solution provided by conformal mapping to grasp physical insights, which can serve as a springboard for new plasmonic asymmetric nanoantenna designs.
Styles APA, Harvard, Vancouver, ISO, etc.
6

da Silva, Marcelino L. C., Victor Dmitriev et Karlo Q. da Costa. « Application of Plasmonic Nanoantennas in Enhancing the Efficiency of Organic Solar Cells ». International Journal of Antennas and Propagation 2020 (10 mars 2020) : 1–9. http://dx.doi.org/10.1155/2020/2719656.

Texte intégral
Résumé :
It is known that the periodic use of silver nanoantennas in organic solar cells increases the efficiency of light absorption. In this study, we performed a geometric parametric analysis of nanoantennas using the finite element method. Based on the study of the convex truncated cone nanoantenna, we have found that a nanoantenna arrangement formed by the convex truncated cone nanoantenna along with a pyramidal nanoantenna provides a better solution for different angles of light incidence compared to a single nanoantenna. We obtained a mean increase in the absorption efficiency of this organic solar cell, both for the TM and TE polarizations, compared to the use of the conventional nanoantenna in the wavelength range of 300–800 nm.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Chen, Pai-Yen, Christos Argyropoulos et Andrea Alù. « Enhanced nonlinearities using plasmonic nanoantennas ». Nanophotonics 1, no 3-4 (1 décembre 2012) : 221–33. http://dx.doi.org/10.1515/nanoph-2012-0016.

Texte intégral
Résumé :
AbstractIn this paper, we review and discuss how nanoantennas may be used to largely enhance the nonlinear response of optical materials. For single nanoantennas, there have been tremendous advancements in understanding how to exploit the local field enhancement to boost the nonlinear susceptibility at the surface or sharp edges of plasmonic metals. After an overview of the work in this area, we discuss the possibility of controlling the optical nonlinear response using nanocircuit concepts and of significantly enhancing various nonlinear optical processes using planar arrays of plasmonic nanoantennas loaded with χ(2) or χ(3) nonlinear optical materials, forming ultrathin, nanometer-scale nonlinear metasurfaces, as optical nanodevices. We describe how this concept may be used to boost the efficiency of nonlinear wave mixing and optical bistability, due to the large local field enhancement at the nonlinear nanoloads associated with the plasmonic features of suitably tailored nanoantenna designs. We finally discuss three exciting applications of the proposed nonlinear metasurface: dramatically-enhanced frequency conversion efficiency, efficient phase-conjugation for super-resolution imaging and large optical bistabilities.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Damasceno, Gabriel H. B., William O. F. Carvalho et Jorge Ricardo Mejía-Salazar. « Design of Plasmonic Yagi–Uda Nanoantennas for Chip-Scale Optical Wireless Communications ». Sensors 22, no 19 (27 septembre 2022) : 7336. http://dx.doi.org/10.3390/s22197336.

Texte intégral
Résumé :
Optical wireless transmission has recently become a major cutting-edge alternative for on-chip/inter-chip communications with higher transmission speeds and improved power efficiency. Plasmonic nanoantennas, the building blocks of this new nanoscale communication paradigm, require precise design to have directional radiation and improved communication ranges. Particular interest has been paid to plasmonic Yagi–Uda, i.e., the optical analog of the conventional Radio Frequency (RF) Yagi–Uda design, which may allow directional radiation of plasmonic fields. However, in contrast to the RF model, an overall design strategy for the directional and optimized front-to-back ratio of the radiated far-field patterns is lacking. In this work, a guide for the optimized design of Yagi–Uda plasmonic nanoantennas is shown. In particular, five different design conditions are used to study the effects of sizes and spacing between the constituent parts (made of Au). Importantly, it is numerically demonstrated (using the scattered fields) that closely spaced nanoantenna elements are not appropriated for directional light-to-plasmon conversion/radiation. In contrast, if the elements of the nanoantenna are widely spaced, the structure behaves like a one-dimensional array of nanodipoles, producing a funnel-like radiation pattern (not suitable for on-chip wireless optical transmission). Therefore, based on the results here, it can be concluded that the constituent metallic rib lengths must be optimized to exhibit the resonance at the working wavelength, whilst their separations should follow the relation λeff/π, where λeff indicates the effective wavelength scaling for plasmonic nanostructures.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Milekhin, Ilya A., Sergei A. Kuznetsov, Ekaterina E. Rodyakina, Alexander G. Milekhin, Alexander V. Latyshev et Dietrich R. T. Zahn. « Localized surface plasmons in structures with linear Au nanoantennas on a SiO2/Si surface ». Beilstein Journal of Nanotechnology 7 (26 octobre 2016) : 1519–26. http://dx.doi.org/10.3762/bjnano.7.145.

Texte intégral
Résumé :
The study of infrared absorption by linear gold nanoantennas fabricated on a Si surface with underlying SiO2 layers of various thicknesses allowed the penetration depth of localized surface plasmons into SiO2 to be determined. The value of the penetration depth derived experimentally (20 ± 10 nm) corresponds to that obtained from electromagnetic simulations (12.9–30.0 nm). Coupling between plasmonic excitations of gold nanoantennas and optical phonons in SiO2 leads to the appearance of new plasmon–phonon modes observed in the infrared transmission spectra the frequencies of which are well predicted by the simulations.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Gili, Valerio F., Lavinia Ghirardini, Davide Rocco, Giuseppe Marino, Ivan Favero, Iännis Roland, Giovanni Pellegrini et al. « Metal–dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode ». Beilstein Journal of Nanotechnology 9 (27 août 2018) : 2306–14. http://dx.doi.org/10.3762/bjnano.9.215.

Texte intégral
Résumé :
Background: Dielectric nanoantennas have recently emerged as an alternative solution to plasmonics for nonlinear light manipulation at the nanoscale, thanks to the magnetic and electric resonances, the strong nonlinearities, and the low ohmic losses characterizing high refractive-index materials in the visible/near-infrared (NIR) region of the spectrum. In this frame, AlGaAs nanoantennas demonstrated to be extremely efficient sources of second harmonic radiation. In particular, the nonlinear polarization of an optical system pumped at the anapole mode can be potentially boosted, due to both the strong dip in the scattering spectrum and the near-field enhancement, which are characteristic of this mode. Plasmonic nanostructures, on the other hand, remain the most promising solution to achieve strong local field confinement, especially in the NIR, where metals such as gold display relatively low losses. Results: We present a nonlinear hybrid antenna based on an AlGaAs nanopillar surrounded by a gold ring, which merges in a single platform the strong field confinement typically produced by plasmonic antennas with the high nonlinearity and low loss characteristics of dielectric nanoantennas. This platform allows enhancing the coupling of light to the nanopillar at coincidence with the anapole mode, hence boosting both second- and third-harmonic generation conversion efficiencies. More than one order of magnitude enhancement factors are measured for both processes with respect to the isolated structure. Conclusion: The present results reveal the possibility to achieve tuneable metamixers and higher resolution in nonlinear sensing and spectroscopy, by means of improved both pump coupling and emission efficiency due to the excitation of the anapole mode enhanced by the plasmonic nanoantenna.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Plasmonic nanoantennas"

1

Wang, Jiyong. « Plasmonic Nanoantennas ». Thesis, Troyes, 2017. http://www.theses.fr/2017TROY0021.

Texte intégral
Résumé :
Les réponses optiques linéaires et non linéaires de nanoparticules (NPs) plasmoniques fabriquées lithographiquement sont étudiées. La diffusion élastique donne une empreinte digitale des plasmons de surface des NPs, ces derniers exaltant les signaux optiques non linéaires. La dépendance en polarisation de la génération de seconde harmonique (SHG) montre un effet de basculement, qui est analysé à partir des décalages spectraux entre l’excitation et les resonances et des effets d'interférence de SHG. En régime de faible excitation, en plus d'un processus de recombinaison de paires électron-trou (e-h), les plasmons de particules (PPs) peuvent être excités par diffusion Auger avec une décroissance radiative donnant lieu à une photoluminescence métallique (MPL). Un modèle de l'efficacité quantique totale des émissions impliquant les deux contributions a été établi. En régime de forte excitation, une avalanche de photoluminescence multiphotonique (AMPL) est observée sur des hétérodimères couplés. Elle est interprétée par une recombinaison des porteurs chauds excités par ionisation multiphotonique (MI). Ce processus est assisté par le champ local des NPs. L'avalanche d’émission peut être évaluée en fonction de l'environnement du champ local et du facteur thermique des porteurs chauds. Le changement spectral du spectre d’émission indique une émission spontanée de paires e-h chaudes s'expliquant par une diminution du taux de diffusion des trous de la bande d lorsque la température augmente
Linear and nonlinear optical responses of lithographically fabricated plasmonic nanoparticles (NPs) are investigated. Elastic scattering offers the fingerprints for localized surface plasmon resonances of NPs, which enhance nonlinear optical signals. Excitation polarization dependent far-field radiation of second-harmonic generation (SHG) shows a flipping effect, which is analysed from the aspects of resonant excitation shifting and SH phase interference as size changes. The radiations of metallic photoluminescence (MPL) in the weak and strong radiation field are studied sequentially. In the weak excitation, besides a process via electron-hole (e-h) pair recombination, particle plasmons (PPs) can be excited via Auger scattering of photo-excited d-band holes and the radiative decay of which gives rise to PPs modulated MPL. A model of total emission quantum efficiency involving both contributions has been used to explain MPL radiation difference between the bulk and the NPs. In the strong excitation, avalanche multiphoton PL (AMPL) is observed from the coupled heterodimers, which is interpreted as the recombination of avalanche ionized hot carriers seeded by multiphoton ionization (MI). MI is greatly assisted by local field of coupled NPs at the excitation stage. The giant photon emission can be evaluated as a function of local field environment and thermal factor of hot carriers. The spectral change from PPs modulated profile to the one indicates spontaneous emission of hot e-h pairs is explained by the diminishment of d-band hole scattering rate as temperature increases
Styles APA, Harvard, Vancouver, ISO, etc.
2

Peter, Manuel [Verfasser]. « Active Plasmonic and Dielectric Nanoantennas / Manuel Peter ». Bonn : Universitäts- und Landesbibliothek Bonn, 2017. http://d-nb.info/1149154187/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Massa, Enrico. « Plasmonic nanoantennas for absorption and emission manipulation ». Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/24720.

Texte intégral
Résumé :
Light manipulation via nanoantennas, especially plasmonic nanoantennas, is an exciting new field, which aims to provide the same benefits at optical frequencies as those given by standard antennas in the radio and microwave frequency regimes. While at lower frequencies metals behave as perfect conductors, with negligible field penetration and absorption, at optical frequencies the electromagnetic field is able to excite plasmons which combine the electromagnetic wave with electronic excitations, giving raise to new properties such as high scattering and field confinement. This thesis focuses on understanding the physical principles of plasmonic nanoantennas and calculating their properties analytically, by deriving the solution for the scattering from cuboidal nanoantennas, and computationally, by presenting an improved discrete dipole approximation on cuboidal point lattices. A theory of scattering from anisotropic particles is derived, showing multiple plasmon resonance and different peaks shifts changing the background index, enabling the study of the magneto-optical effect on nanoparticles, with potential applications in nanospectroscopy, light manipulation and optical sensors. Plasmonic nanoparticles are studied numerically in order to enhance light absorption in thin film silicon solar cells and to enhance the anti-reflection coating properties of triple junction III-V quantum well high efficiency solar cells to increase scattering. Finally, plasmonic nanoantennas are also used experimentally to enhance the photoluminescence and decrease the lifetime of silicon quantum dots for light emitting device applications.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Siadat, Mousavi Saba. « Periodic Plasmonic Nanoantennas in a Piecewise Homogeneous Background ». Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22814.

