Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Plasmomechanics.

Articles de revues sur le sujet « Plasmomechanics »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 15 meilleurs articles de revues pour votre recherche sur le sujet « Plasmomechanics ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Maurer, Thomas, Joseph Marae-Djouda, Ugo Cataldi, Arthur Gontier, Guillaume Montay, Yazid Madi, Benoît Panicaud et al. « The beginnings of plasmomechanics : towards plasmonic strain sensors ». Frontiers of Materials Science 9, no 2 (27 avril 2015) : 170–77. http://dx.doi.org/10.1007/s11706-015-0290-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Caputo, Roberto, Ugo Cataldi, Thomas Bürgi et Cesare Umeton. « Plasmomechanics : A Colour-Changing Device Based on the Plasmonic Coupling of Gold Nanoparticles ». Molecular Crystals and Liquid Crystals 614, no 1 (13 juin 2015) : 20–29. http://dx.doi.org/10.1080/15421406.2015.1049897.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Won, Rachel. « Versatile plasmomechanical systems ». Nature Photonics 12, no 3 (26 février 2018) : 123. http://dx.doi.org/10.1038/s41566-018-0124-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Thijssen, Rutger, Tobias J. Kippenberg, Albert Polman et Ewold Verhagen. « Plasmomechanical Resonators Based on Dimer Nanoantennas ». Nano Letters 15, no 6 (7 mai 2015) : 3971–76. http://dx.doi.org/10.1021/acs.nanolett.5b00858.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lee, Shinho, et Min-Kyo Seo. « Full three-dimensional wavelength-scale plasmomechanical resonator ». Optics Letters 46, no 6 (10 mars 2021) : 1317. http://dx.doi.org/10.1364/ol.416695.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Gontier, Arthur, J. Marae-Djouda, R. Caputo, Y. Madi, M. Molinari, G. Léveque, P. M. Adam et T. Maurer. « Optical properties of gold nanorods macro-structure : a numerical study ». Photonics Letters of Poland 9, no 1 (31 mars 2017) : 23. http://dx.doi.org/10.4302/plp.v9i1.714.

Texte intégral
Résumé :
In this contribution, a numerical study of the optical properties of closely-packed gold nanorods was performed. The studied nano-objects are experimentally grown on a tilted polydimethylsiloxane (PDMS) substrate by using physical vapor deposition (PVD). This method creates nanorods tilted to a certain angle with respect to the substrate normal. This geometry allows exciting both transverse and longitudinal modes of the rods. As demonstrated in a previous experimental work, such PVD-grown nano-objects show promising possibilities both as strain gauges or strain-tunable metamaterials if fabricated on a stretchable dielectric substrate. This numerical study is based on experimental data from previous work and pushes further the subject by approaching an optimized nano-structure allowing better strain-sensitivity (particularly by changing the auto-organization of the said nanorods). Full Text: PDF ReferencesJ.W.M. Chon, C. Bullen, P. Zijlstra, M. Gu, "Spectral encoding on Gold Nanorods Doped in a Silica Sol?Gel Matrix and Its Application to High-Density Optical Data Storage", Adv. Funct. Mater. 17, 875 (2007). CrossRef C.-C. Chen, Y.-P. Lin, C.-W. Wang, H.-C. Tzeng, C.-H. Wu, Y.-C. Chen, C.-P. Chen, L.-C. Chen, Y.-C. Wu, "DNA?Gold Nanorod Conjugates for Remote Control of Localized Gene Expression by near Infrared Irradiation", J. Am. Chem. Soc. 128, 3709 (2006). CrossRef J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, "Biosensing with plasmonic nanosensors", Nat. Mater 7, 442 (2008). CrossRef B. Sepulveda, P.C. Angelome, L.M. Lechuga, L.M. Liz-Marzan?, "LSPR-based nanobiosensors", Nano Today 4, 244 (2009). CrossRef A. Haes, R.P. Van Duyne, "A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles", J. Am. Chem. Soc. 124, 10596 (2002). CrossRef J.C. Riboh, A.J. Haes, A.D. McFarland, C.R. Yonzon, R.P. Van Duyne, "A Nanoscale Optical Biosensor: Real-Time Immunoassay in Physiological Buffer Enabled by Improved Nanoparticle Adhesion", J. Phys. Chem. B 107, 1772 (2003). CrossRef C.R. Yonzon, E. Jeoung, S. Zou, G.C. Schatz, M. Mrksich, R.P. Van Duyne, "A Comparative Analysis of Localized and Propagating Surface Plasmon Resonance Sensors: The Binding of Concanavalin A to a Monosaccharide Functionalized Self-Assembled Monolayer", J. Am. Chem. Soc. 126, 12669 (2004). CrossRef A.J. Haes, L. Chang, W.L. Klein, R.P. Van Duyne, "Detection of a Biomarker for Alzheimer's Disease from Synthetic and Clinical Samples Using a Nanoscale Optical Biosensor", J. Am. Chem. Soc. 127, 2264 (2005). CrossRef R. Caputo, G. Palermo, M.Infusino L. De Sio, "Liquid Crystals as an Active Medium: Novel Possibilities in Plasmonics", Nanospectroscopy 1, 40 (2015). CrossRef T. Maurer, J. Marae-Djouda, U. Cataldi, A. Gontier, G. Montay, Y. Madi, B. Panicaud, D. Macias, P.-M. Adam, G. Lév?que, T. Bürgi, R. Caputo, "The beginnings of plasmomechanics: towards plasmonic strain sensors", Frontiers of Materials Science 9, 170 (2015). CrossRef X. Niu, S. P. Stagon, H. Huang, J.K. Baldwin, A. Misra, "Smallest Metallic Nanorods Using Physical Vapor Deposition", Phys. Rev. Lett. 110 136102 (2013). CrossRef Lumerical Solutions, Inc. DirectLink P.K. Jain, W. Huang, M.A.El-Sayed, "On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation", Nanoletters 7, 2080 (2007). CrossRef P.K. Jain, M.A. El-Sayed, "Plasmonic coupling in noble metal nanostructures", Chem. Phys. Letters 487, 153 (2010). CrossRef
Styles APA, Harvard, Vancouver, ISO, etc.
7

Buch, Zubair, et Silvan Schmid. « Design considerations of gold nanoantenna dimers for plasmomechanical transduction ». Optics Express 30, no 4 (3 février 2022) : 5294. http://dx.doi.org/10.1364/oe.450837.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Roxworthy, Brian J., Sreya Vangara et Vladimir A. Aksyuk. « Subdiffraction Spatial Mapping of Nanomechanical Modes Using a Plasmomechanical System ». ACS Photonics 5, no 9 (31 juillet 2018) : 3658–65. http://dx.doi.org/10.1021/acsphotonics.8b00604.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Roxworthy, Brian J., et Vladimir A. Aksyuk. « Electrically tunable plasmomechanical oscillators for localized modulation, transduction, and amplification ». Optica 5, no 1 (18 janvier 2018) : 71. http://dx.doi.org/10.1364/optica.5.000071.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ugo, Cataldi, et Buergi Thomas. « Plasmonic coupling induced by growing processes of metal nanoparticles in wrinkled structures and driven by mechanical strain applied to a polidimethisiloxisilane template ». Photonics Letters of Poland 9, no 2 (1 juillet 2017) : 45. http://dx.doi.org/10.4302/plp.v9i2.702.

Texte intégral
Résumé :
We report the mechanical control of plasmonic coupling between gold nanoparticles (GNPs) coated onto a large area wrinkled surface of an elastomeric template. Self-assembly and bottom-up procedures, were used to fabricate the sample and to increase the size of GNPs by exploiting the reduction of HAuCl4 with hydroxylamine. The elastic properties of template, the increase of nanostructure size joined with the particular grating configuration of the surface have been exploited to trigger and handle the coupling processes between the nanoparticles. Full Text: PDF ReferencesG. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen", Ann. Phys. 25, 377 (1908) CrossRef U. Kreibig and M. Vollmer, Optical properties of metal cluster, Berlin 1995 CrossRef S. A. Maier, Plasmonics: Fundamentals and Applications, Springer, New York, 2007 CrossRef L. A. Lane, X. Qian, and S. Nie, "SERS Nanoparticles in Medicine: From Label-Free Detection to Spectroscopic Tagging", Chem. Rev. 115, 10489-10529 (2015) CrossRef N. Pazos-Perez, W. Ni, A. Schweikart, R. A. Alvarez-Puebla, A. Fery and L. M. Liz-Marzan, "Highly uniform SERS substrates formed by wrinkle-confined drying of gold colloids", Chem. Sci. 1, 174-178P (2010) CrossRef M. Aioub and M. A. El-Sayed, "A Real-Time Surface Enhanced Raman Spectroscopy Study of Plasmonic Photothermal Cell Death Using Targeted Gold Nanoparticles", J. Am. Chem. Soc. 138, 1258-1264 (2016) CrossRef G. Baffou, and R. Quidant, "Thermo-plasmonics: using metallic nanostructures as nano-sources of heat", Laser Photonics Rev. 7, No. 2, 171-187 (2013) CrossRef G. Palermo, U. Cataldi, L. De Sio, T. Beurgi, N. Tabiryan, and C. Umeton, "Optical control of plasmonic heating effects using reversible photo-alignment of nematic liquid crystals", Applied Physics 109, 191906 (2016) CrossRef J. R. Dunklin, G. T. Forcherio, K. R. Berry, Jr., and D. K. Roper, "Gold Nanoparticle Polydimethylsiloxane Thin Films Enhance Thermoplasmonic Dissipation by Internal Reflection", J. Phys. Chem. 118, 7523-7531 (2014) CrossRef Y. Jin, "Engineering Plasmonic Gold Nanostructures and Metamaterials for Biosensing and Nanomedicine", Adv. Mater. 24, 5153-5165 (2012) CrossRef J. H. Lee, Q. Wu, and W. Park, "Metal nanocluster metamaterial fabricated by the colloidal self-assembly", Optics Letters 34, Issue 4, 443-445 (2009) CrossRef R. Pratibha, K. Park, I. I. Smalyukh, and W. Park, "Tunable optical metamaterial based on liquid crystal-gold nanosphere composite", Optics Express 17, Issue 22, 19459-19469 (2009) CrossRef J. Dintinger, S. Mühlig, C. Rockstuhl, and T. Scharf, "A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles", Optical Materials Express 2, Issue 3, 269-278 (2012) CrossRef T. Maurer, J. Marae-Djouda, U. Cataldi, A. G., Guillaume Montay, Y. Madi, B. Panicaud, D. Macias, P.-M. Adam, G. Léveque, T. Buergi, and R. Caputo, "The beginnings of plasmomechanics: towards plasmonic strain sensors", Front. Mater. Sci. 9(2) (2015) CrossRef J. N. Anker W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao and R. P. Van Duyne, "Biosensing with plasmonic nanosensors", Nature Materials 7, 442 - 453 (2008) CrossRef M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers,and R. G. Nuzzo, "Nanostructured Plasmonic Sensors", Chem. Rev. 108, 494-521 (2008) CrossRef P. K. Jain , M. A. El-Sayed, "Plasmonic coupling in noble metal nanostructures", Chemical Physics Letters 487, 153-164 (2010) CrossRef P. K. Jain, W. Huang and M. A. El-Sayed, "On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation", Nano Letters 7, 2080-2088 (2007) CrossRef U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton and T. Buergi, "Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling", Journal of Materials Chemistry C 2(37), 7927-7933 (2014). CrossRef S. K. Ghosh and T. Pal, "Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications", Chem. Rev. 107, 4797 (2007) CrossRef M. K. Kinnan and G. Chumanov, "Plasmon Coupling in Two-Dimensional Arrays of Silver Nanoparticles: II. Effect of the Particle Size and Interparticle Distance", J. Phys. Chem. C 114, 7496 (2010) CrossRef X. L. Zhu, S. S. Xiao, L. Shi, X. H. Liu, J. Zi, O. Hansen and N. A. Mortensen, "A stretch-tunable plasmonic structure with a polarization-dependent response", Opt. Express, 20, 5237 (2012) CrossRef K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith and S. Schultz, "Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles", Nano Lett. 3, 1087 (2003) CrossRef Y. L. Chiang, C. W. Chen, C. H. Wang, C. Y. Hsieh, Y. T. Chen, H. Y. Shih and Y. F. Chen, "Mechanically tunable surface plasmon resonance based on gold nanoparticles and elastic membrane polydimethylsiloxane composite", Appl. Phys. Lett. 96, 041904 (2010) CrossRef N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, "The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer", Appl. Phys. Lett. 75(17) (1999) CrossRef R, A. Lawton, C. R. Price, A. F. Runge, Walter J. Doherty III, S. Scott Saavedra , "Air plasma treatment of submicron thick PDMS polymer films: effect of oxidation time and storage conditions", Colloids and Surfaces A: Physicochem. Eng. Aspects 253, 213-215 (2005). CrossRef A Schweikart, N. Pazos-Perez, R. A. Alvarez-Puebla and A. Fery, "Controlling inter-nanoparticle coupling by wrinkle-assisted assembly", Soft Matter 7, 4093 (2011) CrossRef K. R. Brown, L. A. Lyon, A. P. Fox, B. D. Reiss and M. J. Natan, "Hydroxylamine Seeding of Colloidal Au Nanoparticles. 3. Controlled Formation of Conductive Au Films", Chem. Mater. 12, 314 (2000) CrossRef
Styles APA, Harvard, Vancouver, ISO, etc.
11

Koya, Alemayehu Nana, Joao Cunha, Karina Andrea Guerrero‐Becerra, Denis Garoli, Tao Wang, Saulius Juodkazis et Remo Proietti Zaccaria. « Plasmomechanical Systems : Principles and Applications ». Advanced Functional Materials, 14 juillet 2021, 2103706. http://dx.doi.org/10.1002/adfm.202103706.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Ahmidayi, Najat, William d'Orsonnens, Thomas Maurer et Gaëtan Lévêque. « Mechanical Enhancement of the Strain‐Sensor Response in Dimers of Strongly Coupled Plasmonic Nanoparticles ». Annalen der Physik, 5 octobre 2023. http://dx.doi.org/10.1002/andp.202300319.

Texte intégral
Résumé :
AbstractDue to their particular optical and mechanical properties, plasmomechanical devices have become choice candidates in strain sensing applications. Using numerical simulation, a plasmomechanical system consisting of two gold nanoparticles with different shapes and separated by a small gap, deposited onto a deformable polydimethylsiloxane membrane, is investigated. With the aim of understanding the relationship between the plasmonic behavior of gold nanoparticles and induced mechanical deformations, mechanical extension ranging from 0% to 20% is applied to the polydimethylsiloxane membrane. In a first step, a mechanical calculation based on a hyperelastic model for polydimethylsiloxane shows that the interparticle spacing is enhanced nonlinearly by a percentage greater than the externally applied deformation, depending on the shape and size of the nanoparticles as well as the polydimethylsiloxane membrane thickness. Full optical simulation of the deformed nanosystems demonstrates that the plasmonic resonance wavelength is highly sensitive to the applied displacements and is enhanced compared to a basic approach where the gap deformation is taken as equal to the macroscopic applied deformation. The best figure of merit () is obtained for the disk–rod dimer near the strong coupling regime, larger than the values reported in the literature for localized nanoparticle systems.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Gavrilova, Anna Yu, Marina E. Kulizade et Mariya V. Cherkasova. « PLASMOMECHANICAL INTERPRETATION OF EXCITED INERT GAS ATOMS STATES ». Trudy MAI, no 123 (2022). http://dx.doi.org/10.34759/trd-2022-123-09.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Hu, Huatian, Shunping Zhang et Hongxing Xu. « Closely packed metallic nanocuboid dimer allowing plasmomechanical strong coupling ». Physical Review A 99, no 3 (7 mars 2019). http://dx.doi.org/10.1103/physreva.99.033815.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Nauman, Asad, Hafiz Saad Khaliq, Jun-Chan Choi, Jae-Won Lee et Hak-Rin Kim. « Topologically Engineered Strain Redistribution in Elastomeric Substrates for Dually Tunable Anisotropic Plasmomechanical Responses ». ACS Applied Materials & ; Interfaces, 29 janvier 2024. http://dx.doi.org/10.1021/acsami.3c13818.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie