Littérature scientifique sur le sujet « Photon counting »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Photon counting ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Photon counting"
Reutov, Aleksei, et Denis Sych. « Photon counting statistics with imperfect detectors ». Journal of Physics : Conference Series 2086, no 1 (1 décembre 2021) : 012096. http://dx.doi.org/10.1088/1742-6596/2086/1/012096.
Texte intégralJang, Jae-Young, et Myungjin Cho. « Lensless Three-Dimensional Imaging under Photon-Starved Conditions ». Sensors 23, no 4 (20 février 2023) : 2336. http://dx.doi.org/10.3390/s23042336.
Texte intégralPile, David. « Photon counting ». Nature Photonics 6, no 1 (22 décembre 2011) : 4. http://dx.doi.org/10.1038/nphoton.2011.340.
Texte intégralHu, Huiqin, Xinyi Ren, Zhaoyang Wen, Xingtong Li, Yan Liang, Ming Yan et E. Wu. « Single-Pixel Photon-Counting Imaging Based on Dual-Comb Interferometry ». Nanomaterials 11, no 6 (24 mai 2021) : 1379. http://dx.doi.org/10.3390/nano11061379.
Texte intégralYeo, Gilsu, et Myungjin Cho. « Three-Dimensional Digital Zooming of Integral Imaging under Photon-Starved Conditions ». Sensors 23, no 5 (28 février 2023) : 2645. http://dx.doi.org/10.3390/s23052645.
Texte intégralMa, Rujia, Wei Kong, Tao Chen, Rong Shu et Genghua Huang. « KNN Based Denoising Algorithm for Photon-Counting LiDAR : Numerical Simulation and Parameter Optimization Design ». Remote Sensing 14, no 24 (9 décembre 2022) : 6236. http://dx.doi.org/10.3390/rs14246236.
Texte intégralKim, Hyun-Woo, Min-Chul Lee et Myungjin Cho. « Three-Dimensional Image Visualization under Photon-Starved Conditions Using N Observations and Statistical Estimation ». Sensors 24, no 6 (7 mars 2024) : 1731. http://dx.doi.org/10.3390/s24061731.
Texte intégralHadfield, Robert H. « Superfast photon counting ». Nature Photonics 14, no 4 (27 mars 2020) : 201–2. http://dx.doi.org/10.1038/s41566-020-0614-0.
Texte intégralGraydon, Oliver. « Practical photon counting ». Nature Photonics 11, no 11 (31 octobre 2017) : 684. http://dx.doi.org/10.1038/s41566-017-0042-y.
Texte intégralCandy, B. H. « Photon counting circuits ». Review of Scientific Instruments 56, no 2 (février 1985) : 194–200. http://dx.doi.org/10.1063/1.1138328.
Texte intégralThèses sur le sujet "Photon counting"
Norlin, Börje. « Photon Counting X-ray Detector Systems ». Licentiate thesis, Mid Sweden University, Department of Information Technology and Media, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-41.
Texte intégralThis licentiate thesis concerns the development and characterisation of X-ray imaging detector systems. “Colour” X-ray imaging opens up new perspectives within the fields of medical X-ray diagnosis and also in industrial X-ray quality control. The difference in absorption for different “colours” can be used to discern materials in the object. For instance, this information might be used to identify diseases such as brittle-bone disease. The “colour” of the X-rays can be identified if the detector system can process each X-ray photon individually. Such a detector system is called a “single photon processing” system or, less precise, a “photon counting system”.
With modern technology it is possible to construct photon counting detector systems that can resolve details to a level of approximately 50 µm. However with such small pixels a problem will occur. In a semiconductor detector each absorbed X-ray photon creates a cloud of charge which contributes to the picture achieved. For high photon energies the size of the charge cloud is comparable to 50 µm and might be distributed between several pixels in the picture. Charge sharing is a key problem since, not only is the resolution degenerated, but it also destroys the “colour” information in the picture.
The problem involving charge sharing which limits “colour” X-ray imaging is discussed in this thesis. Image quality, detector effectiveness and “colour correctness” are studied on pixellated detectors from the MEDIPIX collaboration. Characterisation measurements and simulations are compared to be able to understand the physical processes that take place in the detector. Simulations can show pointers for the future development of photon counting X-ray systems. Charge sharing can be suppressed by introducing 3D-detector structures or by developing readout systems which can correct the crosstalk between pixels.
HERRERA, LUIS ERNESTO YNOQUIO. « HIGH RESOLUTION PHOTON COUNTING OPTICAL REFLECTOMETRY ». PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=27673@1.
Texte intégralCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
FUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
PROGRAMA DE EXCELENCIA ACADEMICA
BOLSA NOTA 10
Neste trabalho são apresentados dois reflectômetros ópticos por contagem de fótons no domínio do tempo para o monitoramento de fibras ópticas. O primeiro foi projetado para obter faixas dinâmicas altas. Demonstrou-se a sua capacidade de sintonização no monitoramento de redes passivas WDM-PON durante o tráfego de dados. 32 dB de faixa dinâmica com 6 m de resolução foram atingidos. O segundo reflectômetro foi projetado para atingir resoluções ultra altas. As aplicações neste caso, além do monitoramento de uma rede TDM-PON de curto alcance, foram na caracterização de redes de Bragg dispersivas e na descrição e modelagem de um fenômeno não reportado antes na literatura, chamado nesta tese de reflexão por curvatura. Foi demonstrada uma resolução menor que 3 cm com faixa dinâmica maior que 14.0 dB.
This thesis presents the development of two photon counting optical time domain reflectometers for fiber optic links monitoring. The first one was focused on high dynamic range. It is demonstrated its tunable capability for a WDM-PON in-service monitoring. 32 dB on dynamic range and a two-point resolution of 6 m is achieved. The second reflectometer was design to accomplish an ultra high resolution. The monitoring of a short TDM-PON is performed. Moreover, due to its high resolution, a chirped fiber Bragg grating is characterized and a non previous reported phenomena, the bend reflection, is shaped and described. It is demonstrated 3 cm two-point resolution and more than 14 dB on dynamic range.
Warbuton, Ryan Ellis. « Infrared time-correlated single-photon counting ». Thesis, Heriot-Watt University, 2008. http://hdl.handle.net/10399/2259.
Texte intégralNatarajan, Chandra Mouli. « Superconducting nanowire single-photon detectors for advanced photon-counting applications ». Thesis, Heriot-Watt University, 2011. http://hdl.handle.net/10399/2432.
Texte intégralDahlman, Nils. « Evaluation of Photon-Counting Spectral Breast Tomosynthesis ». Thesis, KTH, Medicinsk avbildning, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-32051.
Texte intégralChang, Joshua TsuKang. « Tracking system for photon-counting laser radar ». Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/41260.
Texte intégralIncludes bibliographical references (p. 107).
The purpose of this thesis is to build the tracking system for a photon-counting laser radar specifically a laser radar that has the ability to perform direct and coherent detection measurement at low signal levels with common laser, optics and detector hardware. The heart of the tracking algorithm is a Kalman filter, and optimal Kalman filter parameters are determined using software simulations. The tracking algorithm was tested against various simulated (software only) and emulated (with actual hardware) trajectories. We also built and tested the real-time tracking system hardware. The algorithms and methods proposed in this thesis achieve the objective of tracking a target at 1,500 km range to within 1-cm accuracy.
by Joshua TsuKang Chang.
M.Eng.
Pizzone, Andrea. « Advanced photon counting applications with superconducting detectors ». Thesis, University of Glasgow, 2017. http://theses.gla.ac.uk/8630/.
Texte intégralNeimert-Andersson, Thomas. « 3D imaging using time-correlated single photon counting ». Thesis, Uppsala University, Signals and Systems Group, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-121104.
Texte intégralThis project investigates a laser radar system. The system is based on the principles of time-correlated single photon counting, and by measuring the times-of-flight of reflected photons it can find range profiles and perform three-dimensional imaging of scenes. Because of the photon counting technique the resolution and precision that the system can achieve is very high compared to analog systems. These properties make the system interesting for many military applications. For example, the system can be used to interrogate non-cooperative targets at a safe distance in order to gather intelligence. However, signal processing is needed in order to extract the information from the data acquired by the system. This project focuses on the analysis of different signal processing methods.
The Wiener filter and the Richardson-Lucy algorithm are used to deconvolve the data acquired by the photon counting system. In order to find the positions of potential targets different approaches of non-linear least squares methods are tested, as well as a more unconventional method called ESPRIT. The methods are evaluated based on their ability to resolve two targets separated by some known distance and the accuracy with which they calculate the position of a single target, as well as their robustness to noise and their computational burden.
Results show that fitting a curve made of a linear combination of asymmetric super-Gaussians to the data by a method of non-linear least squares manages to accurately resolve targets separated by 1.75 cm, which is the best result of all the methods tested. The accuracy for finding the position of a single target is similar between the methods but ESPRIT has a much faster computation time.
Ma, Jiaju. « Photon-Counting Jot Devices for Quanta Image Sensor ». Thesis, Dartmouth College, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10637406.
Texte intégralThe quanta image sensor (QIS) is a third-generation solid-state digital imaging technology. The photoelements, called ?jots,? are specialized to have photon-counting sensitivity at room temperature without using electron avalanche multiplication. A QIS may contain billions of jots operating at 1000fps or higher and by counting every single photon at a high speed, numerous exciting features can be enabled. This novel technology can naturally fit the needs of high-speed and high-resolution accurate photon-counting imaging for scientific imaging, space imaging, security, low-light imaging and other applications. A proof of concept for the jot device was successfully developed and demonstrated in 2015 and 2017. Using the innovative jot structure, sub-0.2e- r.m.s. read noise was demonstrated with a manifestly improved conversion gain at room temperature. For the first time, accurate photon counting was realized with photodetectors fabricated in a standard CMOS process without the use of amplification from electron avalanche multiplication. This thesis covers the development of photon-counting jot devices for the QIS. The design of the jot was one of the most difficult challenges in the implementation of the QIS. These difficulties included the reduction of read noise to enable photon-counting while shrinking the size of the jots and optimizing other specifications that affect the accuracy of photon-counting (dark current, quantum efficiency, etc.). The work presented in this thesis covers all of these topics, while the emphasis is placed on the most challenging hurdle: the reduction of read noise towards the deep sub-electron read noise region to enable photon-counting.
Michel-Murillo, Raul. « Development of the BIGMIC image photon counting detector ». Thesis, University College London (University of London), 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265337.
Texte intégralLivres sur le sujet "Photon counting"
Kapusta, Peter, Michael Wahl et Rainer Erdmann, dir. Advanced Photon Counting. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15636-1.
Texte intégral1950-, Becker W., Society of Photo-optical Instrumentation Engineers., Boston Electronics Corporation et Becker & Hickl., dir. Advanced photon counting techniques : 1-3 October, 2006, Boston, Massachusetts, USA. Bellingham, Wash : SPIE, 2006.
Trouver le texte intégralHsieh, Scott, et Krzysztof Iniewski, dir. Photon Counting Computed Tomography. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-26062-9.
Texte intégralDandin, Marc, Nicole McFarlane, Md Sakibur Sajal, Fahimeh Dehghandehnavi et Babak Nouri. Single-Photon Avalanche Diodes and Photon Counting Systems. Cham : Springer Nature Switzerland, 2025. http://dx.doi.org/10.1007/978-3-031-64334-7.
Texte intégralTaguchi, Katsuyuki, Ira Blevis et Krzysztof Iniewski. Spectral, Photon Counting Computed Tomography. Sous la direction de Katsuyuki Taguchi, Ira Blevis et Krzysztof Iniewski. First edition. | Boca Raton : CRC Press, 2020. | Series : Devices, circuits, & systems : CRC Press, 2020. http://dx.doi.org/10.1201/9780429486111.
Texte intégral1952-, Smith Alan, dir. Selected papers on photon-counting detectors. Bellingham, Wash., USA : SPIE Optical Engineering Press, 1998.
Trouver le texte intégralBecker, W. Advanced photon counting techniques II : 9-11 September 2007, Boston, Massachusetts, USA. Sous la direction de Society of Photo-optical Instrumentation Engineers. Bellingham, Wash : SPIE, 2007.
Trouver le texte intégralItzler, Mark A. Advanced photon counting techniques IV : 7-8 April 2010, Orlando, Florida, United States. Sous la direction de SPIE (Society). Bellingham, Wash : SPIE, 2010.
Trouver le texte intégralItzler, Mark A. Advanced photon counting techniques V : 27-29 April 2011, Orlando, Florida, United States. Sous la direction de SPIE (Society). Bellingham, Wash : SPIE, 2011.
Trouver le texte intégralBecker, Wolfgang. Advanced Time-Correlated Single Photon Counting Techniques. Sous la direction de A. W. Castleman, J. P. Toennies et W. Zinth. Berlin, Heidelberg : Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-28882-1.
Texte intégralChapitres de livres sur le sujet "Photon counting"
Gardiner, Crispin W. « Photon Counting ». Dans Quantum Noise, 232–78. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-09642-0_8.
Texte intégralGardiner, Crispin W., et Peter Zoller. « Photon Counting ». Dans Quantum Noise, 230–75. Berlin, Heidelberg : Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04103-1_8.
Texte intégralMüller, Joachim D., Yan Chen et Enrico Gratton. « Photon Counting Histogram Statistics ». Dans Springer Series in Chemical Physics, 410–37. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59542-4_20.
Texte intégralGethyn Timothy, J. « Photon-Counting Detector Systems ». Dans Instrumentation for Ground-Based Optical Astronomy, 516–27. New York, NY : Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-3880-5_50.
Texte intégralTaguchi, Katsuyuki. « Photon Counting Detector Simulator ». Dans Spectral, Photon Counting Computed Tomography, 345–52. First edition. | Boca Raton : CRC Press, 2020. | Series : Devices, circuits, & systems : CRC Press, 2020. http://dx.doi.org/10.1201/9780429486111-18.
Texte intégralDunning, Chelsea A. S., Devon Richtsmeier, Pierre-Antoine Rodesch, Kris Iniewski et Magdalena Bazalova-Carter. « K-Edge Imaging in Spectral Photon-Counting Computed Tomography : A Benchtop System Study ». Dans Photon Counting Computed Tomography, 247–63. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-26062-9_12.
Texte intégralHsieh, Scott. « An Overview of CT Reconstruction with Applications to Photon Counting Detectors ». Dans Photon Counting Computed Tomography, 139–51. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-26062-9_7.
Texte intégralRodesch, Pierre-Antoine, Niels R. van der Werf, Salim A. Si-Mohamed et Philippe C. Douek. « Coronary Artery Calcifications Assessment with Photon-counting Detector Computed Tomography ». Dans Photon Counting Computed Tomography, 21–37. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-26062-9_2.
Texte intégralFlohr, Thomas, Martin Petersilka, Andre Henning, Stefan Ulzheimer et Bernhard Schmidt. « Medical Photon-Counting CT : Status and Clinical Applications Review ». Dans Photon Counting Computed Tomography, 3–20. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-26062-9_1.
Texte intégralClark, Jennifer A., Krishna M. Chapagain, Maya R. Amma, Mahdieh Moghiseh, Chiara Lowe et Anthony P. H. Butler. « MARS for Orthopaedic Pathology ». Dans Photon Counting Computed Tomography, 39–61. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-26062-9_3.
Texte intégralActes de conférences sur le sujet "Photon counting"
Ocampo Giraldo, Luis A., Aleksey E. Bolotnikov, Giuseppe S. Camarda, Yonggang Cui, Gianluigi De Geronimo, Rubi Gul, Jack Fried et al. « Achieving subpixel resolution with time-correlated transient signals in pixelated CdZnTe gamma-ray sensors using a focused laser beam (Conference Presentation) ». Dans Photon Counting Applications, sous la direction de Ralph B. James, Ivan Prochazka et Roman Sobolewski. SPIE, 2017. http://dx.doi.org/10.1117/12.2264615.
Texte intégralEjrnaes, Mikkel, Loredana Parlato, Alessandro Gaggero, Francesco Mattioli, Roberto Leoni, Giampiero Pepe et Roberto Cristiano. « SNSPD with parallel nanowires (Conference Presentation) ». Dans Photon Counting Applications, sous la direction de Ralph B. James, Ivan Prochazka et Roman Sobolewski. SPIE, 2017. http://dx.doi.org/10.1117/12.2267490.
Texte intégralRam, Rajeev J., Marc de Cea Falco, Emma E. Wollman et Matthew D. Shaw. « Photonic readout of superconducting nanowire single photon counting detectors ». Dans Advanced Photon Counting Techniques XVII, sous la direction de Mark A. Itzler, K. Alex McIntosh et Joshua C. Bienfang. SPIE, 2023. http://dx.doi.org/10.1117/12.2663806.
Texte intégralLaiho, Kaisa, Malte Avenhaus, Katiuscia N. Cassemiro et Christine Silberhorn. « Characterizing Single Photons by Photon Counting ». Dans Conference on Lasers and Electro-Optics. Washington, D.C. : OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.jwa87.
Texte intégralAcconcia, Giulia, Angelo Gulinatti, Massimo Ghioni et Ivan Rech. « High performance single photon counting and timing with single photon avalanche diodes ». Dans Advanced Photon Counting Techniques XIII, sous la direction de Mark A. Itzler, K. Alex McIntosh et Joshua C. Bienfang. SPIE, 2019. http://dx.doi.org/10.1117/12.2518889.
Texte intégralBraverman, Boris, Nicholas M. Sullivan et Robert W. Boyd. « Photon Counting with an Adaptive Storage Loop ». Dans Frontiers in Optics. Washington, D.C. : Optica Publishing Group, 2023. http://dx.doi.org/10.1364/fio.2023.fth3b.3.
Texte intégralBaker, H. D., R. Henderson et Lawrence P. O’keefe. « Photon counting retinal densitometer ». Dans OSA Annual Meeting. Washington, D.C. : Optica Publishing Group, 1985. http://dx.doi.org/10.1364/oam.1985.tuu1.
Texte intégralDautet, Henri, Pierre Deschamps, Andrew MacGregor, Robert McIntyre et Claude Trottier. « Photon Counting with Silicon Avalanche Photodiodes ». Dans Photon Correlation and Scattering. Washington, D.C. : Optica Publishing Group, 1992. http://dx.doi.org/10.1364/pcs.1992.wa4.
Texte intégralVerma, Varun B., Adriana E. Lita, Boris A. Korzh, Emma Wollman, Matthew Shaw, Richard P. Mirin et Sae-Woo Nam. « Towards single-photon spectroscopy in the mid-infrared using superconducting nanowire single-photon detectors ». Dans Advanced Photon Counting Techniques XIII, sous la direction de Mark A. Itzler, K. Alex McIntosh et Joshua C. Bienfang. SPIE, 2019. http://dx.doi.org/10.1117/12.2519474.
Texte intégralUtzat, Hendrik. « New interferometric photon-correlation tools for spectral diffusion measurements of emerging single-photon emitters ». Dans Advanced Photon Counting Techniques XVII, sous la direction de Mark A. Itzler, K. Alex McIntosh et Joshua C. Bienfang. SPIE, 2023. http://dx.doi.org/10.1117/12.2664090.
Texte intégralRapports d'organisations sur le sujet "Photon counting"
Redman, brian C., et Barry L. Stann. Photon Counting Chirped Amplitude Modulation Ladar. Fort Belvoir, VA : Defense Technical Information Center, mars 2008. http://dx.doi.org/10.21236/ada478362.
Texte intégralCasperson, D. Flare star monitoring with a new photon-counting imaging detector. Office of Scientific and Technical Information (OSTI), décembre 1997. http://dx.doi.org/10.2172/348910.
Texte intégralAull, Brian F., Daniel R. Schuette, Robert K. Reich et Robert L. Johnson. Adaptive optics wavefront sensors based on photon-counting detector arrays. Fort Belvoir, VA : Defense Technical Information Center, janvier 2010. http://dx.doi.org/10.21236/ada523975.
Texte intégralWang, Hongyi. Longitudinal Bunch Pattern Measurements through Single Photon Counting at SPEAR3. Office of Scientific and Technical Information (OSTI), septembre 2012. http://dx.doi.org/10.2172/1050212.
Texte intégralDen Hartog, D. J., et D. E. Ruppert. Photon counting spectroscopy as done with a Thomson scattering diagnostic. Office of Scientific and Technical Information (OSTI), novembre 1993. http://dx.doi.org/10.2172/10116227.
Texte intégralUllom, J., M. Cunningham, B. Macintosh, T. Miyazaki et S. Labov. ''High-Speed, Photon-Counting Camera for the Detection of Extrasolar Planets''. Office of Scientific and Technical Information (OSTI), février 2003. http://dx.doi.org/10.2172/15003349.
Texte intégralLaurence, Ted Alfred. Photon-counting single-molecule spectroscopy for studying conformational dynamics and macromolecular interactions. Office of Scientific and Technical Information (OSTI), janvier 2002. http://dx.doi.org/10.2172/813378.
Texte intégralCook, Jonathan M., Joseph M. Palmer, Ellen C. S. Rabin, Laura C. Stonehill, David C. Thompson, Stephen R. Whittemore et Mike D. Ulibarri. Seeing in the dark : A photon-counting camera system developed from a crossed-strip detector. Office of Scientific and Technical Information (OSTI), novembre 2012. http://dx.doi.org/10.2172/1055746.
Texte intégralCohen, Justin D., Sean M. Meenehan, Gregory S. MacCabe, Simon Groeblacher, Amir H. Safavi-Naeini, Francesco Marsili, Matthew D. Shaw et Oskar Painter. Phonon Counting and Intensity Interferometry of a Nanomechanical Resonator. Fort Belvoir, VA : Defense Technical Information Center, octobre 2014. http://dx.doi.org/10.21236/ada613688.
Texte intégral