Littérature scientifique sur le sujet « PiRNA clusters »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « PiRNA clusters ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "PiRNA clusters"

1

Komarov, Pavel A., Olesya Sokolova, Natalia Akulenko, Emilie Brasset, Silke Jensen et Alla Kalmykova. « Epigenetic Requirements for Triggering Heterochromatinization and Piwi-Interacting RNA Production from Transgenes in the Drosophila Germline ». Cells 9, no 4 (10 avril 2020) : 922. http://dx.doi.org/10.3390/cells9040922.

Texte intégral
Résumé :
Transgenes containing a fragment of the I retrotransposon represent a powerful model of piRNA cluster de novo formation in the Drosophila germline. We revealed that the same transgenes located at different genomic loci form piRNA clusters with various capacity of small RNA production. Transgenic piRNA clusters are not established in piRNA pathway mutants. However, in the wild-type context, the endogenous ancestral I-related piRNAs heterochromatinize and convert the I-containing transgenes into piRNA-producing loci. Here, we address how the quantitative level of piRNAs influences the heterochromatinization and piRNA production. We show that a minimal amount of maternal piRNAs from ancestral I-elements is sufficient to form the transgenic piRNA clusters. Supplemental piRNAs stemming from active I-element copies do not stimulate additional chromatin changes or piRNA production from transgenes. Therefore, chromatin changes and piRNA production are initiated by a minimum threshold level of complementary piRNAs, suggesting a selective advantage of prompt cell response to the lowest level of piRNAs. It is noteworthy that the weak piRNA clusters do not transform into strong ones after being targeted by abundant I-specific piRNAs, indicating the importance of the genomic context for piRNA cluster establishment. Analysis of ovarian transcription profiles suggests that regions facilitating convergent transcription favor the formation of transgenic piRNA clusters.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Radion, Elizaveta, Olesya Sokolova, Sergei Ryazansky, Pavel Komarov, Yuri Abramov et Alla Kalmykova. « The Integrity of piRNA Clusters is Abolished by Insulators in the Drosophila Germline ». Genes 10, no 3 (11 mars 2019) : 209. http://dx.doi.org/10.3390/genes10030209.

Texte intégral
Résumé :
Piwi-interacting RNAs (piRNAs) control transposable element (TE) activity in the germline. piRNAs are produced from single-stranded precursors transcribed from distinct genomic loci, enriched by TE fragments and termed piRNA clusters. The specific chromatin organization and transcriptional regulation of Drosophila germline-specific piRNA clusters ensure transcription and processing of piRNA precursors. TEs harbour various regulatory elements that could affect piRNA cluster integrity. One of such elements is the suppressor-of-hairy-wing (Su(Hw))-mediated insulator, which is harboured in the retrotransposon gypsy. To understand how insulators contribute to piRNA cluster activity, we studied the effects of transgenes containing gypsy insulators on local organization of endogenous piRNA clusters. We show that transgene insertions interfere with piRNA precursor transcription, small RNA production and the formation of piRNA cluster-specific chromatin, a hallmark of which is Rhino, the germline homolog of the heterochromatin protein 1 (HP1). The mutations of Su(Hw) restored the integrity of piRNA clusters in transgenic strains. Surprisingly, Su(Hw) depletion enhanced the production of piRNAs by the domesticated telomeric retrotransposon TART, indicating that Su(Hw)-dependent elements protect TART transcripts from piRNA processing machinery in telomeres. A genome-wide analysis revealed that Su(Hw)-binding sites are depleted in endogenous germline piRNA clusters, suggesting that their functional integrity is under strict evolutionary constraints.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Chen, Peiwei, Yicheng Luo et Alexei A. Aravin. « RDC complex executes a dynamic piRNA program during Drosophila spermatogenesis to safeguard male fertility ». PLOS Genetics 17, no 9 (2 septembre 2021) : e1009591. http://dx.doi.org/10.1371/journal.pgen.1009591.

Texte intégral
Résumé :
piRNAs are small non-coding RNAs that guide the silencing of transposons and other targets in animal gonads. In Drosophila female germline, many piRNA source loci dubbed “piRNA clusters” lack hallmarks of active genes and exploit an alternative path for transcription, which relies on the Rhino-Deadlock-Cutoff (RDC) complex. RDC was thought to be absent in testis, so it remains to date unknown how piRNA cluster transcription is regulated in the male germline. We found that components of RDC complex are expressed in male germ cells during early spermatogenesis, from germline stem cells (GSCs) to early spermatocytes. RDC is essential for expression of dual-strand piRNA clusters and transposon silencing in testis; however, it is dispensable for expression of Y-linked Suppressor of Stellate piRNAs and therefore Stellate silencing. Despite intact Stellate repression, males lacking RDC exhibited compromised fertility accompanied by germline DNA damage and GSC loss. Thus, piRNA-guided repression is essential for normal spermatogenesis beyond Stellate silencing. While RDC associates with multiple piRNA clusters in GSCs and early spermatogonia, its localization changes in later stages as RDC concentrates on a single X-linked locus, AT-chX. Dynamic RDC localization is paralleled by changes in piRNA cluster expression, indicating that RDC executes a fluid piRNA program during different stages of spermatogenesis. These results disprove the common belief that RDC is dispensable for piRNA biogenesis in testis and uncover the unexpected, sexually dimorphic and dynamic behavior of a core piRNA pathway machinery.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Assis, Raquel, et Alexey S. Kondrashov. « Rapid repetitive element-mediated expansion of piRNA clusters in mammalian evolution ». Proceedings of the National Academy of Sciences 106, no 17 (8 avril 2009) : 7079–82. http://dx.doi.org/10.1073/pnas.0900523106.

Texte intégral
Résumé :
Piwi-interacting RNAs (piRNAs) are ≈30 nucleotide noncoding RNAs that may be involved in transposon silencing in mammalian germline cells. Most piRNA sequences are found in a small number of genomic regions referred to as clusters, which range from 1 to hundreds of kilobases. We studied the evolution of 140 rodent piRNA clusters, 103 of which do not overlap protein-coding genes. Phylogenetic analysis revealed that 14 clusters were acquired after rat–mouse divergence and another 44 after rodent–primate divergence. Most clusters originated in a process analogous to the duplication of protein-coding genes by ectopic recombination, via insertions of long sequences that were mediated by flanking chromosome-specific repetitive elements (REs). Source sequences for such insertions are often located on the same chromosomes and also harbor clusters. The rate of piRNA cluster expansion is higher than that of any known gene family and, in contrast to other large gene families, there was not a single cluster loss. These observations suggest that piRNA cluster expansion is driven by positive selection, perhaps caused by the need to silence the ever-expanding repertoire of mammalian transposons.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Story, Benjamin, Xing Ma, Kazue Ishihara, Hua Li, Kathryn Hall, Allison Peak, Perera Anoja et al. « Defining the expression of piRNA and transposable elements in Drosophila ovarian germline stem cells and somatic support cells ». Life Science Alliance 2, no 5 (octobre 2019) : e201800211. http://dx.doi.org/10.26508/lsa.201800211.

Texte intégral
Résumé :
Piwi-interacting RNAs (piRNAs) are important for repressing transposable elements (TEs) and modulating gene expression in germ cells, thereby maintaining genome stability and germ cell function. Although they are also important for maintaining germline stem cells (GSCs) in the Drosophila ovary by repressing TEs and preventing DNA damage, piRNA expression has not been investigated in GSCs or their early progeny. Here, we show that the canonical piRNA clusters are more active in GSCs and their early progeny than late germ cells and also identify more than 3,000 new piRNA clusters from deep sequencing data. The increase in piRNAs in GSCs and early progeny can be attributed to both canonical and newly identified piRNA clusters. As expected, piRNA clusters in GSCs, but not those in somatic support cells (SCs), exhibit ping-pong signatures. Surprisingly, GSCs and early progeny express more TE transcripts than late germ cells, suggesting that the increase in piRNA levels may be related to the higher levels of TE transcripts in GSCs and early progeny. GSCs also have higher piRNA levels and lower TE levels than SCs. Furthermore, the 3′ UTRs of 171 mRNA transcripts may produce sense, antisense, or dual-stranded piRNAs. Finally, we show that alternative promoter usage and splicing are frequently used to modulate gene function in GSCs and SCs. Overall, this study has provided important insight into piRNA production and TE repression in GSCs and SCs. The rich information provided by this study will be a beneficial resource to the fields of piRNA biology and germ cell development.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Iyer, Shantanu S., Yidan Sun, Janine Seyfferth, Vinitha Manjunath, Maria Samata, Anastasios Alexiadis, Tanvi Kulkarni et al. « The NSL complex is required for piRNA production from telomeric clusters ». Life Science Alliance 6, no 9 (30 juin 2023) : e202302194. http://dx.doi.org/10.26508/lsa.202302194.

Texte intégral
Résumé :
The NSL complex is a transcriptional activator. Germline-specific knockdown of NSL complex subunits NSL1, NSL2, and NSL3 results in reduced piRNA production from a subset of bidirectional piRNA clusters, accompanied by widespread transposon derepression. The piRNAs most transcriptionally affected by NSL2 and NSL1 RNAi map to telomeric piRNA clusters. At the chromatin level, these piRNA clusters also show decreased levels of H3K9me3, HP1a, and Rhino after NSL2 depletion. Using NSL2 ChIP-seq in ovaries, we found that this protein specifically binds promoters of telomeric transposonsHeT-A,TAHRE, andTART. Germline-specific depletion of NSL2 also led to a reduction in nuclear Piwi in nurse cells. Our findings thereby support a role for the NSL complex in promoting the transcription of piRNA precursors from telomeric piRNA clusters and in regulating Piwi levels in the Drosophila female germline.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Wang, Sheng, Xiaohua Lu, Ding Qiu et Yang Yu. « To export, or not to export : how nuclear export factor variants resolve Piwi's dilemma ». Biochemical Society Transactions 49, no 5 (13 octobre 2021) : 2073–79. http://dx.doi.org/10.1042/bst20201171.

Texte intégral
Résumé :
Piwi-interacting RNAs (piRNAs) defend animal gonads by guiding PIWI-clade Argonaute proteins to silence transposons. The nuclear Piwi/piRNA complexes confer transcriptional repression of transposons, which is accompanied with heterochromatin formation at target loci. On the other hand, piRNA clusters, genomic loci that transcribe piRNA precursors composed of transposon fragments, are often recognized by piRNAs to define their heterochromatic identity. Therefore, Piwi/piRNA complexes must resolve this conundrum of silencing transposons while allowing the expression of piRNA precursors, at least in Drosophila germlines. This review is focused on recent advances how the piRNA pathway deals with this genetic conflict.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wang, Jiajia, Yirong Shi, Honghong Zhou, Peng Zhang, Tingrui Song, Zhiye Ying, Haopeng Yu et al. « piRBase : integrating piRNA annotation in all aspects ». Nucleic Acids Research 50, no D1 (6 décembre 2021) : D265—D272. http://dx.doi.org/10.1093/nar/gkab1012.

Texte intégral
Résumé :
Abstract Piwi-interacting RNAs are a type of small noncoding RNA that have various functions. piRBase is a manually curated resource focused on assisting piRNA functional analysis. piRBase release v3.0 is committed to providing more comprehensive piRNA related information. The latest release covers >181 million unique piRNA sequences, including 440 datasets from 44 species. More disease-related piRNAs and piRNA targets have been collected and displayed. The regulatory relationships between piRNAs and targets have been visualized. In addition to the reuse and expansion of the content in the previous version, the latest version has additional new content, including gold standard piRNA sets, piRNA clusters, piRNA variants, splicing-junction piRNAs, and piRNA expression data. In addition, the entire web interface has been redesigned to provide a better experience for users. piRBase release v3.0 is free to access, browse, search, and download at http://bigdata.ibp.ac.cn/piRBase.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kofler, Robert. « piRNA Clusters Need a Minimum Size to Control Transposable Element Invasions ». Genome Biology and Evolution 12, no 5 (27 mars 2020) : 736–49. http://dx.doi.org/10.1093/gbe/evaa064.

Texte intégral
Résumé :
Abstract piRNA clusters are thought to repress transposable element (TE) activity in mammals and invertebrates. Here, we show that a simple population genetics model reveals a constraint on the size of piRNA clusters: The total size of the piRNA clusters of an organism must exceed 0.2% of a genome to repress TE invasions. Moreover, larger piRNA clusters accounting for up to 3% of the genome may be necessary when populations are small, transposition rates are high, and TE insertions are recessive. If piRNA clusters are too small, the load of deleterious TE insertions that accumulate during a TE invasion may drive populations extinct before an effective piRNA-based defense against the TE can be established. Our findings are solely based on three well-supported assumptions: 1) TEs multiply within genomes, 2) TEs are mostly deleterious, and 3) piRNA clusters act as transposon traps, where a single insertion in a cluster silences all TE copies in trans. Interestingly, the piRNA clusters of some species meet our observed minimum size requirements, whereas the clusters of other species do not. Species with small piRNA clusters, such as humans and mice, may experience severe fitness reductions during invasions of novel TEs, which is possibly even threatening the persistence of some populations. This work also raises the important question of how piRNA clusters evolve. We propose that the size of piRNA clusters may be at an equilibrium between evolutionary forces that act to expand and contract piRNA clusters.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Huang, Xinya, Peng Cheng, Chenchun Weng, Zongxiu Xu, Chenming Zeng, Zheng Xu, Xiangyang Chen, Chengming Zhu, Shouhong Guang et Xuezhu Feng. « A chromodomain protein mediates heterochromatin-directed piRNA expression ». Proceedings of the National Academy of Sciences 118, no 27 (29 juin 2021) : e2103723118. http://dx.doi.org/10.1073/pnas.2103723118.

Texte intégral
Résumé :
PIWI-interacting RNAs (piRNAs) play significant roles in suppressing transposons, maintaining genome integrity, and defending against viral infections. How piRNA source loci are efficiently transcribed is poorly understood. Here, we show that in Caenorhabditis elegans, transcription of piRNA clusters depends on the chromatin microenvironment and a chromodomain-containing protein, UAD-2. piRNA clusters form distinct focus in germline nuclei. We conducted a forward genetic screening and identified UAD-2 that is required for piRNA focus formation. In the absence of histone 3 lysine 27 methylation or proper chromatin-remodeling status, UAD-2 is depleted from the piRNA focus. UAD-2 recruits the upstream sequence transcription complex (USTC), which binds the Ruby motif to piRNA promoters and promotes piRNA generation. Vice versa, the USTC complex is required for UAD-2 to associate with the piRNA focus. Thus, transcription of heterochromatic small RNA source loci relies on coordinated recruitment of both the readers of histone marks and the core transcriptional machinery to DNA.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "PiRNA clusters"

1

Mouniée, Nolwenn. « Etude de la biologie des clusters de piRNAs chez Drosophila melanogaster en utilisant comme modèle le locus flamenco ». Thesis, Université Clermont Auvergne‎ (2017-2020), 2019. http://www.theses.fr/2019CLFAC029/document.

Texte intégral
Résumé :
Les éléments transposables (ETs) sont des séquences d'ADN mobiles retrouvées dans les génomes de toutes les espèces où ils ont été recherchés. Moteurs de l'évolution, ces éléments mobiles, présents en de nombreuses copies dans les génomes, ont joué un rôle majeur dans la dynamique des génomes en engendrant des mutations et des réarrangements chromosomiques.Néanmoins, étant des constituants majeurs des génomes, ils doivent être finement régulés dans le but de préserver l'intégrité génomique, et ainsi de conserver l'équilibre entre variabilité et stabilité des génomes. Afin de protéger l'information génétique de l'hôte transmise à la descendance, la régulation des ETs au niveau des gonades est effectuée par la voie des piRNAs, voie d'ARN interférent conservée chez les animaux. Bien qu'elle soit relativement bien décrite chez la drosophile et la souris, certaines étapes de cette voie restent encore incomprises. Durant ma thèse, j’ai exploré différents aspects de la biologie des clusters de piRNAs, en prenant comme modèle d’étude le locus flamenco. Le cluster de piRNAs flamenco est le producteur majeur de piRNAs dans les cellules folliculaires des ovaires de Drosophila melanogaster. Tout d'abord, j'ai analysé les fenêtres spatio-temporelles de l’expression du cluster de piRNAs flamenco tout au long du développement de la drosophile,de l'embryon à l'âge adulte. Ensuite, j'ai recherché, in vivo, la séquence des transcrits de flamenco qui serait suffisante pour induire l'adressage d'un transcrit chimérique à la voie de maturation des piRNAs. J'ai également exploré l'impact de certains facteurs sur la prise en charge de transcrits artificiels par la voie des piRNAs. Enfin, je me suis intéressée à la régulation génique que pourraient effectuer les piRNAs provenant de flamenco dans les ovaires de drosophile en recherchant, par des approches bioinformatiques et de biologie moléculaire, les gènes potentiellement reconnus, et par conséquent, régulés par les piRNAs de flamenco. L'ensemble de ces axes de recherche in vivo permettront d'avancer dans la compréhension de la biologie des clusters de piRNAs ainsi que sur les mécanismes moléculaires mis en jeu lors de la biogenèse des piRNAs chez la drosophile
Transposable elements (TEs) are defined such as mobile DNA sequences found in genomes ofall species where they were searched. As evolutionary drivers, these mobile elements, presentin many copies in genomes, have played a major role in the genome dynamics by generatingmutations and chromosomal rearrangements. Nevertheless, being major genome constituents,they must be finely regulated in order to preserve the genomic integrity, and thus, to maintainthe balance between variability and stability of genomes. In order to protect the geneticinformation of the host transmitted to the offspring, the gonadal TE regulation is carried outby the piRNAs pathway, an interfering RNA pathway conserved in animals. Although this isrelatively well described in Drosophila and in mouse, some steps of piRNA pathway are stillmisunderstood. During my thesis, I explored various aspects of piRNA cluster biology, usingthe flamenco locus as a model. This piRNA cluster is the main piRNA producer in thefollicular cells of Drosophila melanogaster ovaries. First, I analyzed the spatio-temporalwindows of flamenco piRNA cluster expression throughout the Drosophila development,from embryo to adulthood. Then, I searched, in vivo, the flamenco transcript sequence thatwould be sufficient to induce the addressing of a chimeric transcript to the piRNA processingpathway. I also explored the impact of some factors on the management of artificialtranscripts by piRNAs. Finally, I was interested in the gene regulation that flamenco-derivedpiRNAs could make in Drosophila ovaries by searching, through bioinformatics andmolecular biology approaches, the potentially recognized genes, and therefore, regulated byflamenco piRNAs. All of these in vivo research axes will advance in the understanding of thebiology of piRNA clusters as well as the molecular mechanisms involved in the piRNAbiogenesis in Drosophila
Styles APA, Harvard, Vancouver, ISO, etc.
2

Chang, Timothy H. « Maelstrom Represses Canonical RNA Polymerase II Transcription in Drosophila Dual-Strand piRNA Clusters ». eScholarship@UMMS, 2018. https://escholarship.umassmed.edu/gsbs_diss/978.

Texte intégral
Résumé :
Transposons constitute much of the animal genome. While many transposons are ancient and inactivated, numerous others are intact and must be actively repressed. Uncontrolled transposons can cause genomic instability through DNA damage or mutations and must be carefully silenced in the germline or risk sterility or mutations that are passed on to offspring. In Drosophila melanogaster, 23–30 nt long piRNAs direct transposon silencing by serving as guides for Aubergine, Argonaute3, and Piwi, the three fly PIWI proteins. piRNAs derive from piRNA clusters—large heterochromatic DNA loci comprising transposons and transposon fragments. piRNAs are loaded into PIWI proteins via the ping-pong cycle which serves to amplify guide piRNAs. Loaded Piwi then enters the nucleus to transcriptionally repress transposons by establishing heterochromatin. Therefore, to silence transposons, transposon sequences must also be expressed. To bypass this paradox, the HP1 homolog Rhino (Rhi) allows non-canonical, promoter-independent, transcription of transposons embedded in heterochromatin. Transposon RNAs produced in this manner are “incoherent” and have little risk of being translated into transposon-encoded proteins required for transposition. This thesis focuses on understanding how piRNA clusters permit non-canonical transcription yet restrict canonical transcription. We found that although Rhi promotes non-canonical transcription in piRNA clusters, it also creates a transcriptionally permissive environment that is amenable to canonical transcription. In addition, we discovered that the conserved protein, Maelstrom, is required to repress promoter-driven transcription of individual, potentially active, transposons within piRNA clusters and allows Rhi to transcribe such transposon sequences into incoherent piRNA precursors.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Le, Thomas Adrien. « Piwi function and piRNA cluster regulation : Drosophila melanogaster ». Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066688/document.

Texte intégral
Résumé :
Les piRNAs sont une population de petit ARNs très diverse, que l'on retrouve dqns la lignée germinales des animaux pour réprimer les éléments génétiques mobiles : agissant de pair avec les protéines Piwi, ils guident le clivage des transposons actif. Chez la Drosophile, 3 protéines Piwi sont présentes, dont deux d'entre elles, AUB et AGO3, sont cytoplasmique et la dernière, PIWI, est nucléaire cependant son mécanisme d'action reste inconnu. La source principale de piRNAs sont des régions du génome bien particulière, appelé cluster de piRNAs. Cependant, il n'est pas encore connu a ce jour qu'est ce qui différentie ces région du reste du génome. Durant mon doctorant mon travail s'est focalisé sur ces deux questions centrales :Quel est le rôle de PIWI dans le noyau? Nous avons montré que PIWI était responsable de répression transcriptionnelle des transposons par l'intermédiaire de la déposition de marques chromatiniennes répressive, H3K9me3, grâce à la spécificité des piRNAs.Comment sont définit les régions générant des piRNA et comment sont régules leur expression ?Nous avons trouvé que les piRNAs qui sont transmis par la mère aux progénitures sont responsables de l'identification des régions génomiques donnant naissances à de nouveau piRNAs, grâce à la déposition de H3K9me3 dans le noyau et par l'initiation du cycle ping-pong dans le cytoplasme.Nous avons aussi mis en évidence les régions promoteurs des clusters de piRNAs, et trouve qu'elles sont nécessaires pour la production de piRNAs
PiRNAs are a diverse population of small RNA found in the animal germline to silence mobile genetic elements: loaded into Piwi proteins, they guide homology-dependent cleavage of active transposon mRNAs. In Drosophila, three Piwi proteins are expressed, from which two, AUB and AGO3, are known to destroy transposon transcripts in the cytoplasm. The third one, Piwi itself, is nuclear and the molecular mechanism of its function remains unknown. The main sources of piRNAs are discrete genomic loci called piRNA clusters, however it is not known what differentiate them from non-piRNA producing loci. During my PhD, I focused my work on two central questions:1) What is the role of Piwi in the nucleus? We showed that Piwi is responsible for transcriptional silencing by mediating installment of repressive marks, especially H3K9me3, over active transposons copies in a piRNA dependent manner.2) How are piRNA clusters defined, and what regulates their expression? Analyzing what features differentiate a piRNA producing loci from any non-producing loci in the genome, we were able to single out some specific characteristics: . We showed that maternally inherited piRNAs are responsible to define germline clusters at the next generation through two mechanisms: in the nucleus, by deposition of H3K9me3 onto complementary genomic sequence, and, in the cytoplasm, by initiating the ping-pong cycle using cluster transcripts as substrates, leading to their processing into mature piRNAs.. We found that cluster promoters are essential to mediate full cluster transcription, which is allowed thanks to a very specific chromatin signature necessary to ensure piRNA production
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "PiRNA clusters"

1

Olovnikov, Ivan, Adrien Le Thomas et Alexei A. Aravin. « A Framework for piRNA Cluster Manipulation ». Dans Methods in Molecular Biology, 47–58. Totowa, NJ : Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-694-8_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "PiRNA clusters"

1

Dennis, Cynthia. « Regulatory properties of piRNA clusters from Drosophila melanogaster ». Dans 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.89533.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

« The role of the rhino gene in the transcriptional regulation of different piRNA clusters ». Dans Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-402.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie