Articles de revues sur le sujet « Pillar[n]arene »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Pillar[n]arene.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Pillar[n]arene ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Xie, Changdong, Weibo Hu, Wenjing Hu, Yahu A. Liu, Jichuan Huo, Jiusheng Li, Biao Jiang et Ke Wen. « Synthesis of Pillar[n]arene[5−n]quininesviaPartial Oxidation of Pillar[5]arene ». Chinese Journal of Chemistry 33, no 3 (mars 2015) : 379–83. http://dx.doi.org/10.1002/cjoc.201400895.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Liu, Zhaona, Bing Li, Zhizheng Li et Huacheng Zhang. « Pillar[n]arene-Mimicking/Assisted/Participated Carbon Nanotube Materials ». Materials 15, no 17 (3 septembre 2022) : 6119. http://dx.doi.org/10.3390/ma15176119.

Texte intégral
Résumé :
The recent progress in pillar[n]arene-assisted/participated carbon nanotube hybrid materials were initially summarized and discussed. The molecular structure of pillar[n]arene could serve different roles in the fabrication of attractive carbon nanotube-based materials. Firstly, pillar[n]arene has the ability to provide the structural basis for enlarging the cylindrical pillar-like architecture by forming one-dimensional, rigid, tubular, oligomeric/polymeric structures with aromatic moieties as the linker, or forming spatially “closed”, channel-like, flexible structures by perfunctionalizing with peptides and with intramolecular hydrogen bonding. Interestingly, such pillar[n]arene-based carbon nanotube-resembling structures were used as porous materials for the adsorption and separation of gas and toxic pollutants, as well as for artificial water channels and membranes. In addition to the art of organic synthesis, self-assembly based on pillar[n]arene, such as self-assembled amphiphilic molecules, is also used to promote and control the dispersion behavior of carbon nanotubes in solution. Furthermore, functionalized pillar[n]arene derivatives integrated carbon nanotubes to prepare advanced hybrid materials through supramolecular interactions, which could also incorporate various compositions such as Ag and Au nanoparticles for catalysis and sensing.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Liu, Zhaona, Zhizheng Li, Bing Li, Le Zhou, Huacheng Zhang et Jie Han. « Hybrid Macrocyclic Polymers : Self-Assembly Containing Cucurbit[m]uril-pillar[n]arene ». Polymers 14, no 9 (27 avril 2022) : 1777. http://dx.doi.org/10.3390/polym14091777.

Texte intégral
Résumé :
Supramolecular self-assembly by hybrid macrocycles containing both cucurbit[m]uril (CB[m]) and pillar[n]arene was discussed and summarized in this review. Due to different solubility, diverse-sized cavities, and various driving forces in recognizing guests, the role of CB[m] and pillar[n]arene in such hybrid macrocyclic systems could switch between competitor in capturing specialized guests, and cooperator for building advanced hybridized macrocycles, by controlling their characteristics in host–guest inclusions. Furthermore, both CB[m] and pillar[n]arene were employed for fabricating advanced supramolecular self-assemblies such as mechanically interlocked molecules and supramolecular polymers. In those self-assemblies, CB[m] and pillar[n]arene played significant roles in, e.g., microreactor for catalyzing particular reactions to bridge different small pieces together, molecular “joint” to connect different monomers into larger assemblies, and “stabilizer” in accommodating the guest molecules to adopt a favorite structure geometry ready for assembling.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Gorbachuk, Vladimir V., Anna R. Marysheva et Ivan I. Stoykov. « Total oxidation of decahydroxypillar[5]arene with copper(II) and iron(III) nitrates ». Butlerov Communications 63, no 7 (31 juillet 2020) : 19–23. http://dx.doi.org/10.37952/roi-jbc-01/20-63-7-19.

Texte intégral
Résumé :
Pillar[n]arenes are suitable synthetic platforms for synthesis of functionalized p-cyclophanes, versatile building blocks for creating supramolecular polymers and (pseudo)rotaxanes. The presence of hydroquinone fragments in unsubstituted pillar[n]arene derivatives opens wide opportunities for their application in electrochemical sensors and for their use as reducing agents for synthesis of hybrid materials. Macrocyclic cavity plays the key role in molecular recognition, supramolecular self-assembly of pillararenes, and therefore possibility of switching electron donor properties of aromatic moieties, forming macrocyclic cavity presents specific interest. Synthesis of pillar[n]quinones is non-trivial goal, usually, it requires expensive reagents (сerium(IV) ammonium nitrate). As an oxidized compound alkoxy-derivatives of pillararenes are used. While possibility of red-ox transitions of decahydroxypillar[5]arene are well known, to the date in literature there are no examples of total oxidation of decahydroxypillar[5]arene. We have studied interaction of decahydroxy-pillar[5]arene with a row of inorganic oxidants: catalytic oxidation with air oxygen in presence of copper(II) and iron(III) nitrates, and oxidation with ammonium persulfate. In order to find the optimal conditions for oxidation of pillar[5]arene the series of solvents were tried (proton donor alcohols and acetic acid, proton acceptor dimethylformamide and dimethylsulfoxide). It was established that using glacial acetic acid as a solvent with ultrasonication leads to total oxidation of pillar[5]arene to pillar[5]quinone. This fact is explained by strong proton-donor properties of glacial acetic acid, to prevent formation of insoluble quinhydrone complexes of pillar[5]arene oxidation products. Using ammonium persulfate does not lead to the product of total oxidation.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Liu, Zhaona, Bing Li, Leqian Song et Huacheng Zhang. « Pillar[n]arene–calix[m]arene hybrid macrocyclic structures ». RSC Advances 12, no 43 (2022) : 28185–95. http://dx.doi.org/10.1039/d2ra05118d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Khalil-Cruz, Laila E., Peiren Liu, Feihe Huang et Niveen M. Khashab. « Multifunctional Pillar[n]arene-Based Smart Nanomaterials ». ACS Applied Materials & ; Interfaces 13, no 27 (29 juin 2021) : 31337–54. http://dx.doi.org/10.1021/acsami.1c05798.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zhang, Huacheng, Zhaono Liu, Feifei Xin et Aaiyou Hao. « Synthesis and Application of Pillar[n]arene ». Chinese Journal of Organic Chemistry 32, no 2 (2012) : 219. http://dx.doi.org/10.6023/cjoc1107141.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Xu, Xiaowen, Valentin Victor Jerca et Richard Hoogenboom. « Structural Diversification of Pillar[ n ]arene Macrocycles ». Angewandte Chemie International Edition 59, no 16 (13 mars 2020) : 6314–16. http://dx.doi.org/10.1002/anie.202002467.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ogoshi, Tomoki, Takahiro Kakuta et Tada‐aki Yamagishi. « Applications of Pillar[ n ]arene‐Based Supramolecular Assemblies ». Angewandte Chemie International Edition 58, no 8 (18 février 2019) : 2197–206. http://dx.doi.org/10.1002/anie.201805884.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Xiao, Tangxin, Lijie Qi, Weiwei Zhong, Chen Lin, Ruibing Wang et Leyong Wang. « Stimuli-responsive nanocarriers constructed from pillar[n]arene-based supra-amphiphiles ». Materials Chemistry Frontiers 3, no 10 (2019) : 1973–93. http://dx.doi.org/10.1039/c9qm00428a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Sathiyajith, CuhaWijay, Rafik Rajjak Shaikh, Qian Han, Yue Zhang, Kamel Meguellati et Ying-Wei Yang. « Biological and related applications of pillar[n]arenes ». Chemical Communications 53, no 4 (2017) : 677–96. http://dx.doi.org/10.1039/c6cc08967d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Mirzaei, Saber, Denan Wang, Sergey V. Lindeman, Camille M. Sem et Rajendra Rathore. « Highly Selective Synthesis of Pillar[n]arene (n = 5, 6) ». Organic Letters 20, no 20 (10 octobre 2018) : 6583–86. http://dx.doi.org/10.1021/acs.orglett.8b02937.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Khadieva, Alena, Vladimir Gorbachuk, Dmitriy Shurpik et Ivan Stoikov. « Synthesis of Tris-pillar[5]arene and Its Association with Phenothiazine Dye : Colorimetric Recognition of Anions ». Molecules 24, no 9 (10 mai 2019) : 1807. http://dx.doi.org/10.3390/molecules24091807.

Texte intégral
Résumé :
A multicyclophane with a core based on tris(2-aminoethyl)amine (TREN) linked by amide spacers to three fragments of pillar[5]arene was synthesized. The choice of the tris-amide core allowed the multicyclophane to bind to anion guests. The presence of three terminal pillar[5]arene units provides the possibility of effectively binding the colorimetric probe N-phenyl-3-(phenylimino)-3H-phenothiazin-7-amine (PhTz). It was established that the multicyclophane complexed PhTz in chloroform with a 1:1 stoichiometry (lgKa = 5.2 ± 0.1), absorbing at 650 nm. The proposed structure of the complex was confirmed by 1H-NMR spectroscopy: the amide group linking the pillar[5]arene to the TREN core forms a hydrogen bond with the PhTz imino-group while the pillararenes surround PhTz. It was established that the PhTz:tris-pillar[5]arene complex could be used as a colorimetric probe for fluoride, acetate, and dihydrogen phosphate anions due to the anion binding with proton donating amide groups which displaced the PhTz probe. Dye displacement resulted in a color change from blue to pink, lowering the absorption band at 650 nm and increasing that at 533 nm.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Nierengarten, Iwona, Robert Deschenaux et Jean-François Nierengarten. « From Pillar[n]arene Scaffolds for the Preparation of Nanomaterials to Pillar[5]arene-containing Rotaxanes ». CHIMIA International Journal for Chemistry 70, no 1 (24 février 2016) : 61–66. http://dx.doi.org/10.2533/chimia.2016.61.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Ogoshi, Tomoki, Ryuta Sueto, Yukie Hamada, Kazuki Doitomi, Hajime Hirao, Yoko Sakata, Shigehisa Akine, Takahiro Kakuta et Tada-aki Yamagishi. « Alkane-length sorting using activated pillar[5]arene crystals ». Chemical Communications 53, no 61 (2017) : 8577–80. http://dx.doi.org/10.1039/c7cc04454b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Ye, Fengqing, Ruijin Wei, Lingyun Wang, Herbert Meier et Derong Cao. « A pillar[5]arene-containing cross-linked polymer : synthesis, characterization and adsorption of dihaloalkanes and n-alkylene dinitriles ». RSC Advances 6, no 92 (2016) : 89810–14. http://dx.doi.org/10.1039/c6ra15728a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Joseph, Roymon. « Pillar[n]arene Derivatives as Sensors for Amino Acids ». ChemistrySelect 6, no 14 (14 avril 2021) : 3519–33. http://dx.doi.org/10.1002/slct.202100098.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Li, Yong-Fu, Zheng Li, Qi Lin et Ying-Wei Yang. « Functional supramolecular gels based on pillar[n]arene macrocycles ». Nanoscale 12, no 4 (2020) : 2180–200. http://dx.doi.org/10.1039/c9nr09532b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Shurpik, D. N., P. L. Padnya, L. I. Makhmutova, L. S. Yakimova et I. I. Stoikov. « Selective stepwise oxidation of 1,4-decamethoxypillar[5]arene ». New Journal of Chemistry 39, no 12 (2015) : 9215–20. http://dx.doi.org/10.1039/c5nj01951f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Tan, Li-Li, Youlong Zhu, Hai Long, Yinghua Jin, Wei Zhang et Ying-Wei Yang. « Pillar[n]arene-based supramolecular organic frameworks with high hydrocarbon storage and selectivity ». Chemical Communications 53, no 48 (2017) : 6409–12. http://dx.doi.org/10.1039/c7cc03638h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Ogoshi, Tomoki, Daiki Yamafuji, Daisuke Kotera, Takamichi Aoki, Shuhei Fujinami et Tada-aki Yamagishi. « Clickable Di- and Tetrafunctionalized Pillar[n]arenes (n = 5, 6) by Oxidation–Reduction of Pillar[n]arene Units ». Journal of Organic Chemistry 77, no 24 (10 décembre 2012) : 11146–52. http://dx.doi.org/10.1021/jo302283n.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Kravets, Kateryna, Mykola Kravets, Helena Butkiewicz, Sandra Kosiorek, Volodymyr Sashuk et Oksana Danylyuk. « Electrostatic co-assembly of pillar[n]pyridiniums and calix[4]arene in aqueous media ». CrystEngComm 24, no 12 (2022) : 2213–16. http://dx.doi.org/10.1039/d2ce00232a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Tan, Li-Li, Youlong Zhu, Yinghua Jin, Wei Zhang et Ying-Wei Yang. « Highly CO2 selective pillar[n]arene-based supramolecular organic frameworks ». Supramolecular Chemistry 30, no 7 (17 janvier 2018) : 648–54. http://dx.doi.org/10.1080/10610278.2018.1427239.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Ogoshi, Tomoki, Ryuta Sueto, Kumiko Yoshikoshi et Tada-aki Yamagishi. « One-dimensional channels constructed from per-hydroxylated pillar[6]arene molecules for gas and vapour adsorption ». Chem. Commun. 50, no 96 (2014) : 15209–11. http://dx.doi.org/10.1039/c4cc06591c.

Texte intégral
Résumé :
We report that one-dimensional channels constructed from per-hydroxylated pillar[6]arene molecules with a diameter of 6.7 Å can capture various gases, such as CO2, N2 and n-butane, and vapours of saturated hydrocarbons such as n-hexane and cyclohexane.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Sahu, Debashis, Kalyanashis Jana et Bishwajit Ganguly. « The role of non-covalent interaction for the adsorption of CO2 and hydrocarbons with per-hydroxylated pillar[6]arene : a computational study ». New Journal of Chemistry 41, no 20 (2017) : 12044–51. http://dx.doi.org/10.1039/c7nj01744h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Li, Kun-Ang, Zhuo Wang, Chang-Dong Xie, Tao Chen, Hui Qiang, Yahu A. Liu, Xue-Shun Jia, Wei-Bo Hu et Ke Wen. « Unidirectional complexation of pillar[4]arene[1]benzoquinoneoxime with alkyl alcohols ». Organic & ; Biomolecular Chemistry 17, no 20 (2019) : 4975–78. http://dx.doi.org/10.1039/c9ob00665f.

Texte intégral
Résumé :
Unidirectional binding between a pillar[4]arene[1]benzoquinoneoxime host and n-alkyl alcoholic guests was realized with the hydroxy heads of the guests in direct contact with the oxime group of the macrocyclic host.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Jie, Kecheng, Ming Liu, Yujuan Zhou, Marc A. Little, Angeles Pulido, Samantha Y. Chong, Andrew Stephenson et al. « Near-Ideal Xylene Selectivity in Adaptive Molecular Pillar[n]arene Crystals ». Journal of the American Chemical Society 140, no 22 (12 mai 2018) : 6921–30. http://dx.doi.org/10.1021/jacs.8b02621.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Aoyama, Yu, Yasuo Shimada, Shigehisa Akine, Tomoki Ogoshi, Takashi Takeda, Hironori Hoshino et Tomoyuki Akutagawa. « Crystal structures and phase transition behaviors of pillar[n]arene crystals ». Acta Crystallographica Section A Foundations and Advances 73, a2 (1 décembre 2017) : C711. http://dx.doi.org/10.1107/s2053273317088635.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Lou, Xin‐Yue, et Ying‐Wei Yang. « Pillar[ n ]arene‐Based Supramolecular Switches in Solution and on Surfaces ». Advanced Materials 32, no 43 (13 septembre 2020) : 2003263. http://dx.doi.org/10.1002/adma.202003263.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Gao, Bo, Li-Li Tan, Nan Song, Ke Li et Ying-Wei Yang. « A high-yield synthesis of [m]biphenyl-extended pillar[n]arenes for an efficient selective inclusion of toluene and m-xylene in the solid state ». Chemical Communications 52, no 34 (2016) : 5804–7. http://dx.doi.org/10.1039/c6cc01892k.

Texte intégral
Résumé :
[m]Bp-ExPnwith a rigid and nanometer-sized cavity, as an extended version of pillar[n]arene by replacing 1,4-dimethoxybenzene monomers with biphenyl entities, was successfully designed and synthesized. Intriguingly,[m]Bp-ExPnpossesses a wide array of potential applications in the purification of petrochemicals.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Zhang, Yahan, Mengke Ma, Longming Chen, Xinbei Du, Zhao Meng, Han Zhang, Zhibing Zheng, Junyi Chen et Qingbin Meng. « A Biocompatible Liquid Pillar[n]arene-Based Drug Reservoir for Topical Drug Delivery ». Pharmaceutics 14, no 12 (28 novembre 2022) : 2621. http://dx.doi.org/10.3390/pharmaceutics14122621.

Texte intégral
Résumé :
Advanced external preparations that possess a sustained-release effect and integrate few irritant elements are urgently needed to satisfy the special requirements of topical administration in the clinic. Here, a series of liquid pillar[n]arene-bearing varying-length oligoethylene oxide chains (OEPns) were designed and synthesized. Following rheological property and biocompatibility investigations, pillar[6]arene with triethylene oxide substituents (TEP6) with satisfactory cavity size were screened as optimal candidate compounds. Then, a supramolecular liquid reservoir was constructed from host–guest complexes between TEP6 and econazole nitrate (ECN), an external antimicrobial agent without additional solvents. In vitro drug-release studies revealed that complexation by TEP6 could regulate the release rate of ECN and afford effective cumulative amounts. In vivo pharmacodynamic studies confirmed the formation of a supramolecular liquid reservoir contributed to the accelerated healing rate of a S. aureus-infected mouse wound model. Overall, these findings have provided the first insights into the construction of a supramolecular liquid reservoir for topical administration.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Liu, Yamin, Fang Zhou, Fan Yang et Da Ma. « Carboxylated pillar[n]arene (n = 5–7) host molecules : high affinity and selective binding in water ». Organic & ; Biomolecular Chemistry 17, no 20 (2019) : 5106–11. http://dx.doi.org/10.1039/c9ob00684b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Al-Azemi, Talal F., Mickey Vinodh, Abdirahman A. Mohamod et Fatemeh H. Alipour. « Encapsulated dichloroethane-mediated interlocked supramolecular polymeric assembly of A1/A2-dihydroxy-octyloxy pillar[5]arene 1,2-dichloroethane monosolvate ». Acta Crystallographica Section E Crystallographic Communications 74, no 10 (25 septembre 2018) : 1471–74. http://dx.doi.org/10.1107/s2056989018013415.

Texte intégral
Résumé :
Crystals of 1-(1,4-dihydroxy)-2,3,4,5-(1,4-dioctyloxy)-pillar[5]arene, C99H158O10·C2H4Cl2, were grown from a 1,2-dicholoroethane/n-hexane solvent system. In the crystal, the encapsulated 1,2-dichloroethane solvent is stabilized by C—H...π interactions and mediates the formation of an interlocked supramolecular polymer via C—H...Cl interactions.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Nazarova, Anastasia, Luidmila Yakimova, Darya Filimonova et Ivan Stoikov. « Surfactant Effect on the Physicochemical Characteristics of Solid Lipid Nanoparticles Based on Pillar[5]arenes ». International Journal of Molecular Sciences 23, no 2 (11 janvier 2022) : 779. http://dx.doi.org/10.3390/ijms23020779.

Texte intégral
Résumé :
Novel monosubstituted pillar[5]arenes containing both amide and carboxyl functional groups were synthesized. Solid lipid nanoparticles based on the synthesized macrocycles were obtained. Formation of spherical particles with an average hydrodynamic diameter of 250 nm was shown for pillar[5]arenes containing N-(amidoalkyl)amide fragments regardless of their concentration. It was established that pillar[5]arene containing N-alkylamide fragments can form spherical particles with two different sizes (88 and 223 nm) depending on its concentration. Mixed solid lipid nanoparticles based on monosubstituted pillar[5]arenes and surfactant (dodecyltrimethylammonium chloride) were obtained for the first time. The surfactant made it possible to level the effect of the macrocycle concentration. It was found that various types of aggregates are formed depending on the macrocycle/surfactant ratio. Changing the macrocycle/surfactant ratio allows to control the charge of the particles surface. This controlled property will lead to the creation of molecular-scale porous materials that selectively interact with various types of substrates, including biopolymers.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Lan, Shang, Shuaijun Zhan, Jiaming Ding, Jiaqi Ma et Da Ma. « Pillar[n]arene-based porous polymers for rapid pollutant removal from water ». Journal of Materials Chemistry A 5, no 6 (2017) : 2514–18. http://dx.doi.org/10.1039/c6ta09266g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Acikbas, Yaser, Mehmet Aksoy, Merve Aksoy, Damla Karaagac, Elif Bastug, Ahmed Nuri Kursunlu, Matem Erdogan, Rifat Capan, Mustafa Ozmen et Mustafa Ersoz. « Recent progress in pillar[n]arene-based thin films on chemical sensor applications ». Journal of Inclusion Phenomena and Macrocyclic Chemistry 100, no 1-2 (28 mars 2021) : 39–54. http://dx.doi.org/10.1007/s10847-021-01059-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Ogoshi, Tomoki, Kazuki Demachi, Keisuke Kitajima et Tada-aki Yamagishi. « Selective complexation of n-alkanes with pillar[5]arene dimers in organic media ». Chemical Communications 47, no 37 (2011) : 10290. http://dx.doi.org/10.1039/c1cc14395f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Xiao, Xue-Dong, Jia-Qi Liu, Ya-Li Bai, Rui-Hua Wang et Jun-Wen Wang. « Pillar[5]arene-based N-heterocyclic carbene ligand for Pd-catalysed Suzuki reaction ». Journal of Inclusion Phenomena and Macrocyclic Chemistry 87, no 1-2 (25 octobre 2016) : 29–36. http://dx.doi.org/10.1007/s10847-016-0673-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Ogoshi, Tomoki, Naosuke Ueshima, Fumiyasu Sakakibara, Tada-aki Yamagishi et Takeharu Haino. « Conversion from Pillar[5]arene to Pillar[6–15]arenes by Ring Expansion and Encapsulation of C60 by Pillar[n]arenes with Nanosize Cavities ». Organic Letters 16, no 11 (19 mai 2014) : 2896–99. http://dx.doi.org/10.1021/ol501039u.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Han, Chengyou, Zibin Zhang, Xiaodong Chi, Mingming Zhang, Guocan Yu et Feihe Huang. « Synthesis of 1,4-Bis(n-propoxy)pillar[7]arene and Its Host-guest Chemistry ». Acta Chimica Sinica 70, no 17 (2012) : 1775. http://dx.doi.org/10.6023/a12060296.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Xiao, Tangxin, et Leyong Wang. « Recent advances of functional gels controlled by pillar[n]arene-based host–guest interactions ». Tetrahedron Letters 59, no 13 (mars 2018) : 1172–82. http://dx.doi.org/10.1016/j.tetlet.2018.02.028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Hirohata, Tomoki, Naoki Shida, Tomoki Ogoshi, Ikuyoshi Tomita et Shinsuke Inagi. « (Digital Presentation) Facile Synthesis of Pillar[6]Quinone and Investigation of Its Electrochemical Properties ». ECS Meeting Abstracts MA2022-01, no 42 (7 juillet 2022) : 1839. http://dx.doi.org/10.1149/ma2022-01421839mtgabs.

Texte intégral
Résumé :
Pillar[n]arene (n: number of units), macrocyclic para-arylene methylene molecules, have attracted attention owing to their symmetrical structures, host-guest properties, and original supramolecular assembly characteristics.1 Similarly, their quinone counterparts, pillar[n]quinone (P[Q]n), are also fascinating macrocycles containing electron-deficient quinone units, and therefore have potential application for novel host-guest chemistry and redox active materials. A hexagonal molecule, pillar[6]quinone (P[Q]6), is expected to form densely packed structures and a candidate for organic active material but the synthesis of P[Q]6 still remains a challenge. We previously demonstrated that the electrochemical oxidation (1.0 V vs. SCE) of 1,4-dihydroxypillar[6]arene (P[HQ]6) in methanol afforded micrometer scale hexagonal cylindrical depositions on electrode surfaces, which were composed of partially oxidized P[HQ]6-m[Q]m (composed of both hydroquinone and benzoquinone units) aggregating via quinhydrone formation.2 In this work, we successfully synthesized P[Q]6 for the first time by oxidation of its hydroquinone precursor P[HQ]6. Electrochemical oxidation (1.2 V vs. SCE) of P[HQ]6 in methanol gave the similar hexagonal cylindrical crystal of P[Q]6 evidenced by single crystal X-ray diffraction, NMR and HRMS analyses. In the crystallographic data, all quinone moieties seem to have intermolecular CH-O interaction between adjacent macrocycles, resulting in the formation of a hexagonal packing structure. In addition, we also found that scalable synthesis of P[Q]6 was possible by chemical oxidation of P[HQ]6 with phenyliodine(III)bis(trifluoroacetate) in 1,1,1,3,3,3-hexafluoro-2-propanol. To understand the electrochemical properties and electron-transfer behavior of P[Q]6, various voltametric studies were carried out. We revealed that three electrons are injected first, followed by stepwise three one-electron reductions due to the electrostatic repulsion in the latter electron-transfer process. Reference T. Ogoshi, T. Yamagishi, Y. Nakamoto, Chem. Rev., 116, 7937 (2016). C. Tsuneishi, Y. Koizumi, R. Sueto, H. Nishiyama, K. Yasuhara, T. Yamagishi, T. Ogoshi, Tomita and S. Inagi, Chem. Commun., 53, 7454 (2017). T. Hirohata, N. Shida, H. Uekusa, N. Yasuda, H. Nishihara, T. Ogoshi, I. Tomita, S. Inagi, Chem. Commun., 57, 6360 (2021). Figure 1
Styles APA, Harvard, Vancouver, ISO, etc.
43

Fu, Wenming, Yangzheng Huang, Luyao Deng, Jiahao Sun, Shao-Lu Li et Yunxia Hu. « Ultra-thin microporous membranes based on macrocyclic pillar[n]arene for efficient organic solvent nanofiltration ». Journal of Membrane Science 655 (août 2022) : 120583. http://dx.doi.org/10.1016/j.memsci.2022.120583.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Fahmy, Sherif Ashraf, Asmaa Ramzy, Basma M. Saleh et Hassan Mohamed El-Said Azzazy. « Stimuli-Responsive Amphiphilic Pillar[n]arene Nanovesicles for Targeted Delivery of Cancer Drugs ». ACS Omega 6, no 40 (30 septembre 2021) : 25876–83. http://dx.doi.org/10.1021/acsomega.1c04297.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Nutaitis, Charles F., et Gordon W. Gribble. « A Simple Synthesis of a Pillar[n]arene Building Block – 1,4-bis(4-Bromobenzyl)benzene† ». Organic Preparations and Procedures International 53, no 4 (4 juillet 2021) : 422–25. http://dx.doi.org/10.1080/00304948.2021.1920789.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Li, Yutong, Jia Wen, Jiangshan Li, Zejia Wu, Wei Li et Kui Yang. « Recent Applications of Pillar[n]arene-Based Host–Guest Recognition in Chemosensing and Imaging ». ACS Sensors 6, no 11 (19 octobre 2021) : 3882–97. http://dx.doi.org/10.1021/acssensors.1c01510.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Xiao, Xue-Dong, Ya-Li Bai, Jia-Qi Liu et Jun-Wen Wang. « Synthesis of novel pillar[5]arene-based N -heterocyclic carbene ligands for Pd-catalysed Heck reactions ». Tetrahedron Letters 57, no 30 (juillet 2016) : 3385–88. http://dx.doi.org/10.1016/j.tetlet.2016.06.083.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Zhao, Meng, Changjun Li, Xiaotao Shan, Huijing Han, Qiuhua Zhao, Meiran Xie, Jianzhuang Chen et Xiaojuan Liao. « A Stretchable Pillararene-Containing Supramolecular Polymeric Material with Self-Healing Property ». Molecules 26, no 8 (10 avril 2021) : 2191. http://dx.doi.org/10.3390/molecules26082191.

Texte intégral
Résumé :
Constructing polymeric materials with stretchable and self-healing properties arise increasing interest in the field of tissue engineering, wearable electronics and soft actuators. Herein, a new type of supramolecular cross-linker was constructed through host-guest interaction between pillar[5]arene functionalized acrylate and pyridinium functionalized acrylate, which could form supramolecular polymeric material via photo-polymerization of n-butyl acrylate (BA). Such material exhibited excellent tensile properties, with maximum tensile strength of 3.4 MPa and strain of 3000%, respectively. Moreover, this material can effectively dissipate energy with the energy absorption efficiency of 93%, which could be applied in the field of energy absorbing materials. In addition, the material showed self-healing property after cut and responded to competitive guest.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Xia, Binyuan, Jiuming He, Zeper Abliz, Yihua Yu et Feihe Huang. « Synthesis of a pillar[5]arene dimer by co-oligomerization and its complexation with n-octyltrimethyl ammonium hexafluorophosphate ». Tetrahedron Letters 52, no 34 (août 2011) : 4433–36. http://dx.doi.org/10.1016/j.tetlet.2011.06.065.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Xiao, Chao, Wenting Liang, Wanhua Wu, Kuppusamy Kanagaraj, Yafen Yang, Ke Wen et Cheng Yang. « Resolution and Racemization of a Planar-Chiral A1/A2-Disubstituted Pillar[5]arene ». Symmetry 11, no 6 (9 juin 2019) : 773. http://dx.doi.org/10.3390/sym11060773.

Texte intégral
Résumé :
Butoxycarbonyl (Boc)-protected pillar[4]arene[1]-diaminobenzene (BP) was synthesized by introducing the Boc protection onto the A1/A2 positions of BP. The oxygen-through-annulus rotation was partially inhibited because of the presence of the middle-sized Boc substituents. We succeeded in isolating the enantiopure RP (RP, RP, RP, RP, and RP)- and SP (SP, SP, SP, SP, and SP)-BP, and studied their circular dichroism (CD) spectral properties. As the Boc substituent is not large enough to completely prevent the flip of the benzene units, enantiopure BP-f1 underwent racemization in solution. It is found that the racemization kinetics is a function of the solvent and temperature employed. The chirality of the BP-f1 could be maintained in n-hexane and CH2Cl2 for a long period at room temperature, whereas increasing the temperature or using solvents that cannot enter into the cavity of BP-f1 accelerated the racemization of BP-f1. The racemization kinetics and the thermodynamic parameters of racemization were studied in several different organic solvents.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie