Articles de revues sur le sujet « Plant viruses »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Plant viruses.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Plant viruses ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Kawakami, Shigeki, et Yuichiro Watanabe. « Plant viruses. Movement proteins of plant viruses. » Uirusu 49, no 2 (1999) : 107–18. http://dx.doi.org/10.2222/jsv.49.107.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ehara, Yoshio. « Special issue : Plant viruses. Plant response to viruses. » Uirusu 44, no 1 (1994) : 55–60. http://dx.doi.org/10.2222/jsv.44.55.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Watanabe, Yuichiro. « Special issue : Plant viruses. Movement proteins of plant viruses. » Uirusu 44, no 1 (1994) : 11–17. http://dx.doi.org/10.2222/jsv.44.11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ogawa, Toshiya. « Special issue : Plant viruses. Transgenic resistance to plant viruses. » Uirusu 44, no 1 (1994) : 69–76. http://dx.doi.org/10.2222/jsv.44.69.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Cao, Xinran, Jie Liu, Jianguo Pang, Hideki Kondo, Shengqi Chi, Jianfeng Zhang, Liying Sun et Ida Bagus Andika. « Common but Nonpersistent Acquisitions of Plant Viruses by Plant-Associated Fungi ». Viruses 14, no 10 (17 octobre 2022) : 2279. http://dx.doi.org/10.3390/v14102279.

Texte intégral
Résumé :
Investigating a virus’s host range and cross-infection is important for better understanding the epidemiology and emergence of viruses. Previously, our research group discovered a natural infection of a plant RNA virus, cumber mosaic virus (genus Cucumovirus, family Bromoviridae), in a plant pathogenic basidiomycetous fungus, Rhizoctonia solani, isolated from a potato plant grown in the field. Here, we further extended the study to investigate whether similar cross-infection of plant viruses occurs widely in plant-associated fungi in natural conditions. Various vegetable plants such as spinach, leaf mustard, radish, celery, and other vegetables that showed typical virus-like diseases were collected from the fields in Shandong Province, China. High-throughput sequencing revealed that at least 11 known RNA viruses belonging to different genera, including Potyvirus, Fabavirus, Polerovirus, Waikavirus, and Cucumovirus, along with novel virus candidates belonging to other virus genera, infected or associated with the collected vegetable plants, and most of the leaf samples contained multiple plant viruses. A large number of filamentous fungal strains were isolated from the vegetable leaf samples and subjected to screening for the presence of plant viruses. RT-PCR and Sanger sequencing of the PCR products revealed that among the 169 fungal strains tested, around 50% were carrying plant viruses, and many of the strains harbored multiple plant viruses. The plant viruses detected in the fungal isolates were diverse (10 virus species) and not limited to particular virus genera. However, after prolonged maintenance of the fungal culture in the laboratory, many of the fungal strains have lost the virus. Sequencing of the fungal DNA indicated that most of the fungal strains harboring plant viruses were related to plant pathogenic and/or endophytic fungi belonging to the genera Alternaria, Lecanicillium, and Sarocladium. These observations suggest that the nonpersistent acquisition of plant viruses by fungi may commonly occur in nature. Our findings highlight a possible role for fungi in the life cycle, spread, and evolution of plant viruses.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Bagni. « The Plant Viruses. » Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 275, no 3 (juin 1989) : 383. http://dx.doi.org/10.1016/0022-0728(89)87241-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Chung, Bong-Nam, Tomas Canto et Peter Palukaitis. « Stability of recombinant plant viruses containing genes of unrelated plant viruses ». Journal of General Virology 88, no 4 (1 avril 2007) : 1347–55. http://dx.doi.org/10.1099/vir.0.82477-0.

Texte intégral
Résumé :
The stability of hybrid plant viruses that might arise by recombination in transgenic plants was examined using hybrid viruses derived from the viral expression vectors potato virus X (PVX) and tobacco rattle virus (TRV). The potato virus Y (PVY) NIb and HCPro open reading frames (ORFs) were introduced into PVX to generate PVX-NIb and PVX-HCPro, while the PVY NIb ORF was introduced into a vector derived from TRV RNA2 to generate TRV-NIb. All three viruses were unstable and most of the progeny viruses had lost the inserted sequences between 2 and 4 weeks post-inoculation. There was some variation in the rate of loss of part or all of the inserted sequence and the number of plants containing the deleted viruses, depending on the sequence, the host (Nicotiana tabacum vs Nicotiana benthamiana) or the vector, although none of these factors was associated consistently with the preferential loss of the inserted sequences. PVX-NIb was unable to accumulate in NIb-transgenic tobacco resistant to infection by PVY and also showed loss of the NIb insert from PVX-NIb in some NIb-transgenic tobacco plants susceptible to infection by PVY. These data indicate that such hybrid viruses, formed in resistant transgenic plants from a transgene and an unrelated virus, would be at a selective disadvantage, first by being targeted by the resistance mechanism and second by not being competitive with the parental virus.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Roossinck, Marilyn J. « Lifestyles of plant viruses ». Philosophical Transactions of the Royal Society B : Biological Sciences 365, no 1548 (27 juin 2010) : 1899–905. http://dx.doi.org/10.1098/rstb.2010.0057.

Texte intégral
Résumé :
The vast majority of well-characterized eukaryotic viruses are those that cause acute or chronic infections in humans and domestic plants and animals. However, asymptomatic persistent viruses have been described in animals, and are thought to be sources for emerging acute viruses. Although not previously described in these terms, there are also many viruses of plants that maintain a persistent lifestyle. They have been largely ignored because they do not generally cause disease. The persistent viruses in plants belong to the family Partitiviridae or the genus Endornavirus . These groups also have members that infect fungi. Phylogenetic analysis of the partitivirus RNA-dependent RNA polymerase genes suggests that these viruses have been transmitted between plants and fungi. Additional families of viruses traditionally thought to be fungal viruses are also found frequently in plants, and may represent a similar scenario of persistent lifestyles, and some acute or chronic viruses of crop plants may maintain a persistent lifestyle in wild plants. Persistent, chronic and acute lifestyles of plant viruses are contrasted from both a functional and evolutionary perspective, and the potential role of these lifestyles in host evolution is discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Bagni. « The Filamentous Plant Viruses. » Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 275, no 3 (juin 1989) : 384. http://dx.doi.org/10.1016/0022-0728(89)87242-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Bagni. « The Filamentous Plant Viruses. » Bioelectrochemistry and Bioenergetics 21, no 3 (juin 1989) : 384. http://dx.doi.org/10.1016/0302-4598(89)85020-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Horejs, Christine-Maria. « Plant viruses join forces ». Nature Reviews Materials 4, no 6 (10 mai 2019) : 353. http://dx.doi.org/10.1038/s41578-019-0119-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

de Jager, C. P. « Plant resistance to viruses ». Physiological and Molecular Plant Pathology 36, no 3 (mars 1990) : 265–66. http://dx.doi.org/10.1016/0885-5765(90)90032-s.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Reisser, W. « Chlorella-Viruses : A New Group of Plant Viruses ». Botanica Acta 102, no 2 (mai 1989) : 117–18. http://dx.doi.org/10.1111/j.1438-8677.1989.tb00076.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

ISHIKAWA, Masayuki. « Special issue : Plant viruses. Studies on the replication mechanisms of plant RNA viruses. » Uirusu 44, no 1 (1994) : 3–10. http://dx.doi.org/10.2222/jsv.44.3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

TAKANAMI, Yoichi. « Satellite viruses and satellite RNAs associated with plant viruses. » Uirusu 37, no 1 (1987) : 81–88. http://dx.doi.org/10.2222/jsv.37.81.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Grešíková, Simona. « The transmission of plant viruses ». Agriculture (Pol'nohospodárstvo) 68, no 3 (1 octobre 2022) : 119–26. http://dx.doi.org/10.2478/agri-2022-0011.

Texte intégral
Résumé :
Abstract Plant viruses are a threat to a sustainable economy because they cause economic losses in yields. The epidemiology of plant viruses is of particular interest because of their dynamic spread by insect vectors and their transmission by seeds. The speed and direction of viral evolution are determined by the selective environment in which they are found. Knowledge of the ecology of plant viruses is critical to the transmission of many plant viruses. Accurate and timely detection of plant viruses is an essential part of their control. Rapid climate change and the globalization of trade through free trade agreements encourage the transmission of vectors and viruses from country to country. Another factor affecting the emergence of viruses is the cultivation of monocultures with low genetic diversity a nd high plant density. Trade in plant material (germplasm and living plants) also cause the emergence of new viruses. Viruses have a fast adaptation and development in a new environment. Aphids are the most widespread and important vectors of plant viruses. Myzus persicae transmits more than 100 different plant viruses. In nature plant viruses are transmitted also by nematodes, fungi, mites, leafhoppers, whiteflies, beetles, and planthoppers. The symptoms of viral diseases are very diverse and are often confused with symptoms of abiotic stress. Control of viral diseases is based on two strategies: i) immunization (genetic resistance acquired by plant transformation, breeding, or cross-protection), ii) prophylaxis to limit viruses (removal of infected plants and control of their vectors). For management, we rely on quick and accurate identification of the disease.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Saha, A., B. Saha et D. Saha. « Major plant viruses : an overview ». NBU Journal of Plant Sciences 4, no 1 (2010) : 11–19. http://dx.doi.org/10.55734/nbujps.2010.v04i01.002.

Texte intégral
Résumé :
Plant viruses cause severe diseases leading to enormous crop loss. The present day viral researches of economic plants are centered on identification of virus, molecular characterization and management of viral discases. Till date more than thousand viruses have been classified into several families. It is desirable to know about the different virus families along with their type genus and/or important genus. But due to an enormous volume of literature published on this aspect, it becomes difficult to study all of them. Hence the present review has highlighted the salient features of the major plant viruses which have been classified at the family level. Most of the virus families have been discussed with important/type genus of each family. Some viruses which could not be placed in any family have been grouped as 'no family". Importance of molecular data, immunological data and data on protein configuration of coat proteins along with bioinformatics and its predictive power have been highlighted.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Saha, A., B. Saha et D. Saha. « Major plant viruses : an overview ». NBU Journal of Plant Sciences 4, no 1 (2010) : 11–19. http://dx.doi.org/10.55734/nbujps.2010.v04i01.002.

Texte intégral
Résumé :
Plant viruses cause severe diseases leading to enormous crop loss. The present day viral researches of economic plants are centered on identification of virus, molecular characterization and management of viral discases. Till date more than thousand viruses have been classified into several families. It is desirable to know about the different virus families along with their type genus and/or important genus. But due to an enormous volume of literature published on this aspect, it becomes difficult to study all of them. Hence the present review has highlighted the salient features of the major plant viruses which have been classified at the family level. Most of the virus families have been discussed with important/type genus of each family. Some viruses which could not be placed in any family have been grouped as 'no family". Importance of molecular data, immunological data and data on protein configuration of coat proteins along with bioinformatics and its predictive power have been highlighted.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Geng, Guowei, Deya Wang, Zhifei Liu, Yalan Wang, Mingjing Zhu, Xinran Cao, Chengming Yu et Xuefeng Yuan. « Translation of Plant RNA Viruses ». Viruses 13, no 12 (13 décembre 2021) : 2499. http://dx.doi.org/10.3390/v13122499.

Texte intégral
Résumé :
Plant RNA viruses encode essential viral proteins that depend on the host translation machinery for their expression. However, genomic RNAs of most plant RNA viruses lack the classical characteristics of eukaryotic cellular mRNAs, such as mono-cistron, 5′ cap structure, and 3′ polyadenylation. To adapt and utilize the eukaryotic translation machinery, plant RNA viruses have evolved a variety of translation strategies such as cap-independent translation, translation recoding on initiation and termination sites, and post-translation processes. This review focuses on advances in cap-independent translation and translation recoding in plant viruses.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Valarmathi, P. « Emerging plant viruses in cotton ». Journal of Pharmacognosy and Phytochemistry 9, no 4S (1 juillet 2020) : 22–27. http://dx.doi.org/10.22271/phyto.2020.v9.i4sa.11891.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Ghabrial, Said A., et Nobuhiro Suzuki. « Viruses of Plant Pathogenic Fungi ». Annual Review of Phytopathology 47, no 1 (septembre 2009) : 353–84. http://dx.doi.org/10.1146/annurev-phyto-080508-081932.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Garcia-Ruiz, Hernan. « Susceptibility Genes to Plant Viruses ». Viruses 10, no 9 (10 septembre 2018) : 484. http://dx.doi.org/10.3390/v10090484.

Texte intégral
Résumé :
Plant viruses use cellular factors and resources to replicate and move. Plants respond to viral infection by several mechanisms, including innate immunity, autophagy, and gene silencing, that viruses must evade or suppress. Thus, the establishment of infection is genetically determined by the availability of host factors necessary for virus replication and movement and by the balance between plant defense and viral suppression of defense responses. Host factors may have antiviral or proviral activities. Proviral factors condition susceptibility to viruses by participating in processes essential to the virus. Here, we review current advances in the identification and characterization of host factors that condition susceptibility to plant viruses. Host factors with proviral activity have been identified for all parts of the virus infection cycle: viral RNA translation, viral replication complex formation, accumulation or activity of virus replication proteins, virus movement, and virion assembly. These factors could be targets of gene editing to engineer resistance to plant viruses.
Styles APA, Harvard, Vancouver, ISO, etc.
23

TADAMURA, Kazuki, et Kenji NAKAHARA. « Plant Innate Immunity against Viruses ». KAGAKU TO SEIBUTSU 52, no 12 (2014) : 805–13. http://dx.doi.org/10.1271/kagakutoseibutsu.52.805.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Seron, Karin. « Vascular Movement of Plant Viruses ». Molecular Plant-Microbe Interactions 9, no 6 (1996) : 435. http://dx.doi.org/10.1094/mpmi-9-0435.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Garcia‐Ruiz, Hernan. « Host factors against plant viruses ». Molecular Plant Pathology 20, no 11 (8 juillet 2019) : 1588–601. http://dx.doi.org/10.1111/mpp.12851.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Richards, K. E. « Molecular Biology of Plant Viruses ». Plant Science 161, no 3 (août 2001) : 627. http://dx.doi.org/10.1016/s0168-9452(01)00429-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Richards, K. « Plant viruses as molecular pathogens ». Plant Science 163, no 5 (novembre 2002) : 1069. http://dx.doi.org/10.1016/s0168-9452(02)00248-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Elena, Santiago F., Guillermo P. Bernet et José L. Carrasco. « The games plant viruses play ». Current Opinion in Virology 8 (octobre 2014) : 62–67. http://dx.doi.org/10.1016/j.coviro.2014.07.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Stussi-Garaud, Christiane, Anne-Marie Haeberle, Christophe Ritzenthaler, Odette Rohfritsch et Genevieve Lebeurier. « Electron microscopy of plant viruses ». Biology of the Cell 80, no 2-3 (1994) : 147–53. http://dx.doi.org/10.1111/j.1768-322x.1994.tb00924.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Campbell, R. N. « FUNGAL TRANSMISSION OF PLANT VIRUSES ». Annual Review of Phytopathology 34, no 1 (septembre 1996) : 87–108. http://dx.doi.org/10.1146/annurev.phyto.34.1.87.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Bagni. « The Plant Viruses. Vol. 3. » Bioelectrochemistry and Bioenergetics 21, no 3 (juin 1989) : 383. http://dx.doi.org/10.1016/0302-4598(89)85019-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Mokra, V., B. Gotzova, J. Mertelik et J. Polak. « COLLECTION OF ORNAMENTAL PLANT VIRUSES ». Acta Horticulturae, no 568 (janvier 2002) : 193–99. http://dx.doi.org/10.17660/actahortic.2002.568.28.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Fulton, J. P., R. C. Gergerich et H. A. Scott. « Beetle Transmission of Plant Viruses ». Annual Review of Phytopathology 25, no 1 (septembre 1987) : 111–23. http://dx.doi.org/10.1146/annurev.py.25.090187.000551.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

García, Juan Antonio, et Carmen Simón-Mateo. « A micropunch against plant viruses ». Nature Biotechnology 24, no 11 (novembre 2006) : 1358–59. http://dx.doi.org/10.1038/nbt1106-1358.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Simon, Anne E. « Satellite RNAs of plant viruses ». Plant Molecular Biology Reporter 6, no 4 (septembre 1988) : 240–52. http://dx.doi.org/10.1007/bf02670384.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

STUSSIGARAUD, C. « Electron microscopy of plant viruses ». Biology of the Cell 80, no 2-3 (1994) : 147–53. http://dx.doi.org/10.1016/0248-4900(94)90036-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Jones, David R. « Plant Viruses Transmitted by Thrips ». European Journal of Plant Pathology 113, no 2 (octobre 2005) : 119–57. http://dx.doi.org/10.1007/s10658-005-2334-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

de Lillo, Enrico, Juliana Freitas-Astúa, Elliot Watanabe Kitajima, Pedro Luis Ramos-González, Sauro Simoni, Aline Daniele Tassi et Domenico Valenzano. « Phytophagous mites transmitting plant viruses : update and perspectives ». Entomologia Generalis 41, no 5 (29 octobre 2021) : 439–62. http://dx.doi.org/10.1127/entomologia/2021/1283.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

SCHOLTHOF, KAREN-BETH G., SCOTT ADKINS, HENRYK CZOSNEK, PETER PALUKAITIS, EMMANUEL JACQUOT, THOMAS HOHN, BARBARA HOHN et al. « Top 10 plant viruses in molecular plant pathology ». Molecular Plant Pathology 12, no 9 (21 octobre 2011) : 938–54. http://dx.doi.org/10.1111/j.1364-3703.2011.00752.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Kim, Myung-Hwi, Sun-Jung Kwon et Jang-Kyun Seo. « Evolution of Plant RNA Viruses and Mechanisms in Overcoming Plant Resistance ». Research in Plant Disease 27, no 4 (31 décembre 2021) : 137–48. http://dx.doi.org/10.5423/rpd.2021.27.4.137.

Texte intégral
Résumé :
Plant RNA viruses are one of the most destructive pathogens that cause a significant loss in crop production worldwide. They have evolved with high genetic diversity and adaptability due to the short replication cycle and high mutation rate during genome replication, which are characteristics of RNA viruses. Plant RNA viruses exist as quasispecies with high genetic diversity; thereby, a rapid population transition with new fitness can occur due to selective pressure resulting from environmental changes. Plant resistance can act as selective pressure and affect the fitness of the virus, which may lead to the emergence of resistance-breaking variants. In this paper, we introduced the evolutionary perspectives of plant RNA viruses and the driving forces in their evolution. Based on this, we discussed the mechanism of the emergence of variant viruses that overcome plant resistance. In addition, strategies for deploying plant resistance to viral diseases and improving resistance durability were discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Ali, Zahir, et Magdy M. Mahfouz. « CRISPR/Cas systems versus plant viruses : engineering plant immunity and beyond ». Plant Physiology 186, no 4 (12 mai 2021) : 1770–85. http://dx.doi.org/10.1093/plphys/kiab220.

Texte intégral
Résumé :
Abstract Molecular engineering of plant immunity to confer resistance against plant viruses holds great promise for mitigating crop losses and improving plant productivity and yields, thereby enhancing food security. Several approaches have been employed to boost immunity in plants by interfering with the transmission or lifecycles of viruses. In this review, we discuss the successful application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) (CRISPR/Cas) systems to engineer plant immunity, increase plant resistance to viruses, and develop viral diagnostic tools. Furthermore, we examine the use of plant viruses as delivery systems to engineer virus resistance in plants and provide insight into the limitations of current CRISPR/Cas approaches and the potential of newly discovered CRISPR/Cas systems to engineer better immunity and develop better diagnostics tools for plant viruses. Finally, we outline potential solutions to key challenges in the field to enable the practical use of these systems for crop protection and viral diagnostics.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Kendall, Amy, Michele McDonald, Wen Bian, Timothy Bowles, Sarah C. Baumgarten, Jian Shi, Phoebe L. Stewart et al. « Structure of Flexible Filamentous Plant Viruses ». Journal of Virology 82, no 19 (30 juillet 2008) : 9546–54. http://dx.doi.org/10.1128/jvi.00895-08.

Texte intégral
Résumé :
ABSTRACTFlexible filamentous viruses make up a large fraction of the known plant viruses, but in comparison with those of other viruses, very little is known about their structures. We have used fiber diffraction, cryo-electron microscopy, and scanning transmission electron microscopy to determine the symmetry of a potyvirus, soybean mosaic virus; to confirm the symmetry of a potexvirus, potato virus X; and to determine the low-resolution structures of both viruses. We conclude that these viruses and, by implication, most or all flexible filamentous plant viruses share a common coat protein fold and helical symmetry, with slightly less than 9 subunits per helical turn.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Fuji, Shin-ichi, Tomofumi Mochizuki, Mitsuru Okuda, Shinya Tsuda, Satoshi Kagiwada, Ken-Taro Sekine, Masashi Ugaki et al. « Plant viruses and viroids in Japan ». Journal of General Plant Pathology 88, no 2 (17 janvier 2022) : 105–27. http://dx.doi.org/10.1007/s10327-022-01051-y.

Texte intégral
Résumé :
AbstractAn increasing number of plant viruses and viroids have been reported from all over the world due largely to metavirogenomics approaches with technological innovation. Herein, the official changes of virus taxonomy, including the establishment of megataxonomy and amendments of the codes of virus classification and nomenclature, recently made by the International Committee on Taxonomy of Viruses were summarized. The continued efforts of the plant virology community of Japan to index all plant viruses and viroids occurring in Japan, which represent 407 viruses, including 303 virus species and 104 unclassified viruses, and 25 viroids, including 20 species and 5 unclassified viroids, as of October 2021, were also introduced. These viruses and viroids are collectively classified into 81 genera within 26 families of 3 kingdoms (Shotokuvirae, Orthornavirae, Pararnavirae) across 2 realms (Monodnaviria and Riboviria). This review also overviewed how Japan’s plant virus/viroid studies have contributed to advance virus/viroid taxonomy.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Tsuda, Shinya. « Plant viruses. Tomato spotted wilt tospovirus : Plant-infecting bunyaviridae. » Uirusu 49, no 2 (1999) : 119–30. http://dx.doi.org/10.2222/jsv.49.119.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

EBARA, YOSHIO. « Biophylaxis of plant.6.Resistance of plant to viruses. » Kagaku To Seibutsu 28, no 9 (1990) : 615–24. http://dx.doi.org/10.1271/kagakutoseibutsu1962.28.615.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

HIBI, Tadaaki. « Infection of Plant Protoplasts with Plant Viruses by Electromanipulation ». Japanese Journal of Phytopathology 59, no 3 (1993) : 237–39. http://dx.doi.org/10.3186/jjphytopath.59.237.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Candresse, T. « RECENT DEVELOPMENTS IN PLANT VIRUSES DETECTION ». Acta Horticulturae, no 386 (juillet 1995) : 601–5. http://dx.doi.org/10.17660/actahortic.1995.386.88.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Hamilton, R. I. « Using Plant Viruses for Disease Control ». HortScience 20, no 5 (octobre 1985) : 848–52. http://dx.doi.org/10.21273/hortsci.20.5.848.

Texte intégral
Résumé :
Abstract The practice of using plant viruses in the control of virus diseases, originally demonstrated in 1933 by Salaman (56), arose from observations made over 50 years ago by McKinney (41), Thung (64), and others who reported plants, preinoculated with mild strains of some viruses, and later inoculated with related severe strains, often failed to show symptoms of the severe strains. The phenomenon has been termed “cross protection” (22, 32, 66). The general observation, failure of the severe strain to cause symptoms, is valid but the principles underlying the phenomenon are not understood. For example, 2 strains may exhibit reciprocal protection, but others may not (23, 24, 39). Moreover, evidence is accumulating in some experimental systems that, even though the severe strain may not induce symptoms, it does replicate in the protected plant (7, 17), so that the failure to express symptoms may not necessarily mean failure of the severe strain to infect and replicate. On the other hand, Dodds (16) provided evidence that cross protection between 2 strains of cucumber mosaic virus appears to operate by preventing infection by the challenge strain.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Abdalreda, Estabraq Mohammed, et Liqaa Hussein Mohammed. « Nematodes That Transmit Plant Pathogenic Viruses ». IOP Conference Series : Earth and Environmental Science 1060, no 1 (1 juillet 2022) : 012125. http://dx.doi.org/10.1088/1755-1315/1060/1/012125.

Texte intégral
Résumé :
Abstract Nematodes (nematodes) are worms of Kingdom: Animalia, Phylum: Nematode, the second largest group after insects in terms of number and diversity, and does not have a respiratory and circulatory system but They contain a pseudo body cavity and are found in all humid environments in the world and their parasitic species are not visible to the naked eye. So far, more than 4100 species of plant-parasitic nematodes are known, belonging to about 200 genera to more than 30 families. However, the types that transmit viruses do not constitute more than 1% of the number of parasitic nematodes on plants. The mouth parts of nematodes that transmit viruses, represented by the Stylet, are the body structures important in transmitting viruses, and the shaft is usually elongated. Which enables it to feed deeply inside the root of the plant.
Styles APA, Harvard, Vancouver, ISO, etc.
50

García-Rodríguez, Octavio Gustavo, Luis Pérez-Moreno, Martha Juana Navarro-León, Manuel Darío Salas-Araiza, Oscar Alejandro Martínez-Jaime, Ma Fabiola León-Galván et Héctor Gordon Núñez-Palenius. « PLANT VIRUSES IN GARLIC-ASSOCIATED INSECTS ». Revista Chapingo Serie Horticultura XX, no 2 (août 2014) : 147–56. http://dx.doi.org/10.5154/r.rchsh.2012.10.057.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie