Articles de revues sur le sujet « Photodiode avalanche »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Photodiode avalanche.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Photodiode avalanche ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Maleev N.A., Kuzmenkov A.G., Kulagina M.M., Vasyl’ev A. P., Blokhin S. A., Troshkov S.I., Nashchekin A.V. et al. « Mushroom mesa structure for InAlAs-InGaAs avalanche photodiodes ». Technical Physics Letters 48, no 14 (2022) : 28. http://dx.doi.org/10.21883/tpl.2022.14.52106.18939.

Texte intégral
Résumé :
Mushroom mesa structure for InAlAs/InGaAs avalanche photodiodes (APD) was proposed and investigated. APD heterostructrures were grown by molecular-beam epitaxy. Fabricated APDs with the sensitive area diameter of about 30 micron were passivated by SiN deposition and demonstrated avalanche breakdown voltage Vbr 70-80 V. At the applied bias of 0.9 Vbr, the dark current was 75-200 nA. The single-mode coupled APDs demonstrated responsivity at a gain of unity higher than 0.5A/W at 1550 nm. Keywords: avalanche photodiode, InAlAs/InGaAs, mesa structure, dark current.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Giggenbach, Dirk. « Free-Space Optical Data Receivers with Avalanche Detectors for Satellite Downlinks Regarding Background Light ». Sensors 22, no 18 (7 septembre 2022) : 6773. http://dx.doi.org/10.3390/s22186773.

Texte intégral
Résumé :
Data receiving frontends using avalanche photodiodes are used in optical free-space communications for their effective sensitivity, large detection area, and uncomplex operation. Precise control of the high voltage necessary to trigger the avalanche effect inside the photodiode depends on the semiconductor’s excess noise factor, temperature, received signal power, background light, and also the subsequent thermal noise behavior of the transimpedance amplifier. Several prerequisites must be regarded and are explained in this document. We focus on the application of using avalanche photodiodes as data receivers for the on/off-keying of modulated bit streams with a 50% duty cycle. Also, experimental verification of the performance of the receiver with background light is demonstrated.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Аруев, П. Н., В. П. Белик, В. В. Забродский, Е. М. Круглов, А. В. Николаев, В. И. Сахаров, И. Т. Серенков, В. В. Филимонов et Е. В. Шерстнев. « Квантовый выход кремниевого лавинного фотодиода в диапазоне длин волн 120-170 nm ». Журнал технической физики 90, no 8 (2020) : 1386. http://dx.doi.org/10.21883/jtf.2020.08.49552.44-20.

Texte intégral
Résumé :
The external quantum yield of silicon avalanche photodiode in the wavelength range of 120-170 nm was performed. It was shown that the engineered avalanche photodiode has the external quantum yield of 24-150 electron/proton under reverse bias voltage of 230-345 V, respectively. The testing of worked out avalanche photodiode by means of pulse flash of 280 and 340 nm wavelength demonstrates the speed, corresponding to the bandwidth not less than 25 MHz.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Aruev P. N., Belik V. P., Blokhin A. A., Zabrodskii V. V., Nikolaev A. V., Sakharov V. I., Serenkov I. T., Filimonov V. V. et Sherstnev E. V. « In memoriam of E.M. Kruglov and V.V. Filimonov Quantum yield of an avalanche silicon photodiode in the 114-170 and 210-1100 nm wavelength ranges ». Technical Physics Letters 48, no 3 (2022) : 3. http://dx.doi.org/10.21883/tpl.2022.03.52871.19026.

Texte intégral
Résumé :
An avalanche silicon photodiode has been developed for the near IR, visible, UV and VUV light ranges. The external quantum efficiency has been studied in the 114-170 and 210-1100 nm ranges. It has been demonstrated that the avalanche photodiode reaches the quantum yield of 29 to 9300 electrons/photon at the 160 nm wavelength and bias voltage of 190-303 V, respectively. Keywords: avalanche photodiode, vacuum ultraviolet, visible light range, near IR, silicon
Styles APA, Harvard, Vancouver, ISO, etc.
5

Deeb, Hazem, Kristina Khomyakova, Andrey Kokhanenko, Rahaf Douhan et Kirill Lozovoy. « Dependence of Ge/Si Avalanche Photodiode Performance on the Thickness and Doping Concentration of the Multiplication and Absorption Layers ». Inorganics 11, no 7 (15 juillet 2023) : 303. http://dx.doi.org/10.3390/inorganics11070303.

Texte intégral
Résumé :
In this article, the performance and design considerations of the planar structure of germanium on silicon avalanche photodiodes are presented. The dependences of the breakdown voltage, gain, bandwidth, responsivity, and quantum efficiency on the reverse bias voltage for different doping concentrations and thicknesses of the absorption and multiplication layers of germanium on the silicon avalanche photodiode were simulated and analyzed. The study revealed that the gain of the avalanche photodiode is directly proportional to the thickness of the multiplication layer. However, a thicker multiplication layer was also associated with a higher breakdown voltage. The bandwidth of the device, on the other hand, was inversely proportional to the product of the absorption layer thickness and the carrier transit time. A thinner absorption layer offers a higher bandwidth, but it may compromise responsivity and quantum efficiency. In this study, the dependence of the photodetectors’ operating characteristics on the doping concentration used for the multiplication and absorption layers is revealed for the first time.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Singh, Anand, et Ravinder Pal. « Infrared Avalanche Photodiode Detectors ». Defence Science Journal 67, no 2 (14 mars 2017) : 159. http://dx.doi.org/10.14429/dsj.67.11183.

Texte intégral
Résumé :
This study presents on the design, fabrication and characteristics of HgCdTe mid-wave infrared avalanche photodiode (MWIR APD). The gain of 800 at - 8 V bias is measured in n+-ν-p+ detector array with pitch size of 30 μm. The gain independent bandwidth of 6 MHz is achieved in the fabricated device. This paper also covers the status of HgCdTe and III-V material based IR-APD technology. These APDs having high internal gain and bandwidth are suitable for the detection of attenuated optical signals such as in the battle field conditions/long range imaging in defence and space applications. It provides a combined solution for both detection and amplification if the detector receives a very weak optical signal. HgCdTe based APDs provide high avalanche gain with low excess noise, high quantum efficiency, low dark current and fast response time.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Pauchard, A., P. A. Besse, M. Bartek, R. F. Wolffenbuttel et R. S. Popovic. « Ultraviolet-selective avalanche photodiode ». Sensors and Actuators A : Physical 82, no 1-3 (mai 2000) : 128–34. http://dx.doi.org/10.1016/s0924-4247(99)00326-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Hobbs, Matthew James, et Jon R. Willmott. « InGaAs avalanche photodiode thermometry ». Measurement Science and Technology 31, no 1 (25 octobre 2019) : 014005. http://dx.doi.org/10.1088/1361-6501/ab41c6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Levi, Barbara Goss. « High‐Gain Avalanche Photodiode ». Physics Today 50, no 4 (avril 1997) : 21–22. http://dx.doi.org/10.1063/1.881723.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Cao, Ye, Tarick Blain, Jonathan D. Taylor-Mew, Longyan Li, Jo Shien Ng et Chee Hing Tan. « Extremely low excess noise avalanche photodiode with GaAsSb absorption region and AlGaAsSb avalanche region ». Applied Physics Letters 122, no 5 (30 janvier 2023) : 051103. http://dx.doi.org/10.1063/5.0139495.

Texte intégral
Résumé :
An extremely low noise Separate Absorption and Multiplication Avalanche Photodiode (SAM-APD), consisting of a GaAs0.52Sb0.48 absorption region and an Al0.85Ga0.15As0.56Sb0.44 avalanche region, is reported. The device incorporated an appropriate doping profile to suppress tunneling current from the absorption region, achieving a large avalanche gain, ∼130 at room temperature. It exhibits extremely low excess noise factors of 1.52 and 2.48 at the gain of 10 and 20, respectively. At the gain of 20, our measured excess noise factor of 2.48 is more than three times lower than that in the commercial InGaAs/InP SAM-APD. These results are corroborated by a Simple Monte Carlo simulation. Our results demonstrate the potential of low excess noise performance from GaAs0.52Sb0.48/Al0.85Ga0.15As0.56Sb0.44 avalanche photodiodes.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Sousa, Ana, Rafael Pinto, Bruno Couto, Beltran Nadal, Hugo Onderwater, Paulo Gordo, Manuel Abreu, Rui Melicio et Patrick Michel. « Breadboard of Microchip and Avalanche Photodiode in Linear and Geiger Mode for LiDAR Applications ». Journal of Physics : Conference Series 2526, no 1 (1 juin 2023) : 012118. http://dx.doi.org/10.1088/1742-6596/2526/1/012118.

Texte intégral
Résumé :
Abstract This paper reports the implementation of two critical technologies used in LiDARs: 1) A microchip Q-switched laser breadboard and 2) breadboard of an Indium gallium arsenide avalanche photodiode working at 300 K with high reverse polarization voltages. Microchip Q-switched lasers are small solid state back pumped lasers, that can generate high energy short pulses. The implemented breadboard used an Erbium and Ytterbium co doped phosphate glass, a COMALO crystal with 98% (initial transparency) and an output coupler of 98% reflectivity. For the sensor test, a system for the simultaneous operation in vacuum and wide range of temperatures was developed. Avalanche photodiodes are reverse polarized photodiodes with high internal gain, due to their multiple layer composition, capable of building up high values of photocurrent from small optical signals by exploiting the avalanche breakdown effects. The test avalanche photodetector was assembled to be operated in two modes: Linear and Geiger mode, to achieve this behavior, a transimpedance amplifier circuit was implemented. These two technologies are critical for mobile LiDAR applications, due to its low mass and high efficiency. The paper describes the breadboard implementation method and sensor characterization at low temperature and high voltage (beyond breakdown voltage).
Styles APA, Harvard, Vancouver, ISO, etc.
12

Ren, Min, Scott Maddox, Yaojia Chen, Madison Woodson, Joe C. Campbell et Seth Bank. « AlInAsSb/GaSb staircase avalanche photodiode ». Applied Physics Letters 108, no 8 (22 février 2016) : 081101. http://dx.doi.org/10.1063/1.4942370.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Woodson, Madison E., Min Ren, Scott J. Maddox, Yaojia Chen, Seth R. Bank et Joe C. Campbell. « Low-noise AlInAsSb avalanche photodiode ». Applied Physics Letters 108, no 8 (22 février 2016) : 081102. http://dx.doi.org/10.1063/1.4942372.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Batra, S., A. Lahiri et P. Chakrabarti. « InP/Ga0.47In0.53As superlattice avalanche photodiode ». Electronics Letters 24, no 15 (1988) : 964. http://dx.doi.org/10.1049/el:19880657.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Huang, Mengyuan, Su Li, Pengfei Cai, Guanghui Hou, Tzung-I. Su, Wang Chen, Ching-yin Hong et Dong Pan. « Germanium on Silicon Avalanche Photodiode ». IEEE Journal of Selected Topics in Quantum Electronics 24, no 2 (mars 2018) : 1–11. http://dx.doi.org/10.1109/jstqe.2017.2749958.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Li, Bin, Xiaohong Yang, Weihong Yin, Qianqian Lü, Rong Cui et Qin Han. « A high-speed avalanche photodiode ». Journal of Semiconductors 35, no 7 (juillet 2014) : 074009. http://dx.doi.org/10.1088/1674-4926/35/7/074009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Kagawa, T., Y. Kawamura et H. Iwamura. « InGaAsP/InAlAs superlattice avalanche photodiode ». IEEE Journal of Quantum Electronics 28, no 6 (juin 1992) : 1419–23. http://dx.doi.org/10.1109/3.135291.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Beck, J., C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma et J. Campbell. « The HgCdTe electron avalanche photodiode ». Journal of Electronic Materials 35, no 6 (juin 2006) : 1166–73. http://dx.doi.org/10.1007/s11664-006-0237-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Nada, Masahiro, Fumito Nakajima, Toshihide Yoshimatsu, Yasuhiko Nakanishi, Atsushi Kanda, Takahiko Shindo, Shoko Tatsumi, Hideaki Matsuzaki et Kimikazu Sano. « Inverted p-down Design for High-Speed Photodetectors ». Photonics 8, no 2 (4 février 2021) : 39. http://dx.doi.org/10.3390/photonics8020039.

Texte intégral
Résumé :
We discuss the structural consideration of high-speed photodetectors used for optical communications, focusing on vertical illumination photodetectors suitable for device fabrication and optical coupling. We fabricate an avalanche photodiode that can handle 100-Gbit/s four-level pulse-amplitude modulation (50 Gbaud) signals, and pin photodiodes for 100-Gbaud operation; both are fabricated with our unique inverted p-side down (p-down) design.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Gulakov, I. R., A. O. Zenevich, O. V. Kochergina et T. A. Matkovskaia. « Study of the characteristics of germanium avalanche photodiodes in the photon counting mode ». Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series 67, no 2 (2 juillet 2022) : 222–29. http://dx.doi.org/10.29235/1561-8358-2022-67-2-222-229.

Texte intégral
Résumé :
A study was made of the characteristics of photodetectors for fiber-optic communication lines using quantum cryptographic systems – germanium avalanche photodiodes operating in the photon counting mode. In particular, it was established at what highest temperature the implementation of the photon counting mode is possible, and the influence of temperature and overvoltage on the sensitivity of photodiodes is also considered. An experimental setup has been developed for the research. It has been determined that the highest ambient temperature at which LFD-2 germanium avalanche photodiodes operate in the photon counting mode is 243 K. It has also been found that the highest sensitivity of germanium avalanche photodiodes corresponds to the optical radiation wavelength range of 1310÷1490 nm. Lowering the temperature leads to an increase in the sensitivity of germanium avalanche photodiodes. It was found that the dependence of the signal-to-noise ratio on overvoltage has a maximum corresponding to overvoltage ΔU = 0.1 V. Lowering the temperature led to an increase in sensitivity and signal-to-noise ratio. Since there was no shift in the maximum dependence of the signal-to-noise ratio on the overvoltage, it was therefore concluded that when the avalanche photodiode operates in the photon counting mode, in order to ensure maximum sensitivity, it is necessary to select the overvoltage corresponding to the maximum signal-to-noise ratio. The results obtained can be used in quantum cryptographic systems, technical means of protecting information transmitted over fiber-optic communication lines, and for the metrology of single-photon radiation sources.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Buchner, Andre, Stefan Hadrath, Roman Burkard, Florian M. Kolb, Jennifer Ruskowski, Manuel Ligges et Anton Grabmaier. « Analytical Evaluation of Signal-to-Noise Ratios for Avalanche- and Single-Photon Avalanche Diodes ». Sensors 21, no 8 (20 avril 2021) : 2887. http://dx.doi.org/10.3390/s21082887.

Texte intégral
Résumé :
Performance of systems for optical detection depends on the choice of the right detector for the right application. Designers of optical systems for ranging applications can choose from a variety of highly sensitive photodetectors, of which the two most prominent ones are linear mode avalanche photodiodes (LM-APDs or APDs) and Geiger-mode APDs or single-photon avalanche diodes (SPADs). Both achieve high responsivity and fast optical response, while maintaining low noise characteristics, which is crucial in low-light applications such as fluorescence lifetime measurements or high intensity measurements, for example, Light Detection and Ranging (LiDAR), in outdoor scenarios. The signal-to-noise ratio (SNR) of detectors is used as an analytical, scenario-dependent tool to simplify detector choice for optical system designers depending on technologically achievable photodiode parameters. In this article, analytical methods are used to obtain a universal SNR comparison of APDs and SPADs for the first time. Different signal and ambient light power levels are evaluated. The low noise characteristic of a typical SPAD leads to high SNR in scenarios with overall low signal power, but high background illumination can saturate the detector. LM-APDs achieve higher SNR in systems with higher signal and noise power but compromise signals with low power because of the noise characteristic of the diode and its readout electronics. Besides pure differentiation of signal levels without time information, ranging performance in LiDAR with time-dependent signals is discussed for a reference distance of 100 m. This evaluation should support LiDAR system designers in choosing a matching photodiode and allows for further discussion regarding future technological development and multi pixel detector designs in a common framework.
Styles APA, Harvard, Vancouver, ISO, etc.
22

de Sousa, Ana, Rafael Pinto, Bruno Couto, Beltran Nadal, Hugo Onderwater, Paulo Gordo, Manuel Abreu, Rui Melicio et Patrick Michel. « Breadboard of Microchip Laser and Avalanche Photodiode in Geiger and Linear Mode for LiDAR Applications ». Applied Sciences 13, no 9 (3 mai 2023) : 5631. http://dx.doi.org/10.3390/app13095631.

Texte intégral
Résumé :
This paper reports the implementation of two critical technologies used in light detection and ranging for space applications: (1) a microchip Q-switched laser breadboard; (2) a breadboard of an indium gallium arsenide avalanche photodiode working at 292 K with high reverse polarization voltages. Microchip Q-switched lasers are small solid-state back-pumped lasers that can generate high-energy short pulses. The implemented breadboard used an erbium and ytterbium co-doped phosphate glass, a Co:Spinel crystal with 98% initial transparency, and an output coupler with 98% reflectivity. For the sensor test, a system for simultaneous operation in vacuum and a wide range of temperatures was developed. Avalanche photodiodes are reverse-polarized photodiodes with high internal gain due to their multiple layer composition, capable of building up high values of photocurrent from small optical signals by exploiting the avalanche breakdown effects. The test avalanche photodetector was assembled to be operated in two modes: linear and Geiger mode. The produced photocurrent was measured by using: (1) a passive quenching circuit; (2) a transimpedance amplifier circuit. These two technologies are important for mobile light detection and ranging applications due to their low mass and high efficiencies. The paper describes the breadboard’s implementation methods and sensor characterization at low and room temperatures with high bias voltages (beyond breakdown voltage).
Styles APA, Harvard, Vancouver, ISO, etc.
23

Sadigov, A. Z., F. I. Ahmadov, Z. Y. Sadygov, G. S. Ahmadov, D. Berikov, M. Holik, A. Mammadli et al. « Improvement of parameters of micro-pixel avalanche photodiodes ». Journal of Instrumentation 17, no 07 (1 juillet 2022) : P07021. http://dx.doi.org/10.1088/1748-0221/17/07/p07021.

Texte intégral
Résumé :
Abstract The paper is concerned with the parameter study of a new generation of micro-pixel avalanche photodiodes (MAPD) with deeply buried pixel structure, also named silicon photomultipliers (SiPM) or multi-pixel photon counter (MPPC). The new MAPD of type MAPD-3NM was manufactured in the frame of collaboration with Zecotek Company. Measurements were carried out and discussed in terms of the important parameters such as the current-voltage and capacitance-voltage characteristic, gain, the temperature coefficient of breakdown voltage, breakdown voltage, and gamma-ray detection performance using an LFS scintillator. The obtained results showed that the newly developed MAPD-3NM photodiode outperformed the previous generation in most parameters and can be successfully applied in space application, medicine, high-energy physics, and security. New proposals are also discussed, for further improvement of the parameters of the MAPD photodiodes that will be produced in the coming years.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Pham, Dinh Khang, Tien Hung Dinh, Kim Chien Dinh, Van Hiep Cao, Xuan Hai Nguyen et Ngoc Anh Nguyen. « Designing and setting up the scintillationdetector using CsI(Tl) crystals and avalanche photodiode for gamma-ray measurement ». Ministry of Science and Technology, Vietnam 63, no 3 (30 mars 2021) : 46–49. http://dx.doi.org/10.31276/vjst.63(3).46-49.

Texte intégral
Résumé :
Localization of the scintillation detectors manufacturing process has many benefits because of the high detection efficiency of the detectors, user-friendly, and consistent with general research objectives. Using a photodiode instead of a photomultiplier tube (PMT) allows saving energy, shortening the detector volume, and removing high voltage power supply and amplifier. The combination of CsI(Tl) scintillator, avalanche photodiode, charge sensitive preamplifier, wide range amplifier, and power supply system has been integrated into the detector. This study presents new results in manufacturing a home-made scintillation detector using avalanche photodiode. The detectors of this type can be used in hospitals, in the nuclear laboratory of universities for the students training, etc.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Yin Liju, 尹丽菊, 陈钱 Chen Qian et 张灿林 Zhang Canlin. « Spectral Response Characterization of Avalanche photodiode ». Laser & ; Optoelectronics Progress 47, no 11 (2010) : 111101. http://dx.doi.org/10.3788/lop47.111101.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Li, Kejia, Han-Din Liu, Qiugui Zhou, Dion McIntosh et Joe C. Campbell. « SiC avalanche photodiode array with microlenses ». Optics Express 18, no 11 (18 mai 2010) : 11713. http://dx.doi.org/10.1364/oe.18.011713.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

McIntyre, R. J. « Comment : InP/Ga0.47In0.53As superlattice avalanche photodiode ». Electronics Letters 24, no 22 (1988) : 1399. http://dx.doi.org/10.1049/el:19880957.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Batra, S., A. Lahiri et P. Chakrabarti. « Reply : InP/Ga0.47In0.53As superlattice avalanche photodiode ». Electronics Letters 24, no 22 (1988) : 1399. http://dx.doi.org/10.1049/el:19880958.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Brennan, K. « Theory of the channeling avalanche photodiode ». IEEE Transactions on Electron Devices 32, no 11 (novembre 1985) : 2467–78. http://dx.doi.org/10.1109/t-ed.1985.22296.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Cadorette, J., S. Rodrigue et R. Lecomte. « Tuning of avalanche photodiode PET camera ». IEEE Transactions on Nuclear Science 40, no 4 (août 1993) : 1062–66. http://dx.doi.org/10.1109/23.256713.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Gramsch, E., M. Szawlowski, S. Zhang et M. Madden. « Fast, high density avalanche photodiode array ». IEEE Transactions on Nuclear Science 41, no 4 (1994) : 762–66. http://dx.doi.org/10.1109/23.322803.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Blazej, Josef, Ivan Prochazka, Karel Hamal, Bruno Sopko et Dominik Chren. « Gallium-based avalanche photodiode optical crosstalk ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 567, no 1 (novembre 2006) : 239–41. http://dx.doi.org/10.1016/j.nima.2006.05.100.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Olyaee, Saeed, Mohammad Soroosh et Mahdieh Izadpanah. « Transfer matrix modeling of avalanche photodiode ». Frontiers of Optoelectronics 5, no 3 (31 juillet 2012) : 317–21. http://dx.doi.org/10.1007/s12200-012-0266-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Singh, Anand, A. K. Shukla et Ravinder Pal. « HgCdTe e-avalanche photodiode detector arrays ». AIP Advances 5, no 8 (août 2015) : 087172. http://dx.doi.org/10.1063/1.4929773.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Ramirez, David A., Jiayi Shao, Majeed M. Hayat et Sanjay Krishna. « Midwave infrared quantum dot avalanche photodiode ». Applied Physics Letters 97, no 22 (29 novembre 2010) : 221106. http://dx.doi.org/10.1063/1.3520519.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Marshall, G. F., J. C. Jackson, J. Denton, P. K. Hurley, O. Braddell et A. Mathewson. « Avalanche Photodiode-Based Active Pixel Imager ». IEEE Transactions on Electron Devices 51, no 3 (mars 2004) : 509–11. http://dx.doi.org/10.1109/ted.2003.823051.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Ando, H., et H. Kanbe. « Effect of avalanche build-up time on avalanche photodiode sensitivity ». IEEE Journal of Quantum Electronics 21, no 3 (mars 1985) : 251–55. http://dx.doi.org/10.1109/jqe.1985.1072646.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Suzuki, Shingo, Naoto Namekata, Kenji Tsujino et Shuichiro Inoue. « Highly enhanced avalanche probability using sinusoidally-gated silicon avalanche photodiode ». Applied Physics Letters 104, no 4 (27 janvier 2014) : 041105. http://dx.doi.org/10.1063/1.4861645.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Aristin, P., A. Torabi, A. K. Garrison, H. M. Harris et C. J. Summers. « New doped multiple‐quantum‐well avalanche photodiode : The doped barrier Al0.35Ga0.65As/GaAs multiple‐quantum‐well avalanche photodiode ». Applied Physics Letters 60, no 1 (6 janvier 1992) : 85–87. http://dx.doi.org/10.1063/1.107383.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Blazej, J., et I. Prochazka. « Avalanche dynamics in silicon avalanche single- and few-photon sensitive photodiode ». Journal of Physics : Conference Series 193 (1 novembre 2009) : 012041. http://dx.doi.org/10.1088/1742-6596/193/1/012041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Аруев, П. Н., В. П. Белик, А. А. Блохин, В. В. Забродский, А. В. Николаев, В. И. Сахаров, И. Т. Серенков, В. В. Филимонов et Е. В. Шерстнев. « Памяти Е.М. Круглова и Филимонова В.В. Квантовый выход кремниевого лавинного фотодиода в диапазонах длин волн 114-170 и 210-1100 nm ». Письма в журнал технической физики 48, no 5 (2022) : 3. http://dx.doi.org/10.21883/pjtf.2022.05.52146.19026.

Texte intégral
Résumé :
Avalanche silicon photodiode have been developted for near ir, visible, UV and VUV light range. External quantum efficiency have been studied in 114 - 170 abd 210 - 1100nm range. It is demonstrated that photodiode reach from 29 to 9300 electrons/photon on 160 nm with bias voltage of 190 and 303 v respectively.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Kang, Jong-Ik, Hyuk-Kee Sung, Hyungtak Kim, Eugene Chong et Ho-Young Cha. « Diode quenching for Geiger mode avalanche photodiode ». IEICE Electronics Express 15, no 9 (2018) : 20180062. http://dx.doi.org/10.1587/elex.15.20180062.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Bielecki, Z. « Photoreceiver with avalanche C-30645 E photodiode ». IEE Proceedings - Optoelectronics 147, no 4 (1 août 2000) : 234–36. http://dx.doi.org/10.1049/ip-opt:20000592.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Csutak, S. M., J. Mogab, J. C. Campbell, S. Wang et J. D. Schaub. « Integrated silicon optical receiver with avalanche photodiode ». IEE Proceedings - Optoelectronics 150, no 3 (1 juin 2003) : 235–37. http://dx.doi.org/10.1049/ip-opt:20030391.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Levine, B. F., R. N. Sacks, J. Ko, M. Jazwiecki, J. A. Valdmanis, D. Gunther et J. H. Meier. « A New Planar InGaAs–InAlAs Avalanche Photodiode ». IEEE Photonics Technology Letters 18, no 18 (septembre 2006) : 1898–900. http://dx.doi.org/10.1109/lpt.2006.881684.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Sadygov, Z., A. Ol’shevskii, N. Anfimov, T. Bokova, A. Dovlatov, V. Zhezher, Z. Krumshtein et al. « Microchannel avalanche photodiode with broad linearity range ». Technical Physics Letters 36, no 6 (juin 2010) : 528–30. http://dx.doi.org/10.1134/s106378501006012x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Liu, Han-Din, Xiaoguang Zheng, Qiugui Zhou, Xiaogang Bai, Dion C. Mcintosh et Joe C. Campbell. « Double Mesa Sidewall Silicon Carbide Avalanche Photodiode ». IEEE Journal of Quantum Electronics 45, no 12 (décembre 2009) : 1524–28. http://dx.doi.org/10.1109/jqe.2009.2022046.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Abautret, J., J. P. Perez, A. Evirgen, J. Rothman, A. Cordat et P. Christol. « Characterization of midwave infrared InSb avalanche photodiode ». Journal of Applied Physics 117, no 24 (28 juin 2015) : 244502. http://dx.doi.org/10.1063/1.4922977.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Singh, Anand, A. K. Shukla et Ravinder Pal. « Performance of Graded Bandgap HgCdTe Avalanche Photodiode ». IEEE Transactions on Electron Devices 64, no 3 (mars 2017) : 1146–52. http://dx.doi.org/10.1109/ted.2017.2650412.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Kirn, Th, D. Schmitz, J. Schwenke, Th Flügel, D. Renker et H. P. Wirtz. « Wavelength dependence of avalanche photodiode (APD) parameters ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 387, no 1-2 (mars 1997) : 202–4. http://dx.doi.org/10.1016/s0168-9002(96)00990-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie