Thèses sur le sujet « Phylogentic »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Phylogentic ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Holmes, Jennifer K. « A Phylogentic Analysis of PLATZ Transcription Factors in Plants ». University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo149339721432989.
Texte intégralCICCOLELLA, SIMONE. « Practical algorithms for Computational Phylogenetics ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/364980.
Texte intégralIn this manuscript we described the main computational challenges of the cancer phylogenetic field and we proposed different solutions for the three main problems of (i) the progression reconstruction of a tumor sample, (ii) the clustering of SCS data to allow for a cleaner and faster inference and (iii) the evaluation of different phylogenies. Furthermore we combined them into a usable pipeline to allow for a faster analysis.
Kang, Qiwen. « UNSUPERVISED LEARNING IN PHYLOGENOMIC ANALYSIS OVER THE SPACE OF PHYLOGENETIC TREES ». UKnowledge, 2019. https://uknowledge.uky.edu/statistics_etds/39.
Texte intégralJirásková, Kristýna. « Metody rekonstrukce fylogenetických superstromů ». Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-219518.
Texte intégralKosíř, Kamil. « Metody rekonstrukce fylogenetických superstromů ». Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220860.
Texte intégralFaller, Beáta. « Combinatorial and probabilistic methods in biodiversity theory ». Thesis, University of Canterbury. Mathematics and Statistics, 2010. http://hdl.handle.net/10092/3985.
Texte intégralPowell, Robyn Faye. « Systematics, diversification and ecology of the Conophytum-clade (Ruschieae ; Aizoaceae) ». University of the Western Cape, 2016. http://hdl.handle.net/11394/5453.
Texte intégralThe Ruschieae is the most diverse and speciose tribe within the large subfamily Ruschioideae (Aizoaceae), with approximately 71 genera and a distribution centred in the arid parts of the Greater Cape Floristic Region (GCFR) of South Africa. Recent phylogenetic analyses provided the first insights into generic relationships within the tribe, with a number of novel generic relationships discovered. The tribal phylogeny recovered 12 large clades, of which the Conophytum-clade was one the most morphologically diverse based on leaf and capsule characters. The Conophytum-clade is an early-diverging lineage of the Ruschieae and includes the following 10 genera: Cheiridopsis N.E.Br., Conophytum N.E.Br., Enarganthe N.E.Br., Ihlenfeldtia H.E.K.Hartmann, Jensenobotrya A.G.J.Herre, Namaquanthus L.Bolus, Octopoma N.E.Br., Odontophorus N.E.Br., Ruschianthus L.Bolus and Schlechteranthus Schwantes. The present study presents an expanded phylogenetic analysis of the Conophytum-clade, with the sampling of the majority of species in the genera and a representative sampling (56% of species) of the speciose genus Conophytum. Phylogenetic data for up to nine plastid gene regions (atpB–rbcL, matK, psbJ–petA, rpl16, rps16, trnD– trnT, trnL–F, trnQᶷᶷᶢ–rps16, trnS–trnG) were produced for each of the sampled species. The produced plastid data was analyses using maximum parsimony, maximum likelihood and Bayesian inference. The combined plastid phylogenetic analyses were used in combination with morphological, anatomical and palynological data to assess generic and subgeneric circumscriptions within the clade. Upon assessment of generic circumscriptions in the Conophytum-clade, the number of recognised genera in the clade decreased from ten to seven. Arenifera A.G.J.Herre, which had not been sampled in any phylogeny of the Ruschieae, and Octopoma were recovered as polyphyletic, with species placed in the Conophytum-clade, while the type species was placed in the xeromorphic clade of the tribal phylogeny. The species of Arenifera and Octopoma placed in the Conophytum-clade were subsequently included in Schlechteranthus upon assessment of generic circumscriptions between the taxa. Two morphological groupings were recognised within Schlechteranthus, one including the species of Schlechteranthus and the other including species previously recognised as Arenifera and Octopoma. These two morphological groupings were treated as subgenera, with the erection of the new subgenus Microphyllus R.F.Powell. A detailed taxonomic revision of subgenus Microphyllus is presented with a key to species, descriptions of the species (including a new species: S. parvus R.F.Powell & Klak), known geographical distributions and illustrations of the species. In addition to the changes mentioned above, the expanded sampling and phylogenetic analyses of the Conophytum-clade recovered Ihlenfeldtia and Odontophorus embedded in Cheiridopsis. The species of Ihlenfeldtia were recovered with species of heiridopsis subgenus Aequifoliae H.E.K.Hartmann, while the species of Odontophorus were recovered as polyphyletic within the Cheiridopsis subgenus Odontophoroides H.E.K.Hartmann clade. Cheiridopsis was subsequently expanded to include the species of Ihlenfeldtia and Odontophorus, with these species accommodated in the subgenera of Cheiridopsis. The phylogenetic placement and relationship of these species was supported by the shared capsule morphology. The expanded sampling of the clade did not resolve the phylogenetic relationship of the monotypic genera Enarganthe, Jensenobotrya, Namaquanthus and Ruschianthus, with these genera unresolved in the Conophytum-clade. These genera however, exhibit a unique combination of morphological characters, such as a glabrous leaf epidermis and variation in pollen exine and colpi structure, in contrast to the other genera of the clade. The assessment of the generic circumscription of these genera, based on the molecular, morphological, anatomical and palynological data suggested that the generic statuses of these monotypic genera should be maintained. The expanded phylogenetic sampling of the morphologically diverse and speciose genus Conophytum recovered the genus as monophyletic. This monophyly was supported by the unique floral type in Conophytum, with the fused petaloid staminodes forming a tube. None of the sectional classifications were recovered as monophyletic but the phylogenetic analyses did recover a few clades which more or less corresponded to the current sectional classification of the genus. A number of clades were also recovered which included species from a range of different sections. Diverse leaf and floral traits were shown to have evolved numerous times across the genus. This was particularly interesting with regards to the selected floral traits, as the phylogeny indicated a number of switches in floral morphologies across the genus. The floral diversity was assessed in complex species communities of Conophytum across the GCFR, where up to 11 species of Conophytum are found occurring sympatrically, and floral traits were shown to be different across the species within the communities. Pollination competition and adaptation were suggested as possible drivers of floral diversity in the genus, with differences in phenology, anthesis and floral morphology within the species complex communities. The unique floral type of Conophytum has enabled the species to develop a diverse range of specialised flowers, with a variety of structures, scents and colours, resulting in the diverse floral morphologies found across the genus. The complex Conophytum species communities included both closely as well as distantly related species, suggesting the soft papery capsules of Conophytum are wind dispersed. This adaptation to long distance seed dispersal resulted in a significantly higher phylogenetic diversity in Conophytum when compared to its sister genus, Cheiridopsis. A population genetics study of Conophytum also suggested that the capsules may be wind dispersed, with an indication of genetic connectivity between the geographically isolated populations of C. marginatum Lavis across the Bushmanland Inselberg Region. Although the capsules are dispersed by wind, the seeds are released from the hygrochastic capsules by runoff during rainfall events. The relationship between seed dispersal and runoff is evident from the genetic structure of populations of C. maughanii N.E.Br. and C. ratum S.A.Hammer that occur on the tops and the surrounding bases of the inselbergs, as the drainage pattern was found to directly influence population structure in these species. In addition, the AFLP analyses provided insight into the conservation of the flagship species C. ratum. The summit populations of this species were shown to sustain the populations at the base of the Gamsberg. This finding is especially important, as the distribution of the species is restricted to the Gamsberg inselberg, where mining has already commenced as of this year.
National Research Foundation (NRF)
Spindler, Frederik. « The basal Sphenacodontia – systematic revision and evolutionary implications ». Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2015. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-171748.
Texte intégralHernandez, Rosales Maribel. « The Orthology Road ». Doctoral thesis, Universitätsbibliothek Leipzig, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-127823.
Texte intégralGuillory, Wilson. « Comprehensive phylogenomic reconstruction of Ameerega (Anura : Dendrobatidae) and introduction of a new method for phylogenetic niche modeling ». OpenSIUC, 2020. https://opensiuc.lib.siu.edu/theses/2654.
Texte intégralWanke, Stefan, Mendoza Carolina Granados, Julia Naumann, Marie-Stéphanie Samain, Paul Goetghebeur et Smet Yannick De. « A genome-scale mining strategy for recovering novel rapidly-evolving nuclear single-copy genes for addressing shallow-scale phylogenetics in Hydrangea ». Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-192196.
Texte intégralWanke, Stefan, Mendoza Carolina Granados, Julia Naumann, Marie-Stéphanie Samain, Paul Goetghebeur et Smet Yannick De. « A genome-scale mining strategy for recovering novel rapidly-evolving nuclear single-copy genes for addressing shallow-scale phylogenetics in Hydrangea ». BMC Evolutionary Biology, 2001. https://tud.qucosa.de/id/qucosa%3A29147.
Texte intégralBauer, Jennifer E. « A Phylogenetic and Paleobiogeographic Analysis of the Ordovician Brachiopod Eochonetes ». Ohio University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1397486053.
Texte intégralGonzalez, Vanessa Liz. « Evolution of Bivalvia : Multi-level phylogenetic and phylogenomic reconstructions within Bivalvia (Mollusca) with emphasis on resolving familial relationships within Archiheterodonta (Bivalvia : Heterodonta) ». Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11172.
Texte intégralMecham, Jesse L. « Jumpstarting phylogenetic searches / ». Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1403.pdf.
Texte intégralMcHugh, Sean W. « Phylogenetic Niche Modeling ». Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/104893.
Texte intégralMaster of Science
As many species face increasing pressure in a changing climate, it is crucial to understand the set of environmental conditions that shape species' ranges--known as the environmental niche--to guide conservation and land management practices. Species distribution models (SDMs) are common tools that are used to model species' environmental niche. These models treat a species' probability of occurrence as a function of environmental conditions. SDM niche estimates can predict a species' range given climate data, paleoclimate, or projections of future climate change to estimate species range shifts from the past to the future. However, SDM estimates are often biased by non-environmental factors shaping a species' range including competitive divergence or dispersal barriers. Biased SDM estimates can result in range predictions that get worse as we extrapolate beyond the observed climatic conditions. One way to overcome these biases is by leveraging the shared evolutionary history amongst related species to "fill in the gaps". Species that are more closely phylogenetically related often have more similar or "conserved" environmental niches. By estimating environmental niche over all species in a clade jointly, we can leverage niche conservatism to produce more biologically realistic estimates of niche. However, currently a methodological gap exists between SDMs estimates and macroevolutionary models, prohibiting them from being estimated jointly. We propose a novel model of evolutionary niche called PhyNE (Phylogenetic Niche Evolution), where biologically realistic environmental niches are fit across a set of species with occurrence data, while simultaneously fitting and leveraging a model of evolution across a portion of the tree of life. We evaluated model accuracy, bias, and precision through simulation analyses. Accuracy and precision increased with larger phylogeny size and effectively estimated model parameters. We then applied PhyNE to Plethodontid salamanders from Eastern North America. This ecologically-important and diverse group of lungless salamanders require cold and wet conditions and have distributions that are strongly affected by climatic conditions. Species within the family vary greatly in distribution, with some species being wide ranging generalists, while others are hyper-endemics that inhabit specific mountains in the Southern Appalachians with restricted thermal and hydric conditions. We fit PhyNE to occurrence data for these species and their associated average annual precipitation and temperature data. We identified no correlations between species environmental preference and specialization. Pattern of preference and specialization varied among Plethodontid species groups, with more aquatic species possessing a broader environmental niche, likely due to the aquatic microclimate facilitating occurrence in a wider range of conditions. We demonstrated the effectiveness of PhyNE's evolutionarily-informed estimates of environmental niche, even when species' occurrence data is limited or even absent. PhyNE establishes a proof-of-concept framework for a new class of approaches for studying niche evolution, including improved methods for estimating niche for data-deficient species, historical reconstructions, future predictions under climate change, and evaluation of niche evolutionary processes across the tree of life. Our approach establishes a framework for leveraging the rapidly growing availability of biodiversity data and molecular phylogenies to make robust eco-evolutionary predictions and assessments of species' niche and distributions in a rapidly changing world.
Mecham, Jesse Lewis. « Jumpstarting Phylogenetic Searches ». BYU ScholarsArchive, 2006. https://scholarsarchive.byu.edu/etd/483.
Texte intégralKrig, Kåre. « Methods for phylogenetic analysis ». Thesis, Linköping University, Department of Mathematics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56814.
Texte intégralIn phylogenetic analysis one study the relationship between different species. By comparing DNA from two different species it is possible to get a numerical value representing the difference between the species. For a set of species, all pair-wise comparisons result in a dissimilarity matrix d.
In this thesis I present a few methods for constructing a phylogenetic tree from d. The common denominator for these methods is that they do not generate a tree, but instead give a connected graph. The resulting graph will be a tree, in areas where the data perfectly matches a tree. When d does not perfectly match a tree, the resulting graph will instead show the different possible topologies, and how strong support they have from the data.
Finally I have tested the methods both on real measured data and constructed test cases.
Pardi, Fabio. « Algorithms on phylogenetic trees ». Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611685.
Texte intégralWang, Min-Hui. « Classification using phylogenetic trees / ». The Ohio State University, 1999. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488190595939375.
Texte intégralSundberg, Kenneth A. « Partition Based Phylogenetic Search ». BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2583.
Texte intégralHansen, Michael. « Algebra and Phylogenetic Trees ». Scholarship @ Claremont, 2007. https://scholarship.claremont.edu/hmc_theses/194.
Texte intégralBroe, Michael Brian. « Phylogenetics of the Monotropoideae (Ericaceae) with Special Focus on the Genus Hypopitys Hill, together with a Novel Approach to Phylogenetic Inference Using Lattice Theory ». The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1417442819.
Texte intégralArvestad, Isaac, et Henrik Lagebrand. « Implementing Bayesian phylogenetic tree inference with Sequential Monte Carlo and the Phylogenetic Likelihood Library ». Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229429.
Texte intégralVi undersöker om programspråksbiblioteket Phylogenetic Likelihood Library (PLL) kan användas för bayesiansk inferens av phylogenetiska träd med en sekventiell Monte Carlo-metod (SMC). Genom att implementera algoritmen med två olika delar av PLL:s programmeringsgränssnitt visar vi att det går att använda PLL för att implementera SMC-algoritmen men att det är oklart om det huvudsakliga programmeringsgränssnittet är lämpligt.
Fleissner, Roland. « Sequence alignment and phylogenetic inference ». Berlin : Logos Verlag, 2004. http://diss.ub.uni-duesseldorf.de/ebib/diss/file?dissid=769.
Texte intégralRehmsmeier, Marc. « Database searching with phylogenetic trees ». [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963977423.
Texte intégralDeepak, Akshay. « SearchTree mining robust phylogenetic trees / ». [Ames, Iowa : Iowa State University], 2010. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1476290.
Texte intégralHaber, Matthew Horace. « The centrality of phylogenetic thinking / ». For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2005. http://uclibs.org/PID/11984.
Texte intégralSchmidt, Heiko A. « Phylogenetic trees from large datasets ». [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=968534945.
Texte intégralFleissner, Roland. « Sequence alignment and phylogenetic inference ». [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=971844704.
Texte intégralGottschling, Marc. « Phylogenetic analysis of selected Boraginales ». [S.l. : s.n.], 2003. http://www.diss.fu-berlin.de/2003/30/index.html.
Texte intégralHögnabba, Filip. « Phylogenetic studies of cyanobacterial lichens / ». Helsinki : Yliopistopaino, 2007. http://ethesis.helsinki.fi.
Texte intégralRoos, Marinus Cornelis. « Phylogenetic systematics of the Drynarioideae / ». Amsterdam [u.a.] : North-Holland, 1985. http://www.gbv.de/dms/bs/toc/013141155.pdf.
Texte intégralJetté, Migüel. « Reconstructing functions on phylogenetic trees ». Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=99187.
Texte intégralRyder, Robin Jeremy. « Phylogenetic models of language diversification ». Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.543009.
Texte intégralStolzer, Maureen. « Phylogenetic Inference for Multidomain Proteins ». Research Showcase @ CMU, 2011. http://repository.cmu.edu/dissertations/47.
Texte intégralWelbourn, Warren Calvin. « Phylogenetic studies of trombidioid mites / ». The Ohio State University, 1985. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487262825074137.
Texte intégralKashiwada, Akemi. « Constructing Phylogenetic Trees from Subsplits ». Scholarship @ Claremont, 2005. https://scholarship.claremont.edu/hmc_theses/171.
Texte intégralRiester, Markus. « Genealogy Reconstruction ». Doctoral thesis, Universitätsbibliothek Leipzig, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-38656.
Texte intégralOlsson, Sanna. « Evolution of the Neckeraceae (Bryopsida) ». Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1235997342817-20232.
Texte intégralPorter, Megan L. « Crustacean phylogenetic systematics and opsin evolution ». Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd859.pdf.
Texte intégralOldman, James. « Constructing phylogenetic networks based on trinets ». Thesis, University of East Anglia, 2015. https://ueaeprints.uea.ac.uk/59446/.
Texte intégralFischer, Mareike. « Novel Mathematical Aspects of Phylogenetic Estimation ». Thesis, University of Canterbury. Mathematics and Statistics, 2009. http://hdl.handle.net/10092/2331.
Texte intégralKeivany, Yazdan. « Phylogenetic relationships of Gasterosteiformes (Teleostei, Percomorpha) ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ59608.pdf.
Texte intégralHabib, Farhat Abbas. « Genotype-phenotype correlation using phylogenetic trees ». Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1187297400.
Texte intégralFuentes, Carvajal Andreina. « Phylogenetic relationships within Coleeae (Bignoniaceae juss.) ». Click here to access thesis, 2007. http://www.georgiasouthern.edu/etd/archive/fall2007/carvajal_a_fuentes/carvajal_andreina_f_200708_MS.pdf.
Texte intégral"A thesis submitted to the Graduate Faculty of Georgia Southern University in partial fulfillment of the requirements for the degree Master of Science." In Biology, under the direction of Michelle Zjhra. ETD. Electronic version approved: December 2007. Includes bibliographical references (p. 38-42)
Ababneh, Faisal. « Models and estimation for phylogenetic trees / ». Connect to full text, 2006. http://hdl.handle.net/2123/927.
Texte intégralCho, Anna. « Constructing Phylogenetic Trees Using Maximum Likelihood ». Scholarship @ Claremont, 2012. http://scholarship.claremont.edu/scripps_theses/46.
Texte intégralWu, Qiong. « Phylogenetic Networks : New Constructions and Applications ». Thesis, University of East Anglia, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.514315.
Texte intégralFujisawa, Tomochika. « Statistical analyses of genealogical-phylogenetic data ». Thesis, Imperial College London, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.556548.
Texte intégral