Texte intégral
Résumé :
Optical nanoantennas have raised much interest during the past decade for their vast potential in photonics applications. This thesis investigates the response of periodic arrays of nanomonopoles and nanodipoles on a silicon substrate, covered by water, to variations of antenna dimensions. These arrays are illuminated by a plane wave source located inside the silicon substrate. Modal analysis was performed and the mode in the nanoantennas was identified. By characterizing the properties of this mode certain response behaviours of the system were explained. Expressions are offered to predict approximately the resonant length of nanomonopoles and nanodipoles, by accounting for the fringing fields at the antenna ends and the effects of the gap in dipoles. These expressions enable one to predict the resonant length of nanomonopoles within 20% and nanodipoles within 10% error, which significantly facilitates the design of such antennas for specific applications.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Knittel, Vanessa [Verfasser]. « Ultrafast nonlinear response of plasmonic nanoantennas / Vanessa Knittel ». Konstanz : Bibliothek der Universität Konstanz, 2018. http://d-nb.info/1161343245/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Black, Leo-Jay. « Near-infrared nano-optical elements using plasmonic nanoantennas ». Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/410269/.

Texte intégral
Résumé :
In recent years Nanophotonics, the behaviour of light at the nanometer scale has gathered Significant interest with recent advances in nanotechnology. Specifically, nanoantennas can help us access the near and mid-infrared wavelength range. The drivers are that it is a very attractive spectral region for a wide variety of technology applications, such as communications, environmental sensing, biosensing, security and astronomy. This thesis covers the functionality of single plasmonic nanoantennas for polarisation control and nonlinear frequency conversion, characterised by quantitative single-particle extinction spectroscopy and nonlinear optical microscopy. It then moves on to look at the use of plasmonic resonators as coherent absorbers in a mechanically tunable cavity. Finally, it looks at the performance of antennas in surface enhanced Raman (SERS) and IR spectroscopy (SEIRS) using new experimental setups.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Wang, Jiyong [Verfasser], et Pierre-Francois [Akademischer Betreuer] Brevet. « Plasmonic Nanoantennas / Jiyong Wang ; Betreuer : Pierre-Francois Brevet ». Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/1203623054/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Metzger, Bernd [Verfasser], et Harald [Akademischer Betreuer] Giessen. « Ultrafast nonlinear plasmonics : from dipole nanoantennas to hybrid complex plasmonic structures / Bernd Metzger. Betreuer : Harald Giessen ». Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2014. http://d-nb.info/1062951379/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Jeannin, Mathieu Emmanuel. « Control of the emission properties of semiconducting nanowire quantum dots using plasmonic nanoantennas ». Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY053/document.

Texte intégral
Résumé :
Ce travail de thèse porte sur l'étude du couplage entre des boîtes quantiques (BQs) insérées dans des nanofils à semiconducteurs et des antennes plasmoniques. Un couplage efficace requiert une caractérisation complète des leurs propriétés optiques respectives, pour assurer un recouvrement spectral et spatial de l'émission de la boîte et du mode de l'antenne et l'alignement de la polarisation du mode plasmonique avec l'émission de la BQ.Les propriétés optiques d'antennes patchs plasmoniques circulaires ont été étudiées par cathodoluminescence (CL). Nous avons montré avec un modèle analytique de la densité locale d'états électromagnétiques (DLE) au voisinage des antennes que leurs résonances sont des superpositions de modes de Bessel d'ordre radiaux et azimutaux différents. Nous avons fabriqué et caractérisé des antennes mono et multimodes, et trouvé que la partie radiative de la DLE n'est pas la seule contribution au signal de CL. De plus, nous avons caractérisé des antennes de différentes épaisseur du plan diélectrique ou différents matériaux. L'analyse de ces résultats nous pousse à proposer une interprétation des contributions au signal de CL annexes à la partie radiative de la DLE supportée par l'antenne. Nous avons de plus démontré la fabrication d'antennes patchs en aluminium opérant dans la partie bleue du spectre électromagnétique, et appliqué la CL à d'autres géométries d'antennes.Nous avons également étudié différentes boîtes quantiques insérées dans des nanofils à semiconducteurs faits d'alliages de matériaux II-VI. Des émetteurs uniques sont étudiés par microphotoluminescence (µPL). Des mesures résolues en temps ou par microscopie de Fourier permettent une caractérisation spectrale, temporelle et la détermination de leur diagramme de rayonnement. Nous avons de plus mis en évidence les variations de propriétés optiques des émetteurs dues aux inhomogénéité de fabrication en étudiant un large ensemble de BQs. La modélisation complète des propriétés électroniques et optiques d'une boîte unique est proposée en utilisant la microscopie de Fourier résolue en polarisation, et une étape de spectroscopie magnéto-optique.Enfin, nous avons développé une méthode de lithographie électronique en deux étapes basée sur le repérage d'un émetteur unique par CL, permettant la fabrication d'antennes plasmoniques couplées de façon déterministe à des BQs insérées dans des nanofils. L'étude de ce couplage révèle un accroissement de l'absorption du faisceau d'excitation accompagné d'une accélération de l'émission de la boîte par couplage radiatif. Il en résulte une exaltation jusqu'à un facteur 2 de la µPL des boîtes
In this work, we study the coupling between plasmonic nanoantennas and semiconducting nanowire quantum dots (NWQDs). This coupling requires spectral, spatial and polarisation matching of the antenna mode and of the NWQD emission. Hence, a full characterisation of both the antenna system and the NWQDs has to be performed to determine a relevant coupling geometry.Using cathodoluminescence (CL) we investigate the relation between the CL signal of circular patch plasmonic antennas and the electromagnetic local density of states (LDOS). The successive resonances supported by these antennas are complex superimpositions of Bessel modes of different radial and azimuthal order. Applying an analytical LDOS model, we show that we can fabricate and characterise antennas down to single mode resonances. However, the antennas CL spectrum goes beyond the radiative part of the LDOS. By changing the spacing layer thickness and the antennas materials, we propose an explanation for the origin of the additional CL signal we observe that is not related to the radiative LDOS of the patch antennas. We also demonstrate the fabrication of Al patch antennas working in the blue spectral range and apply our method to other geometries.We perform optical characterisation of different quantum dots (QDs) embedded inside semiconducting nanowires (NWs) made of II-VI materials. We use microphotoluminescence (µPL) to study the emission of single NWQDs. Time-resolved measurements and Fourier imaging allows us to extract their exciton lifetime and radiation patterns. The variability in the emission properties of the NWQDs due to inhomogeneity in the growth process are evidenced by studying a statistical set of nanowires. A complete model based on polarisation-resolved Fourier imaging and magneto-optical spectroscopy is detailed, allowing to fully determine the QD electronic and optical properties for an individual system.Finally, we develop a cathodoluminescence-based two-step electron-beam lithography technique to deterministically fabricate plasmonic antennas coupled to NWQDs, enhancing their µPL properties. The coupling results in an enhanced absorption of the pump laser inside the NW and in an increase of the radiative rate of the QD, leading to up to a two-fold intensity enhancement factor for the coupled system
Styles APA, Harvard, Vancouver, ISO, etc.
10

Gmeiner, Benjamin [Verfasser], et Vahid [Gutachter] Sandoghdar. « Coherent Spectroscopy of Single Molecules in the Near-Field of Plasmonic Nanoantennas / Benjamin Gmeiner ; Gutachter : Vahid Sandoghdar ». Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2017. http://d-nb.info/1139492551/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Plasmonic nanoantennas"

1

Werner, Douglas H., Sawyer D. Campbell et Lei Kang, dir. Nanoantennas and Plasmonics : Modelling, design and fabrication. Institution of Engineering and Technology, 2020. http://dx.doi.org/10.1049/sbew540e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Nanoantennas and Plasmonics : Modelling, Design and Fabrication. Institution of Engineering & Technology, 2020.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Werner, Douglas H., Sawyer D. Campbell et Lei Kang. Nanoantennas and Plasmonics : Modelling, Design and Fabrication. Institution of Engineering & Technology, 2020.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Pucci, Annemarie, et Marc Lamy de la Chapelle. Nanoantenna : Plasmon-Enhanced Spectroscopies for Biotechnological Applications. Pan Stanford Publishing, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Pucci, Annemarie, et Marc Lamy de la Chapelle. Nanoantenna : Plasmon-Enhanced Spectroscopies for Biotechnological Applications. Jenny Stanford Publishing, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Nanoantenna : Plasmon-Enhanced Spectroscopies for Biotechnological Applications. Taylor & Francis Group, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Plasmonic nanoantennas"

1

Sarychev, Andrey K., et Vladimir M. Shalaev. « Plasmonic Nanoantennas ». Dans Continuum Models and Discrete Systems, 135. Dordrecht : Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2316-3_22.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Wang, Hancong. « Coupled Plasmonic Nanoantennas ». Dans Advances in Intelligent Systems and Computing, 257–65. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48499-0_31.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Jeannin, Mathieu, Pamela Rueda-Fonseca, Rudeesun Songmuang, Edith Bellet-Amalric, Kuntheak Kheng et Gilles Nogues. « Coupling Semiconducting Nanowires to Plasmonic Nanoantennas ». Dans NATO Science for Peace and Security Series B : Physics and Biophysics, 517–18. Dordrecht : Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-0850-8_56.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Munárriz Arrieta, Javier. « Optical Nanoantennas with Tunable Radiation Patterns ». Dans Modelling of Plasmonic and Graphene Nanodevices, 71–83. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07088-9_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ozel, Tuncay. « Hybrid Semiconductor Core-Shell Nanowires with Tunable Plasmonic Nanoantennas ». Dans Coaxial Lithography, 27–41. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45414-6_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Soavi, Giancarlo, Giuseppe Della Valle, Paolo Biagioni, Andrea Cattoni, Stefano Longhi, Giulio Cerullo et Daniele Brida. « Ultrafast Non-thermal Response of Plasmonic Resonance in Gold Nanoantennas ». Dans Springer Proceedings in Physics, 679–82. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13242-6_167.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Hegde, Ravi Sadananda. « Fractal Plasmonic Nanoantennae ». Dans Reviews in Plasmonics, 55–76. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48081-7_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Biswas, Richard Victor. « A Waveguide-Fed Hybrid Graphene Plasmonic Nanoantenna for On-Chip Wireless Optical Communication ». Dans Proceedings of International Conference on Information and Communication Technology for Development, 107–24. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7528-8_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Foti, Antonino, C. D’Andrea, A. Toma, B. Fazio, E. Messina, O. M. Maragò, Enzo Di Fabrizio, M. Lamy de La Chepelle et P. G. Gucciardi. « Polarization Properties of the SERS Radiation Scattered by Linear Nanoantennas with Two Distinct Localized Plasmon Resonances ». Dans NATO Science for Peace and Security Series B : Physics and Biophysics, 503–4. Dordrecht : Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-0850-8_51.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

GREFFET, JEAN-JACQUES. « Plasmonic Nanoantennas ». Dans World Scientific Handbook of Metamaterials and Plasmonics, 21–66. World Scientific, 2017. http://dx.doi.org/10.1142/9789813228726_0002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Plasmonic nanoantennas"

1

Yang, Morris M., Demid Sychev, Xiaohui Xu, Zach Martin, David Mandurus, Hasitha Suriya, Arachchige, Alexei Lagoutchev, Vladimir Shalaev et Alexandra Boltasseva. « Plasmonically Enhanced Second Harmonic Generation of Weyl Semimetal TaAs through field confinement ». Dans CLEO : Science and Innovations. Washington, D.C. : Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_si.2022.sf4k.1.

Texte intégral
Résumé :
We demonstrate 300 percent increase of second-harmonic generation from Weyl semimetal TaAs surface by distributing plasmonic silver nanoantennas on TaAs. Normalizing laser spot size area over silver nanoantenna areas yields actual SHG enhancement is 90-fold.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Chen, Kuo-Ping, Vladimir P. Drachev, Joshua D. Borneman, Alexander V. Kildishev et Vladimir M. Shalaev. « Improving Plasmonic Nanoantennas ». Dans Quantum Electronics and Laser Science Conference. Washington, D.C. : OSA, 2010. http://dx.doi.org/10.1364/qels.2010.qtuf3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Dayal, Govind, Ikki Morichika et Satoshi Ashihara. « Vibrational strong coupling between molecular vibration and subwavelength plasmonic cavity supporting gap plasmon mode ». Dans JSAP-OSA Joint Symposia. Washington, D.C. : Optica Publishing Group, 2019. http://dx.doi.org/10.1364/jsap.2019.18a_e208_2.

Texte intégral
Résumé :
We report on strong coupling between molecular vibrational resonances of polymethyl methacrylate (PMMA) molecules and gap plasmon resonance of an ultrathin plasmonic cavity in the midinfrared range. The strong coupling is achieved when the molecular vibrational mode and plasmonic cavity exchange energy faster than their relaxation rates and it is maximum when two relaxation rates are equal [1]. In this work, we designed, fabricated and characterized a composite medium consisting of a thin PMMA layer sandwiched between the nanoantenna array and a continuous metallic thin film to achieve vibration strong coupling. The spectral position and the relaxation rate of gap plasmonic resonance are tuned through the molecular resonance of the PMMA molecules (at 1730 cm−1) to go from weak to strong coupling regime. Strong coupling between vibrational modes and gap plasmon mode leads to the formation of new hybrid light-matter states called polaritonic states (@ 1690 cm−1 & 1810 cm−1), separated by the vacuum Rabi splitting (120 cm−1). Thin film coupled nanoantennas with sub-wavelength gaps have shown great potential in nanophotonic applications because they offer the ultimate electric field confinement in the gap. Our work is complementary to earlier work using microcavities and provides a new approach to achieve strong coupling with a nanoscale plasmonic cavity (λ/25) and the possibility to modulate the strong coupling regime by changing the gap thickness of the cavity and the lattice period of the nanoantenna array.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Mekawey, Hosameldin I., Yehea Ismail et Mohamed A. Swillam. « silicon-based plasmonic nanoantennas ». Dans Silicon Photonics XIV, sous la direction de Graham T. Reed et Andrew P. Knights. SPIE, 2019. http://dx.doi.org/10.1117/12.2509341.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Podolskiy, V. A., A. K. Sarychev, E. E. Narimanov et V. M. Shalaev. « Light manipulation with plasmonic nanoantennas ». Dans IEEE Antennas and Propagation Society Symposium, 2004. IEEE, 2004. http://dx.doi.org/10.1109/aps.2004.1330577.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hardy, Neil, Ahsan Habib, Tanya Ivanov et Ahmet A. Yanik. « Electro-plasmonic Nanoantennas for In Vivo Neural Sensing ». Dans CLEO : Applications and Technology. Washington, D.C. : Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.atu4k.2.

Texte intégral
Résumé :
Electro-plasmonic nanoantennas (NeuroSWARM3) translate local electric fields to changes in scattering intensity to wirelessly sense neural activity with high resolution, throughput, and SSNR while operating in the NIR spectrum for deep tissue penetration.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Maccaferri, Nicolò, Paolo Ponzellini, Giorgia Giovannini et Xavier Zambrana-Puyalto. « FRET characterization of hollow plasmonic nanoantennas ». Dans Plasmonics in Biology and Medicine XVI, sous la direction de Tuan Vo-Dinh, Ho-Pui A. Ho et Krishanu Ray. SPIE, 2019. http://dx.doi.org/10.1117/12.2515296.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Choudhary, Saumya, Sylvia D. Swiecicki, Israel De Leon, Sebastian A. Schulz, Jeremy Upham, J. E. Sipe et Robert W. Boyd. « Superradiance in arrays of plasmonic nanoantennas ». Dans Frontiers in Optics. Washington, D.C. : OSA, 2016. http://dx.doi.org/10.1364/fio.2016.ftu3d.4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Roxworthy, Brian J., Kaspar D. Ko, Anil Kumar, Kin Hung Fung, Gang Logan Liu, Nicholas X. Fang et Kimani C. Toussaint. « Bowtie Nanoantennas for Plasmonic Optical Trapping ». Dans Optical Trapping Applications. Washington, D.C. : OSA, 2011. http://dx.doi.org/10.1364/ota.2011.otma2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hildebrandt, Andre, Matthias Reichelt, Torsten Meier et Jens Förstner. « Engineering plasmonic and dielectric directional nanoantennas ». Dans SPIE OPTO, sous la direction de Markus Betz, Abdulhakem Y. Elezzabi, Jin-Joo Song et Kong-Thon Tsen. SPIE, 2014. http://dx.doi.org/10.1117/12.2036588.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie