Articles de revues sur le sujet « Plant viruses Genetics »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Plant viruses Genetics.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Plant viruses Genetics ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Fraser, R. S. S. « The Genetics of Resistance to Plant Viruses ». Annual Review of Phytopathology 28, no 1 (septembre 1990) : 179–200. http://dx.doi.org/10.1146/annurev.py.28.090190.001143.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

de Jager, C. P. « Plant resistance to viruses ». Physiological and Molecular Plant Pathology 36, no 3 (mars 1990) : 265–66. http://dx.doi.org/10.1016/0885-5765(90)90032-s.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Elena, Santiago F., Stéphanie Bedhomme, Purificación Carrasco, José M. Cuevas, Francisca de la Iglesia, Guillaume Lafforgue, Jasna Lalić, Àngels Pròsper, Nicolas Tromas et Mark P. Zwart. « The Evolutionary Genetics of Emerging Plant RNA Viruses ». Molecular Plant-Microbe Interactions® 24, no 3 (mars 2011) : 287–93. http://dx.doi.org/10.1094/mpmi-09-10-0214.

Texte intégral
Résumé :
Over the years, agriculture across the world has been compromised by a succession of devastating epidemics caused by new viruses that spilled over from reservoir species or by new variants of classic viruses that acquired new virulence factors or changed their epidemiological patterns. Viral emergence is usually associated with ecological change or with agronomical practices bringing together reservoirs and crop species. The complete picture is, however, much more complex, and results from an evolutionary process in which the main players are ecological factors, viruses' genetic plasticity, and host factors required for virus replication, all mixed with a good measure of stochasticity. The present review puts emergence of plant RNA viruses into the framework of evolutionary genetics, stressing that viral emergence begins with a stochastic process that involves the transmission of a preexisting viral strain into a new host species, followed by adaptation to the new host.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Roossinck, Marilyn J. « Lifestyles of plant viruses ». Philosophical Transactions of the Royal Society B : Biological Sciences 365, no 1548 (27 juin 2010) : 1899–905. http://dx.doi.org/10.1098/rstb.2010.0057.

Texte intégral
Résumé :
The vast majority of well-characterized eukaryotic viruses are those that cause acute or chronic infections in humans and domestic plants and animals. However, asymptomatic persistent viruses have been described in animals, and are thought to be sources for emerging acute viruses. Although not previously described in these terms, there are also many viruses of plants that maintain a persistent lifestyle. They have been largely ignored because they do not generally cause disease. The persistent viruses in plants belong to the family Partitiviridae or the genus Endornavirus . These groups also have members that infect fungi. Phylogenetic analysis of the partitivirus RNA-dependent RNA polymerase genes suggests that these viruses have been transmitted between plants and fungi. Additional families of viruses traditionally thought to be fungal viruses are also found frequently in plants, and may represent a similar scenario of persistent lifestyles, and some acute or chronic viruses of crop plants may maintain a persistent lifestyle in wild plants. Persistent, chronic and acute lifestyles of plant viruses are contrasted from both a functional and evolutionary perspective, and the potential role of these lifestyles in host evolution is discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ali, Zahir, et Magdy M. Mahfouz. « CRISPR/Cas systems versus plant viruses : engineering plant immunity and beyond ». Plant Physiology 186, no 4 (12 mai 2021) : 1770–85. http://dx.doi.org/10.1093/plphys/kiab220.

Texte intégral
Résumé :
Abstract Molecular engineering of plant immunity to confer resistance against plant viruses holds great promise for mitigating crop losses and improving plant productivity and yields, thereby enhancing food security. Several approaches have been employed to boost immunity in plants by interfering with the transmission or lifecycles of viruses. In this review, we discuss the successful application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) (CRISPR/Cas) systems to engineer plant immunity, increase plant resistance to viruses, and develop viral diagnostic tools. Furthermore, we examine the use of plant viruses as delivery systems to engineer virus resistance in plants and provide insight into the limitations of current CRISPR/Cas approaches and the potential of newly discovered CRISPR/Cas systems to engineer better immunity and develop better diagnostics tools for plant viruses. Finally, we outline potential solutions to key challenges in the field to enable the practical use of these systems for crop protection and viral diagnostics.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Marwal, Avinash, et Rajarshi Kumar Gaur. « Host Plant Strategies to Combat Against Viruses Effector Proteins ». Current Genomics 21, no 6 (16 septembre 2020) : 401–10. http://dx.doi.org/10.2174/1389202921999200712135131.

Texte intégral
Résumé :
Viruses are obligate parasites that exist in an inactive state until they enter the host body. Upon entry, viruses become active and start replicating by using the host cell machinery. All plant viruses can augment their transmission, thus powering their detrimental effects on the host plant. To diminish infection and diseases caused by viruses, the plant has a defence mechanism known as pathogenesis- related biochemicals, which are metabolites and proteins. Proteins that ultimately prevent pathogenic diseases are called R proteins. Several plant R genes (that confirm resistance) and avirulence protein (Avr) (pathogen Avr gene-encoded proteins [effector/elicitor proteins involved in pathogenicity]) molecules have been identified. The recognition of such a factor results in the plant defence mechanism. During plant viral infection, the replication and expression of a viral molecule lead to a series of a hypersensitive response (HR) and affect the host plant’s immunity (pathogen-associated molecular pattern–triggered immunity and effector-triggered immunity). Avr protein renders the host RNA silencing mechanism and its innate immunity, chiefly known as silencing suppressors towards the plant defensive machinery. This is a strong reply to the plant defensive machinery by harmful plant viruses. In this review, we describe the plant pathogen resistance protein and how these proteins regulate host immunity during plant–virus interactions. Furthermore, we have discussed regarding ribosome- inactivating proteins, ubiquitin proteasome system, translation repression (nuclear shuttle protein interacting kinase 1), DNA methylation, dominant resistance genes, and autophagy-mediated protein degradation, which are crucial in antiviral defences.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Keese, Paul, et Adrian Gibbs. « Plant viruses : master explorers of evolutionary space ». Current Opinion in Genetics & ; Development 3, no 6 (janvier 1993) : 873–77. http://dx.doi.org/10.1016/0959-437x(93)90007-c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kasschau, Kristin D., et James C. Carrington. « A Counterdefensive Strategy of Plant Viruses ». Cell 95, no 4 (novembre 1998) : 461–70. http://dx.doi.org/10.1016/s0092-8674(00)81614-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kridl, Jean C., et Robert M. Goodman. « Transcriptional regulatory sequences from plant viruses ». BioEssays 4, no 1 (janvier 1986) : 4–8. http://dx.doi.org/10.1002/bies.950040103.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

THRESH, J. M. « The ecology of tropical plant viruses ». Plant Pathology 40, no 3 (septembre 1991) : 324–39. http://dx.doi.org/10.1111/j.1365-3059.1991.tb02386.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Pierpoint, W. S. « Atlas of plant viruses : Vols I and II ». Physiological and Molecular Plant Pathology 33, no 2 (septembre 1988) : 314–16. http://dx.doi.org/10.1016/0885-5765(88)90034-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Johnson, J., T. Lin et G. Lomonossoff. « PRESENTATION OF HETEROLOGOUS PEPTIDES ON PLANT VIRUSES : Genetics, Structure, and Function ». Annual Review of Phytopathology 35, no 1 (septembre 1997) : 67–86. http://dx.doi.org/10.1146/annurev.phyto.35.1.67.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Feng, Mingfeng, Zhenghe Li, Xiaorong Tao, Xianbing Wang et Zhike Feng. « Advances in reverse genetics system of plant negative-strand RNA viruses ». Chinese Science Bulletin 65, no 35 (25 juillet 2020) : 4073–83. http://dx.doi.org/10.1360/tb-2020-0671.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Jensen, D. D. « EFFECTS OF PLANT VIRUSES ON INSECTS* ». Annals of the New York Academy of Sciences 105, no 13 (15 décembre 2006) : 685–712. http://dx.doi.org/10.1111/j.1749-6632.1963.tb42958.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Rai, Avanish, Palaiyur N. Sivalingam et Muthappa Senthil-Kumar. « A spotlight on non-host resistance to plant viruses ». PeerJ 10 (31 mars 2022) : e12996. http://dx.doi.org/10.7717/peerj.12996.

Texte intégral
Résumé :
Plant viruses encounter a range of host defenses including non-host resistance (NHR), leading to the arrest of virus replication and movement in plants. Viruses have limited host ranges, and adaptation to a new host is an atypical phenomenon. The entire genotypes of plant species which are imperceptive to every single isolate of a genetically variable virus species are described as non-hosts. NHR is the non-specific resistance manifested by an innately immune non-host due to pre-existing and inducible defense responses, which cannot be evaded by yet-to-be adapted plant viruses. NHR-to-plant viruses are widespread, but the phenotypic variation is often not detectable within plant species. Therefore, molecular and genetic mechanisms of NHR need to be systematically studied to enable exploitation in crop protection. This article comprehensively describes the possible mechanisms of NHR against plant viruses. Also, the previous definition of NHR to plant viruses is insufficient, and the main aim of this article is to sensitize plant pathologists to the existence of NHR to plant viruses and to highlight the need for immediate and elaborate research in this area.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Zahmanova, Gergana, Katerina Takova, Rumyana Valkova, Valentina Toneva, Ivan Minkov, Anton Andonov et Georgi L. Lukov. « Plant-Derived Recombinant Vaccines against Zoonotic Viruses ». Life 12, no 2 (21 janvier 2022) : 156. http://dx.doi.org/10.3390/life12020156.

Texte intégral
Résumé :
Emerging and re-emerging zoonotic diseases cause serious illness with billions of cases, and millions of deaths. The most effective way to restrict the spread of zoonotic viruses among humans and animals and prevent disease is vaccination. Recombinant proteins produced in plants offer an alternative approach for the development of safe, effective, inexpensive candidate vaccines. Current strategies are focused on the production of highly immunogenic structural proteins, which mimic the organizations of the native virion but lack the viral genetic material. These include chimeric viral peptides, subunit virus proteins, and virus-like particles (VLPs). The latter, with their ability to self-assemble and thus resemble the form of virus particles, are gaining traction among plant-based candidate vaccines against many infectious diseases. In this review, we summarized the main zoonotic diseases and followed the progress in using plant expression systems for the production of recombinant proteins and VLPs used in the development of plant-based vaccines against zoonotic viruses.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Koenig, Renate, et D. E. Lesemann. « Plant Viruses in German Rivers and Lakes ». Journal of Phytopathology 112, no 2 (février 1985) : 105–16. http://dx.doi.org/10.1111/j.1439-0434.1985.tb04819.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Piazzolla, P., A. Buondonno, F. Palmieri et A. Stradis. « Studies on Plant Viruses-soil Colloids Interactions. » Journal of Phytopathology 138, no 2 (juin 1993) : 111–17. http://dx.doi.org/10.1111/j.1439-0434.1993.tb01367.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Lima, Alison T. M., Roberto R. Sobrinho, Jorge González-Aguilera, Carolina S. Rocha, Sarah J. C. Silva, César A. D. Xavier, Fábio N. Silva, Siobain Duffy et F. Murilo Zerbini. « Synonymous site variation due to recombination explains higher genetic variability in begomovirus populations infecting non-cultivated hosts ». Journal of General Virology 94, no 2 (1 février 2013) : 418–31. http://dx.doi.org/10.1099/vir.0.047241-0.

Texte intégral
Résumé :
Begomoviruses are ssDNA plant viruses that cause serious epidemics in economically important crops worldwide. Non-cultivated plants also harbour many begomoviruses, and it is believed that these hosts may act as reservoirs and as mixing vessels where recombination may occur. Begomoviruses are notoriously recombination-prone, and also display nucleotide substitution rates equivalent to those of RNA viruses. In Brazil, several indigenous begomoviruses have been described infecting tomatoes following the introduction of a novel biotype of the whitefly vector in the mid-1990s. More recently, a number of viruses from non-cultivated hosts have also been described. Previous work has suggested that viruses infecting non-cultivated hosts have a higher degree of genetic variability compared with crop-infecting viruses. We intensively sampled cultivated and non-cultivated plants in similarly sized geographical areas known to harbour either the weed-infecting Macroptilium yellow spot virus (MaYSV) or the crop-infecting Tomato severe rugose virus (ToSRV), and compared the molecular evolution and population genetics of these two distantly related begomoviruses. The results reinforce the assertion that infection of non-cultivated plant species leads to higher levels of standing genetic variability, and indicate that recombination, not adaptive selection, explains the higher begomovirus variability in non-cultivated hosts.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Brunt, Alan A. « Plant Viruses, Unique and Intriguing Pathogens - A Textbook of Plant Virology ». Journal of Phytopathology 148, no 11-12 (décembre 2000) : 637–42. http://dx.doi.org/10.1111/j.1439-0434.2000.00543.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Kleczkowski, A. « EFFECTS OF NONIONIZING RADIATION ON PLANT VIRUSES ». Annals of the New York Academy of Sciences 83, no 4 (15 décembre 2006) : 661–69. http://dx.doi.org/10.1111/j.1749-6632.1960.tb40937.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Maramorosch, Karl. « INTERRELATIONSHIPS BETWEEN PLANT PATHOGENIC VIRUSES AND INSECTS* ». Annals of the New York Academy of Sciences 118, no 6 (16 décembre 2006) : 363–70. http://dx.doi.org/10.1111/j.1749-6632.1964.tb33984.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Gutiérrez, Serafín, Yannis Michalakis, Manuella Munster et Stéphane Blanc. « Plant feeding by insect vectors can affect life cycle, population genetics and evolution of plant viruses ». Functional Ecology 27, no 3 (19 février 2013) : 610–22. http://dx.doi.org/10.1111/1365-2435.12070.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Vicente, M., G. Fazio, M. E. Menezes et R. R. Golgher. « Inhibition of Plant Viruses by Human Gamma Interferon ». Journal of Phytopathology 119, no 1 (mai 1987) : 25–31. http://dx.doi.org/10.1111/j.1439-0434.1987.tb04380.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Baruah, Aiswarya, Palaiyur Nanjappan Sivalingam, Urooj Fatima et Muthappa Senthil-Kumar. « Non-host resistance to plant viruses : What do we know ? » Physiological and Molecular Plant Pathology 111 (août 2020) : 101506. http://dx.doi.org/10.1016/j.pmpp.2020.101506.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Michael, T., et A. Wilson. « Plant viruses : A tool-box for genetic engineering and crop protection ». BioEssays 10, no 6 (juin 1989) : 179–86. http://dx.doi.org/10.1002/bies.950100602.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Desbiez, C., B. Moury et H. Lecoq. « The hallmarks of “green” viruses : Do plant viruses evolve differently from the others ? » Infection, Genetics and Evolution 11, no 5 (juillet 2011) : 812–24. http://dx.doi.org/10.1016/j.meegid.2011.02.020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Brault, Véronique, Maryline Uzest, Baptiste Monsion, Emmanuel Jacquot et Stéphane Blanc. « Aphids as transport devices for plant viruses ». Comptes Rendus Biologies 333, no 6-7 (juin 2010) : 524–38. http://dx.doi.org/10.1016/j.crvi.2010.04.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Mitsuhashi, Jun. « AXENIC REARING OF INSECT VECTORS OF PLANT VIRUSES* ». Annals of the New York Academy of Sciences 118, no 6 (16 décembre 2006) : 384–86. http://dx.doi.org/10.1111/j.1749-6632.1964.tb33987.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Nelson, Richard S., et Vitaly Citovsky. « Plant Viruses. Invaders of Cells and Pirates of Cellular Pathways ». Plant Physiology 138, no 4 (août 2005) : 1809–14. http://dx.doi.org/10.1104/pp.104.900167.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Poison, A. « 19. Purification of Filamentous Plant Viruses by Thin Layer Centrifugation (Applied to TMV, SCMV, PVX, SCV, and YMC Viruses) ». Preparative Biochemistry 23, no 1-2 (janvier 1993) : 237–53. http://dx.doi.org/10.1080/10826069308544553.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Kellmann, Jan-Wolfhard. « Identification of Plant Virus Movement-Host Protein Interactions ». Zeitschrift für Naturforschung C 56, no 9-10 (1 octobre 2001) : 669–79. http://dx.doi.org/10.1515/znc-2001-9-1001.

Texte intégral
Résumé :
Abstract After the discovery of ‘movement proteins’ as a peculiarity of plant viruses and with the help of novel methods for the detection and isolation of interacting host proteins new insights have been obtained to understand the mechanisms of virus movement in plant tissues. Rapid progress in studying the molecular mechanisms of systemic spread of plant infecting viruses revealed an interrelation between virus movement and macromolecular trafficking in plant tissues. This article summarizes current explorations on plant virus movement proteins (MPs) and introduces the state of the art in the identification and isolation of MP interacting host proteins.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Pagán, Israel. « Transmission through seeds : The unknown life of plant viruses ». PLOS Pathogens 18, no 8 (11 août 2022) : e1010707. http://dx.doi.org/10.1371/journal.ppat.1010707.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Ruark, Casey L., Michael Gardner, Melissa G. Mitchum, Eric L. Davis et Tim L. Sit. « Novel RNA viruses within plant parasitic cyst nematodes ». PLOS ONE 13, no 3 (6 mars 2018) : e0193881. http://dx.doi.org/10.1371/journal.pone.0193881.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Plumb, R. T. « Viruses of Poaceae : a case history in plant pathology ». Plant Pathology 51, no 6 (décembre 2002) : 673–82. http://dx.doi.org/10.1046/j.1365-3059.2002.00790.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Willemsen, Anouk, José L. Carrasco, Santiago F. Elena et Mark P. Zwart. « Going, going, gone : predicting the fate of genomic insertions in plant RNA viruses ». Heredity 121, no 5 (10 mai 2018) : 499–509. http://dx.doi.org/10.1038/s41437-018-0086-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Poison, A. « 20. Electro-Extraction of Viruses from Infected Plant Tissue (Applied to Turnip Yellow Mosaic, Tobacco Mosaic, and Maize Streak Viruses) ». Preparative Biochemistry 23, no 1-2 (janvier 1993) : 255–65. http://dx.doi.org/10.1080/10826069308544554.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Gilbert, Rosalind, et Diane Ouwerkerk. « The Genetics of Rumen Phage Populations ». Proceedings 36, no 1 (7 avril 2020) : 165. http://dx.doi.org/10.3390/proceedings2019036165.

Texte intégral
Résumé :
The microbial populations of the rumen are widely recognised as being essential for ruminant nutrition and health, utilising and breaking down fibrous plant material which would otherwise be indigestible. The dense and highly diverse viral populations which co-exist with these microbial populations are less understood, despite their potential impacts on microbial lysis and gene transfer. In recent years, studies using metagenomics, metatranscriptomics and proteomics have provided new insights into the types of viruses present in the rumen and the proteins they produce. These studies however are limited in their capacity to fully identify and classify the viral sequence information obtained, due to the absence of rumen-specific virus genomes in current sequence databases. The majority of commensal viruses found in the rumen are those infecting bacteria (phages), therefore we genome sequenced phage isolates from our phage culture collection infecting the common rumen microbial genera Bacteroides, Ruminococcus and Streptococcus. We also created a pan-genome using 39 whole genome sequences of predominantly livestock-derived Streptococcus isolates (representing S. bovis, S. equinus, S. henryi, and S. gallolyticus), to identify and characterise integrated viral genomes (prophage sequences). Collectively this approach has provided novel rumen phage sequences to increase the accuracy of rumen metagenomics analyses. It has also provided new insights into how viruses or virus-encoded proteins can potentially be used to modulate specific microbial populations within the rumen microbiome.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Singh, Rachana, Mohammad Kuddus, Pradhyumna Kumar Singh et Deki Choden. « Nanotechnology for Nanophytopathogens : From Detection to the Management of Plant Viruses ». BioMed Research International 2022 (3 octobre 2022) : 1–12. http://dx.doi.org/10.1155/2022/8688584.

Texte intégral
Résumé :
Plant viruses are the most destructive pathogens which cause devastating losses to crops due to their diversity in the genome, rapid evolution, mutation or recombination in the genome, and lack of management options. It is important to develop a reliable remedy to improve the management of plant viral diseases in economically important crops. Some reports show the efficiency of metal nanoparticles and engineered nanomaterials and their wide range of applications in nanoagriculture. Currently, there are reports for the use of nanoparticles as an antibacterial and antifungal agent in plants and animals too, but few reports as plant antiviral. “Nanophytovirology” has been emerged as a new branch that covers nanobased management approaches to deal with devastating plant viruses. Varied nanoparticles have specific physicochemical properties that help them to interact in various unique and useful ways with viruses and their vectors along with the host plants. To explore the antiviral role of nanoparticles and for the effective management of plant viruses, it is imperative to understand all minute details such as the concentration/dosage of nanoparticles, time of application, application interval, and their mechanism of action. This review focused on different aspects of metal nanoparticles and metal oxides such as their interaction with plant viruses to explore the antiviral role and the multidimensional perspective of nanotechnology in plant viral disease detection, treatment, and management.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Hong, Hao, Chunli Wang, Ying Huang, Min Xu, Jiaoling Yan, Mingfeng Feng, Jia Li et al. « Antiviral RISC mainly targets viral mRNA but not genomic RNA of tospovirus ». PLOS Pathogens 17, no 7 (28 juillet 2021) : e1009757. http://dx.doi.org/10.1371/journal.ppat.1009757.

Texte intégral
Résumé :
Antiviral RNA silencing/interference (RNAi) of negative-strand (-) RNA plant viruses (NSVs) has been studied less than for single-stranded, positive-sense (+)RNA plant viruses. From the latter, genomic and subgenomic mRNA molecules are targeted by RNAi. However, genomic RNA strands from plant NSVs are generally wrapped tightly within viral nucleocapsid (N) protein to form ribonucleoproteins (RNPs), the core unit for viral replication, transcription and movement. In this study, the targeting of the NSV tospoviral genomic RNA and mRNA molecules by antiviral RNA-induced silencing complexes (RISC) was investigated, in vitro and in planta. RISC fractions isolated from tospovirus-infected N. benthamiana plants specifically cleaved naked, purified tospoviral genomic RNAs in vitro, but not genomic RNAs complexed with viral N protein. In planta RISC complexes, activated by a tobacco rattle virus (TRV) carrying tospovirus NSs or Gn gene fragments, mainly targeted the corresponding viral mRNAs and hardly genomic (viral and viral-complementary strands) RNA assembled into RNPs. In contrast, for the (+)ssRNA cucumber mosaic virus (CMV), RISC complexes, activated by TRV carrying CMV 2a or 2b gene fragments, targeted CMV genomic RNA. Altogether, the results indicated that antiviral RNAi primarily targets tospoviral mRNAs whilst their genomic RNA is well protected in RNPs against RISC-mediated cleavage. Considering the important role of RNPs in the replication cycle of all NSVs, the findings made in this study are likely applicable to all viruses belonging to this group.
Styles APA, Harvard, Vancouver, ISO, etc.
41

ANDERSON, P. K., et F. J. MORALES. « The Emergence of New Plant Diseases : The Case of Insect-transmitted Plant Viruses ». Annals of the New York Academy of Sciences 740, no 1 Disease in Ev (décembre 1994) : 181–94. http://dx.doi.org/10.1111/j.1749-6632.1994.tb19868.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Rosario, Karyna, Noémi Van Bogaert, Natalia B. López-Figueroa, Haris Paliogiannis, Mason Kerr et Mya Breitbart. « Freshwater macrophytes harbor viruses representing all five major phyla of the RNA viral kingdom Orthornavirae ». PeerJ 10 (16 août 2022) : e13875. http://dx.doi.org/10.7717/peerj.13875.

Texte intégral
Résumé :
Research on aquatic plant viruses is lagging behind that of their terrestrial counterparts. To address this knowledge gap, here we identified viruses associated with freshwater macrophytes, a taxonomically diverse group of aquatic phototrophs that are visible with the naked eye. We surveyed pooled macrophyte samples collected at four spring sites in Florida, USA through next generation sequencing of RNA extracted from purified viral particles. Sequencing efforts resulted in the detection of 156 freshwater macrophyte associated (FMA) viral contigs, 37 of which approximate complete genomes or segments. FMA viral contigs represent putative members from all five major phyla of the RNA viral kingdom Orthornavirae. Similar to viral types found in land plants, viral sequences identified in macrophytes were dominated by positive-sense RNA viruses. Over half of the FMA viral contigs were most similar to viruses reported from diverse hosts in aquatic environments, including phototrophs, invertebrates, and fungi. The detection of FMA viruses from orders dominated by plant viruses, namely Patatavirales and Tymovirales, indicate that members of these orders may thrive in aquatic hosts. PCR assays confirmed the presence of putative FMA plant viruses in asymptomatic vascular plants, indicating that viruses with persistent lifestyles are widespread in macrophytes. The detection of potato virus Y and oat blue dwarf virus in submerged macrophytes suggests that terrestrial plant viruses infect underwater plants and highlights a potential terrestrial-freshwater plant virus continuum. Defining the virome of unexplored macrophytes will improve our understanding of virus evolution in terrestrial and aquatic primary producers and reveal the potential ecological impacts of viral infection in macrophytes.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Asiimwe, Theodore, Lucy R. Stewart, Kristen Willie, Deogracious P. Massawe, Jovia Kamatenesi et Margaret G. Redinbaugh. « Maize lethal necrosis viruses and other maize viruses in Rwanda ». Plant Pathology 69, no 3 (3 février 2020) : 585–97. http://dx.doi.org/10.1111/ppa.13134.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Rochow, W. F. « VARIATION WITHIN AND AMONG APHID VECTORS OF PLANT VIRUSES* ». Annals of the New York Academy of Sciences 105, no 13 (15 décembre 2006) : 713–29. http://dx.doi.org/10.1111/j.1749-6632.1963.tb42959.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

BEACHY, ROGER N., JOHN H. FITCHEN et MICH B. HEIN. « Use of Plant Viruses for Delivery of Vaccine Epitopes ». Annals of the New York Academy of Sciences 792, no 1 Engineering P (mai 1996) : 43–49. http://dx.doi.org/10.1111/j.1749-6632.1996.tb32489.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Cody, Will B., et Herman B. Scholthof. « Plant Virus Vectors 3.0 : Transitioning into Synthetic Genomics ». Annual Review of Phytopathology 57, no 1 (25 août 2019) : 211–30. http://dx.doi.org/10.1146/annurev-phyto-082718-100301.

Texte intégral
Résumé :
Plant viruses were first implemented as heterologous gene expression vectors more than three decades ago. Since then, the methodology for their use has varied, but we propose it was the merging of technologies with virology tools, which occurred in three defined steps discussed here, that has driven viral vector applications to date. The first was the advent of molecular biology and reverse genetics, which enabled the cloning and manipulation of viral genomes to express genes of interest (vectors 1.0). The second stems from the discovery of RNA silencing and the development of high-throughput sequencing technologies that allowed the convenient and widespread use of virus-induced gene silencing (vectors 2.0). Here, we briefly review the events that led to these applications, but this treatise mainly concentrates on the emerging versatility of gene-editing tools, which has enabled the emergence of virus-delivered genetic queries for functional genomics and virology (vectors 3.0).
Styles APA, Harvard, Vancouver, ISO, etc.
47

Tatineni, Satyanarayana, Lucy R. Stewart, Hélène Sanfaçon, Xiaofeng Wang, Jesús Navas-Castillo et M. Reza Hajimorad. « Fundamental Aspects of Plant Viruses−An Overview on Focus Issue Articles ». Phytopathology® 110, no 1 (janvier 2020) : 6–9. http://dx.doi.org/10.1094/phyto-10-19-0404-fi.

Texte intégral
Résumé :
Given the importance of and rapid research progress in plant virology in recent years, this Focus Issue broadly emphasizes advances in fundamental aspects of virus infection cycles and epidemiology. This Focus Issue comprises three review articles and 18 research articles. The research articles cover broad research areas on the identification of novel viruses, the development of detection methods, reverse genetics systems and functional genomics for plant viruses, vector and seed transmission studies, viral population studies, virus–virus interactions and their effect on vector transmission, and management strategies of viral diseases. The three review articles discuss recent developments in application of prokaryotic clustered regularly interspaced short palindromic repeats/CRISPR-associated genes (CRISPR/Cas) technology for plant virus resistance, mixed viral infections and their role in disease synergism and cross-protection, and viral transmission by whiteflies. The following briefly summarizes the articles appearing in this Focus Issue .
Styles APA, Harvard, Vancouver, ISO, etc.
48

Clavel, Marion, Esther Lechner, Marco Incarbone, Timothée Vincent, Valerie Cognat, Ekaterina Smirnova, Maxime Lecorbeiller, Véronique Brault, Véronique Ziegler-Graff et Pascal Genschik. « Atypical molecular features of RNA silencing against the phloem-restricted polerovirus TuYV ». Nucleic Acids Research 49, no 19 (6 octobre 2021) : 11274–93. http://dx.doi.org/10.1093/nar/gkab802.

Texte intégral
Résumé :
Abstract In plants and some animal lineages, RNA silencing is an efficient and adaptable defense mechanism against viruses. To counter it, viruses encode suppressor proteins that interfere with RNA silencing. Phloem-restricted viruses are spreading at an alarming rate and cause substantial reduction of crop yield, but how they interact with their hosts at the molecular level is still insufficiently understood. Here, we investigate the antiviral response against phloem-restricted turnip yellows virus (TuYV) in the model plant Arabidopsis thaliana. Using a combination of genetics, deep sequencing, and mechanical vasculature enrichment, we show that the main axis of silencing active against TuYV involves 22-nt vsiRNA production by DCL2, and their preferential loading into AGO1. Moreover, we identify vascular secondary siRNA produced from plant transcripts and initiated by DCL2-processed AGO1-loaded vsiRNA. Unexpectedly, and despite the viral encoded VSR P0 previously shown to mediate degradation of AGO proteins, vascular AGO1 undergoes specific post-translational stabilization during TuYV infection. Collectively, our work uncovers the complexity of antiviral RNA silencing against phloem-restricted TuYV and prompts a re-assessment of the role of its suppressor of silencing P0 during genuine infection.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Clavel, Marion, Esther Lechner, Marco Incarbone, Timothée Vincent, Valerie Cognat, Ekaterina Smirnova, Maxime Lecorbeiller, Véronique Brault, Véronique Ziegler-Graff et Pascal Genschik. « Atypical molecular features of RNA silencing against the phloem-restricted polerovirus TuYV ». Nucleic Acids Research 49, no 19 (6 octobre 2021) : 11274–93. http://dx.doi.org/10.1093/nar/gkab802.

Texte intégral
Résumé :
Abstract In plants and some animal lineages, RNA silencing is an efficient and adaptable defense mechanism against viruses. To counter it, viruses encode suppressor proteins that interfere with RNA silencing. Phloem-restricted viruses are spreading at an alarming rate and cause substantial reduction of crop yield, but how they interact with their hosts at the molecular level is still insufficiently understood. Here, we investigate the antiviral response against phloem-restricted turnip yellows virus (TuYV) in the model plant Arabidopsis thaliana. Using a combination of genetics, deep sequencing, and mechanical vasculature enrichment, we show that the main axis of silencing active against TuYV involves 22-nt vsiRNA production by DCL2, and their preferential loading into AGO1. Moreover, we identify vascular secondary siRNA produced from plant transcripts and initiated by DCL2-processed AGO1-loaded vsiRNA. Unexpectedly, and despite the viral encoded VSR P0 previously shown to mediate degradation of AGO proteins, vascular AGO1 undergoes specific post-translational stabilization during TuYV infection. Collectively, our work uncovers the complexity of antiviral RNA silencing against phloem-restricted TuYV and prompts a re-assessment of the role of its suppressor of silencing P0 during genuine infection.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Yue, Jianying, Yao Wei et Mingmin Zhao. « The Reversible Methylation of m6A Is Involved in Plant Virus Infection ». Biology 11, no 2 (9 février 2022) : 271. http://dx.doi.org/10.3390/biology11020271.

Texte intégral
Résumé :
In recent years, m6A RNA methylation has attracted broad interest and is becoming a hot research topic. It has been demonstrated that there is a strong association between m6A and viral infection in the human system. The life cycles of plant RNA viruses are often coordinated with the mechanisms of their RNA modification. Here, we reviewed recent advances in m6A methylation in plant viruses. It appears that m6A methylation plays a dual role during viral infection in plants. On the one hand, m6A methylation acts as an antiviral immune response induced by virus infection, which inhibits viral replication or translation through the methylation of viral genome RNAs. On the other hand, plant viruses could disrupt the m6A methylation through interacting with the key proteins of the m6A pathway to avoid modification. Those plant viruses containing ALKB domain are discussed as well. Based on this mechanism, we propose that new strategies for plant virus control could be designed with competitive antagonists of m6A-associated proteins.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie