Articles de revues sur le sujet « Photobiocatalysis »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Photobiocatalysis.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Photobiocatalysis ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Harrison, Wesley, Xiaoqiang Huang et Huimin Zhao. « Photobiocatalysis for Abiological Transformations ». Accounts of Chemical Research 55, no 8 (30 mars 2022) : 1087–96. http://dx.doi.org/10.1021/acs.accounts.1c00719.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Gonçalves, Leticia C. P., Hamid R. Mansouri, Shadi PourMehdi, Mohamed Abdellah, Bruna S. Fadiga, Erick L. Bastos, Jacinto Sá, Marko D. Mihovilovic et Florian Rudroff. « Boosting photobioredox catalysis by morpholine electron donors under aerobic conditions ». Catalysis Science & ; Technology 9, no 10 (2019) : 2682–88. http://dx.doi.org/10.1039/c9cy00496c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Gonçalves, Leticia C. P., Hamid R. Mansouri, Erick L. Bastos, Mohamed Abdellah, Bruna S. Fadiga, Jacinto Sá, Florian Rudroff et Marko D. Mihovilovic. « Morpholine-based buffers activate aerobic photobiocatalysis via spin correlated ion pair formation ». Catalysis Science & ; Technology 9, no 6 (2019) : 1365–71. http://dx.doi.org/10.1039/c8cy02524j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zhu, Dunming, et Ling Hua. « Photobiocatalysis enables asymmetric Csp3–Csp3 cross-electrophile coupling ». Chem Catalysis 2, no 10 (octobre 2022) : 2429–31. http://dx.doi.org/10.1016/j.checat.2022.09.041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Maciá-Agulló, Juan Antonio, Avelino Corma et Hermenegildo Garcia. « Photobiocatalysis : The Power of Combining Photocatalysis and Enzymes ». Chemistry - A European Journal 21, no 31 (26 mai 2015) : 10940–59. http://dx.doi.org/10.1002/chem.201406437.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Blossom, Benedikt M., David A. Russo, Raushan K. Singh, Bart van Oort, Malene B. Keller, Tor I. Simonsen, Alixander Perzon et al. « Photobiocatalysis by a Lytic Polysaccharide Monooxygenase Using Intermittent Illumination ». ACS Sustainable Chemistry & ; Engineering 8, no 25 (21 mai 2020) : 9301–10. http://dx.doi.org/10.1021/acssuschemeng.0c00702.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

MARUTHAMUTHU, P., S. MUTHU, K. GURUNATHAN, M. ASHOKKUMAR et M. SASTRI. « Photobiocatalysis : hydrogen evolution using a semiconductor coupled with photosynthetic bacteria ». International Journal of Hydrogen Energy 17, no 11 (novembre 1992) : 863–66. http://dx.doi.org/10.1016/0360-3199(92)90036-v.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Macia-Agullo, Juan Antonio, Avelino Corma et Hermenegildo Garcia. « ChemInform Abstract : Photobiocatalysis : The Power of Combining Photocatalysis and Enzymes ». ChemInform 46, no 38 (septembre 2015) : no. http://dx.doi.org/10.1002/chin.201538283.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Wang, Zijuan, Dong Gao, Hao Geng et Chengfen Xing. « Enhancing hydrogen production by photobiocatalysis through Rhodopseudomonas palustris coupled with conjugated polymers ». Journal of Materials Chemistry A 9, no 35 (2021) : 19788–95. http://dx.doi.org/10.1039/d1ta01019k.

Texte intégral
Résumé :
Herein, a feasible and simple bio-hybrid complex based on water-soluble conjugated polymers and Rhodopseudomonas palustris (R. palustris), one kind of photosynthetic bacteria, was constructed for enhancing photocatalytic hydrogen production.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lee, Sahng Ha, Da Som Choi, Su Keun Kuk et Chan Beum Park. « Photobiocatalysis : Activating Redox Enzymes by Direct or Indirect Transfer of Photoinduced Electrons ». Angewandte Chemie International Edition 57, no 27 (2 juillet 2018) : 7958–85. http://dx.doi.org/10.1002/anie.201710070.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Wen, Donghui, Guozheng Li, Rui Xing, Seongjun Park et Bruce E. Rittmann. « 2,4-DNT removal in intimately coupled photobiocatalysis : the roles of adsorption, photolysis, photocatalysis, and biotransformation ». Applied Microbiology and Biotechnology 95, no 1 (19 novembre 2011) : 263–72. http://dx.doi.org/10.1007/s00253-011-3692-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Hobisch, Markus, Jelena Spasic, Lenny Malihan‐Yap, Giovanni Davide Barone, Kathrin Castiglione, Paula Tamagnini, Selin Kara et Robert Kourist. « Internal Illumination to Overcome the Cell Density Limitation in the Scale‐up of Whole‐Cell Photobiocatalysis ». ChemSusChem 14, no 15 (6 juillet 2021) : 3219–25. http://dx.doi.org/10.1002/cssc.202100832.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Shumyantseva, Victoria V., Polina I. Koroleva, Tatiana V. Bulko et Lyubov E. Agafonova. « Alternative Electron Sources for Cytochrome P450s Catalytic Cycle : Biosensing and Biosynthetic Application ». Processes 11, no 6 (13 juin 2023) : 1801. http://dx.doi.org/10.3390/pr11061801.

Texte intégral
Résumé :
The functional significance of cytochrome P450s (CYP) enzymes is their ability to catalyze the biotransformation of xenobiotics and endogenous compounds. P450 enzymes catalyze regio- and stereoselective oxidations of C-C and C-H bonds in the presence of oxygen as a cosubstrate. Initiation of cytochrome P450 catalytic cycle needs an electron donor (NADPH, NADH cofactor) in nature or alternative artificial electron donors such as electrodes, peroxides, photo reduction, and construction of enzymatic “galvanic couple”. In our review paper, we described alternative “handmade” electron sources to support cytochrome P450 catalysis. Physical-chemical methods in relation to biomolecules are possible to convert from laboratory to industry and construct P450-bioreactors for practical application. We analyzed electrochemical reactions using modified electrodes as electron donors. Electrode/P450 systems are the most analyzed in terms of the mechanisms underlying P450-catalyzed reactions. Comparative analysis of flat 2D and nanopore 3D electrode modifiers is discussed. Solar-powered photobiocatalysis for CYP systems with photocurrents providing electrons to heme iron of CYP and photoelectrochemical biosensors are also promising alternative light-driven systems. Several examples of artificial “galvanic element” construction using Zn as an electron source for the reduction of Fe3+ ion of heme demonstrated potential application. The characteristics, performance, and potential applications of P450 electrochemical systems are also discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Garcia-Borràs, Marc. « Photobiocatalysts tame nitrogen-centred radicals ». Nature Catalysis 6, no 8 (23 août 2023) : 654–56. http://dx.doi.org/10.1038/s41929-023-01004-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Cheng, Feng, Heng Li, Dong-Yang Wu, Ju-Mou Li, Yi Fan, Ya-Ping Xue et Yu-Guo Zheng. « Light-driven deracemization of phosphinothricin by engineered fatty acid photodecarboxylase on a gram scale ». Green Chemistry 22, no 20 (2020) : 6815–18. http://dx.doi.org/10.1039/d0gc02696d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Churakova, Ekaterina, Martin Kluge, René Ullrich, Isabel Arends, Martin Hofrichter et Frank Hollmann. « Specific Photobiocatalytic Oxyfunctionalization Reactions ». Angewandte Chemie International Edition 50, no 45 (16 septembre 2011) : 10716–19. http://dx.doi.org/10.1002/anie.201105308.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Churakova, Ekaterina, Martin Kluge, René Ullrich, Isabel Arends, Martin Hofrichter et Frank Hollmann. « Specific Photobiocatalytic Oxyfunctionalization Reactions ». Angewandte Chemie 123, no 45 (16 septembre 2011) : 10904–7. http://dx.doi.org/10.1002/ange.201105308.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Le, Thien-Kim, Jong Hyun Park, Da Som Choi, Ga-Young Lee, Woo Sung Choi, Ki Jun Jeong, Chan Beum Park et Chul-Ho Yun. « Solar-driven biocatalytic C-hydroxylation through direct transfer of photoinduced electrons ». Green Chemistry 21, no 3 (2019) : 515–25. http://dx.doi.org/10.1039/c8gc02398k.

Texte intégral
Résumé :
Photoactivation of flavins is coupled productively with the direct transfer of photoinduced electrons to P450s to achieve photobiocatalytic C-hydroxylation reactions in the absence of nicotinamide cofactors.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Kim, Jinhyun, Yang Woo Lee, Eun-Gyu Choi, Passarut Boonmongkolras, Byoung Wook Jeon, Hojin Lee, Seung Tae Kim et al. « Robust FeOOH/BiVO4/Cu(In, Ga)Se2 tandem structure for solar-powered biocatalytic CO2 reduction ». Journal of Materials Chemistry A 8, no 17 (2020) : 8496–502. http://dx.doi.org/10.1039/d0ta02069a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Zachos, Ioannis, Sarah Katharina Gaßmeyer, Daniel Bauer, Volker Sieber, Frank Hollmann et Robert Kourist. « Photobiocatalytic decarboxylation for olefin synthesis ». Chemical Communications 51, no 10 (2015) : 1918–21. http://dx.doi.org/10.1039/c4cc07276f.

Texte intégral
Résumé :
The oxidative decarboxylation of fatty acids to terminal alkenes was accomplished with high selectivity by combining a fatty acid decarboxylase OleTJE with the light-catalyzed generation of the cosubstrate hydrogen peroxide, resulting in a simple and efficient system for the light-driven cleavage of C–C bonds.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Singh, Praveen P., Surabhi Sinha, Pankaj Nainwal, Pravin K. Singh et Vishal Srivastava. « Novel applications of photobiocatalysts in chemical transformations ». RSC Advances 14, no 4 (2024) : 2590–601. http://dx.doi.org/10.1039/d3ra07371h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Hobisch, Markus, Morten Martinus Cornelis Harald Schie, Jinhyun Kim, Kasper Røjkjær Andersen, Miguel Alcalde, Robert Kourist, Chan Beum Park, Frank Hollmann et Selin Kara. « Solvent‐Free Photobiocatalytic Hydroxylation of Cyclohexane ». ChemCatChem 12, no 16 (12 juin 2020) : 4009–13. http://dx.doi.org/10.1002/cctc.202000512.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Yamanaka, Rio, Kaoru Nakamura, Masahiko Murakami et Akio Murakami. « Selective synthesis of cinnamyl alcohol by cyanobacterial photobiocatalysts ». Tetrahedron Letters 56, no 9 (février 2015) : 1089–91. http://dx.doi.org/10.1016/j.tetlet.2015.01.092.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Nadtochenko, Victor, Vitaliy Nikandrov, Yanina Borisova, Galina Nizova, Arseny Aybush, Andrei Kostrov, Igor Shagadeev et al. « TiO2 Supported Photobiocatalytic Systems ». Recent Patents on Catalysis 2, no 2 (31 mai 2014) : 91–100. http://dx.doi.org/10.2174/2211548x03666140129000100.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Rauch, M., S. Schmidt, I. W. C. E. Arends, K. Oppelt, S. Kara et F. Hollmann. « Photobiocatalytic alcohol oxidation using LED light sources ». Green Chemistry 19, no 2 (2017) : 376–79. http://dx.doi.org/10.1039/c6gc02008a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Yoon, Jaekyung, et Hyunku Joo. « Photobiocatalytic hydrogen production in a photoelectrochemical cell ». Korean Journal of Chemical Engineering 24, no 5 (septembre 2007) : 742–48. http://dx.doi.org/10.1007/s11814-007-0036-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Seel, Catharina Julia, Antonín Králík, Melanie Hacker, Annika Frank, Burkhard König et Tanja Gulder. « Atom-Economic Electron Donors for Photobiocatalytic Halogenations ». ChemCatChem 10, no 18 (25 juillet 2018) : 3960–63. http://dx.doi.org/10.1002/cctc.201800886.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Wang, Tian-Ci, Binh Khanh Mai, Zheng Zhang, Zhiyu Bo, Jiedong Li, Peng Liu et Yang Yang. « Stereoselective amino acid synthesis by photobiocatalytic oxidative coupling ». Nature 629, no 8010 (1 mai 2024) : 98–104. http://dx.doi.org/10.1038/s41586-024-07284-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Li, Yuanying, Bo Yuan, Zhoutong Sun et Wuyuan Zhang. « C–H bond functionalization reactions enabled by photobiocatalytic cascades ». Green Synthesis and Catalysis 2, no 3 (août 2021) : 267–74. http://dx.doi.org/10.1016/j.gresc.2021.06.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Krasnovsky, A. A., et V. V. Nikandrov. « The photobiocatalytic system : Inorganic semiconductors coupled to bacterial cells ». FEBS Letters 219, no 1 (13 juillet 1987) : 93–96. http://dx.doi.org/10.1016/0014-5793(87)81197-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Liao, Huan‐Xin, Hao‐Yu Jia, Jian‐Rong Dai, Min‐Hua Zong et Ning Li. « Bioinspired Cooperative Photobiocatalytic Regeneration of Oxidized Nicotinamide Cofactors for Catalytic Oxidations ». ChemSusChem 14, no 7 (16 février 2021) : 1687–91. http://dx.doi.org/10.1002/cssc.202100184.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Liao, Huan‐Xin, Hao‐Yu Jia, Jian‐Rong Dai, Min‐Hua Zong et Ning Li. « Bioinspired Cooperative Photobiocatalytic Regeneration of Oxidized Nicotinamide Cofactors for Catalytic Oxidations ». ChemSusChem 14, no 7 (25 mars 2021) : 1615. http://dx.doi.org/10.1002/cssc.202100471.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Kosem, Nuttavut, Yuki Honda, Motonori Watanabe, Atsushi Takagaki, Zahra Pourmand Tehrani, Fatima Haydous, Thomas Lippert et Tatsumi Ishihara. « Photobiocatalytic H2 evolution of GaN:ZnO and [FeFe]-hydrogenase recombinant Escherichia coli ». Catalysis Science & ; Technology 10, no 12 (2020) : 4042–52. http://dx.doi.org/10.1039/d0cy00128g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Hobisch, Markus, Morten Martinus Cornelis Harald Schie, Jinhyun Kim, Kasper Røjkjær Andersen, Miguel Alcalde, Robert Kourist, Chan Beum Park, Frank Hollmann et Selin Kara. « Front Cover : Solvent‐Free Photobiocatalytic Hydroxylation of Cyclohexane (ChemCatChem 16/2020) ». ChemCatChem 12, no 16 (20 août 2020) : 3956. http://dx.doi.org/10.1002/cctc.202001192.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Duong, Hong T., Yinqi Wu, Alexander Sutor, Bastien O. Burek, Frank Hollmann et Jonathan Z. Bloh. « Intensification of Photobiocatalytic Decarboxylation of Fatty Acids for the Production of Biodiesel ». ChemSusChem 14, no 4 (2 février 2021) : 1053–56. http://dx.doi.org/10.1002/cssc.202002957.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Wang, Yajie, Xiaoqiang Huang, Jingshu Hui, Lam Tung Vo et Huimin Zhao. « Stereoconvergent Reduction of Activated Alkenes by a Nicotinamide Free Synergistic Photobiocatalytic System ». ACS Catalysis 10, no 16 (24 juillet 2020) : 9431–37. http://dx.doi.org/10.1021/acscatal.0c02489.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Gurunathan, K. « Photobiocatalytic production of hydrogen using sensitized TiO2–MV2+ system coupled Rhodopseudomonas capsulata ». Journal of Molecular Catalysis A : Chemical 156, no 1-2 (mai 2000) : 59–67. http://dx.doi.org/10.1016/s1381-1169(99)00417-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Długosz, Olga, et Marcin Banach. « Sunlight photobiocatalytic performance of LDH-Me2O nanocomposites synthesised in deep eutectic solvent (DES) ». Solid State Sciences 149 (mars 2024) : 107456. http://dx.doi.org/10.1016/j.solidstatesciences.2024.107456.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Dhanabalan, K., et K. Gurunathan. « Photobiocatalytic Hydrogen Production by Using Cyanobacteria Coupled with Nanoparticles of CdS and CdS/ZnS ». Advanced Science, Engineering and Medicine 7, no 8 (1 août 2015) : 667–71. http://dx.doi.org/10.1166/asem.2015.1749.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Liao, Huan‐Xin, Hao‐Yu Jia, Jian‐Rong Dai, Min‐Hua Zong et Ning Li. « Front Cover : Bioinspired Cooperative Photobiocatalytic Regeneration of Oxidized Nicotinamide Cofactors for Catalytic Oxidations (7/2021) ». ChemSusChem 14, no 7 (31 mars 2021) : 1612. http://dx.doi.org/10.1002/cssc.202100472.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Reeve, Holly A., Philip A. Ash, HyunSeo Park, Ailun Huang, Michalis Posidias, Chloe Tomlinson, Oliver Lenz et Kylie A. Vincent. « Enzymes as modular catalysts for redox half-reactions in H2-powered chemical synthesis : from biology to technology ». Biochemical Journal 474, no 2 (6 janvier 2017) : 215–30. http://dx.doi.org/10.1042/bcj20160513.

Texte intégral
Résumé :
The present study considers the ways in which redox enzyme modules are coupled in living cells for linking reductive and oxidative half-reactions, and then reviews examples in which this concept can be exploited technologically in applications of coupled enzyme pairs. We discuss many examples in which enzymes are interfaced with electronically conductive particles to build up heterogeneous catalytic systems in an approach which could be termed synthetic biochemistry. We focus on reactions involving the H+/H2 redox couple catalysed by NiFe hydrogenase moieties in conjunction with other biocatalysed reactions to assemble systems directed towards synthesis of specialised chemicals, chemical building blocks or bio-derived fuel molecules. We review our work in which this approach is applied in designing enzyme-modified particles for H2-driven recycling of the nicotinamide cofactor NADH to provide a clean cofactor source for applications of NADH-dependent enzymes in chemical synthesis, presenting a combination of published and new work on these systems. We also consider related photobiocatalytic approaches for light-driven production of chemicals or H2 as a fuel. We emphasise the techniques available for understanding detailed catalytic properties of the enzymes responsible for individual redox half-reactions, and the importance of a fundamental understanding of the enzyme characteristics in enabling effective applications of redox biocatalysis.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Lan, Fang, Qin Wang, Hui Chen, Yi Chen, Yuanyuan Zhang, Bowen Huang, Hongbo Liu, Jian Liu et Run Li. « Preparation of Hydrophilic Conjugated Microporous Polymers for Efficient Visible Light-Driven Nicotinamide Adenine Dinucleotide Regeneration and Photobiocatalytic Formaldehyde Reduction ». ACS Catalysis 10, no 21 (22 octobre 2020) : 12976–86. http://dx.doi.org/10.1021/acscatal.0c03652.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Tanaka, Shusei, Hideo Kojima, Satomi Takeda, Rio Yamanaka et Tetsuo Takemura. « Asymmetric visible-light photobiocatalytic reduction of β-keto esters utilizing the cofactor recycling system in Synechocystis sp. PCC 6803 ». Tetrahedron Letters 61, no 24 (juin 2020) : 151973. http://dx.doi.org/10.1016/j.tetlet.2020.151973.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Erdem, Elif, Lenny Malihan-Yap, Leen Assil-Companioni, Hanna Grimm, Giovanni Davide Barone, Carole Serveau-Avesque, Agnes Amouric et al. « Photobiocatalytic Oxyfunctionalization with High Reaction Rate using a Baeyer–Villiger Monooxygenase from Burkholderia xenovorans in Metabolically Engineered Cyanobacteria ». ACS Catalysis 12, no 1 (10 décembre 2021) : 66–72. http://dx.doi.org/10.1021/acscatal.1c04555.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Broumidis, Emmanouil, et Francesca Paradisi. « Engineering a Dual‐Functionalized PolyHIPE Resin for Photobiocatalytic Flow Chemistry ». Angewandte Chemie International Edition, 20 mars 2024. http://dx.doi.org/10.1002/anie.202401912.

Texte intégral
Résumé :
The use of a dual resin for photobiocatalysis, encompassing both a photocatalyst and an immobilized enzyme, brings several challenges including effective immobilization, maintaining photocatalyst and enzyme activity and ensuring sufficient light penetration. However, the benefits such as integrated processes, reusability, easier product separation, and potential for scalability can outweigh these challenges, making dual resin systems promising for efficient and sustainable photobiocatalytic applications. In this work we employ a photosensitizer‐containing porous emulsion‐templated polymer as a functional support that is used to covalently anchor a chloroperoxidase from Curvularia inaequalis (CiVCPO). We demonstrate the versatility of this heterogeneous photobiocatalytic material which enables the bromination of four aromatic substrates, including Rutin – a natural occurring flavonol – under blue light (456 nm) irradiation and continuous flow conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Broumidis, Emmanouil, et Francesca Paradisi. « Engineering a Dual‐Functionalized PolyHIPE Resin for Photobiocatalytic Flow Chemistry ». Angewandte Chemie, 20 mars 2024. http://dx.doi.org/10.1002/ange.202401912.

Texte intégral
Résumé :
The use of a dual resin for photobiocatalysis, encompassing both a photocatalyst and an immobilized enzyme, brings several challenges including effective immobilization, maintaining photocatalyst and enzyme activity and ensuring sufficient light penetration. However, the benefits such as integrated processes, reusability, easier product separation, and potential for scalability can outweigh these challenges, making dual resin systems promising for efficient and sustainable photobiocatalytic applications. In this work we employ a photosensitizer‐containing porous emulsion‐templated polymer as a functional support that is used to covalently anchor a chloroperoxidase from Curvularia inaequalis (CiVCPO). We demonstrate the versatility of this heterogeneous photobiocatalytic material which enables the bromination of four aromatic substrates, including Rutin – a natural occurring flavonol – under blue light (456 nm) irradiation and continuous flow conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Chanquia, Santiago Nahuel, Alessia Valotta, Heidrun Gruber-Woelfler et Selin Kara. « Photobiocatalysis in Continuous Flow ». Frontiers in Catalysis 1 (10 janvier 2022). http://dx.doi.org/10.3389/fctls.2021.816538.

Texte intégral
Résumé :
In the last years, there were two fields that experienced an astonishing growth within the biocatalysis community: photobiocatalysis and applications of flow technology to catalytic processes. Therefore, it is not a surprise that the combination of these two research areas also gave place to several recent interesting articles. However, to the best of our knowledge, no review article covering these advances was published so far. Within this review, we present recent and very recent developments in the field of photobiocatalysis in continuous flow, we discuss several different practical applications and features of state-of-the art photobioreactors and lastly, we present some future perspectives in the field.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Zhou, Jianle, Frank Hollmann, Qi He, Wen Chen, Yunjian Ma et Yonghua Wang. « Continuous Fatty Acid Decarboxylation using an Immobilized Photodecarboxylase in a Membrane Reactor ». ChemSusChem, 20 novembre 2023. http://dx.doi.org/10.1002/cssc.202301326.

Texte intégral
Résumé :
The realm of photobiocatalytic alkane biofuel synthesis has burgeoned recently; however, the current dearth of well‐established and scalable production methodologies in this domain remains conspicuous. In this investigation, we engineered a modified form of membrane‐associated fatty acid photodecarboxylase sourced from Micractinium conductrix (McFAP). This endeavor resulted in creating an innovative assembled photoenzyme‐membrane ( protein load 5 mg cm‐2), subsequently integrated into an illuminated flow apparatus to achieve uninterrupted generation of alkane biofuels. Through batch experiments, the photoenzyme‐membrane exhibited its prowess in converting fatty acids spanning varying chain lengths (C6‐C18). Following this, the membrane‐flow mesoscale reactor attained a maximum space‐time yield of 1.2 mmol L‐1 h‐1 C8) and demonstrated commendable catalytic proficiency across eight consecutive cycles, culminating in a cumulative runtime of eight hours. These findings collectively underscored the photoenzyme‐membrane's capability to facilitate the biotransformation of diverse fatty acids, furnishing valuable benchmarks for the conversion of biomass via photobiocatalysis.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Dodge, N., D. A. Russo, B. M. Blossom, R. K. Singh, B. van Oort, R. Croce, M. J. Bjerrum et P. E. Jensen. « Water-soluble chlorophyll-binding proteins from Brassica oleracea allow for stable photobiocatalytic oxidation of cellulose by a lytic polysaccharide monooxygenase ». Biotechnology for Biofuels 13, no 1 (30 novembre 2020). http://dx.doi.org/10.1186/s13068-020-01832-7.

Texte intégral
Résumé :
Abstract Background Lytic polysaccharide monooxygenases (LPMOs) are indispensable redox enzymes used in industry for the saccharification of plant biomass. LPMO-driven cellulose oxidation can be enhanced considerably through photobiocatalysis using chlorophyll derivatives and light. Water soluble chlorophyll binding proteins (WSCPs) make it is possible to stabilize and solubilize chlorophyll in aqueous solution, allowing for in vitro studies on photostability and ROS production. Here we aim to apply WSCP–Chl a as a photosensitizing complex for photobiocatalysis with the LPMO, TtAA9. Results We have in this study demonstrated how WSCP reconstituted with chlorophyll a (WSCP–Chl a) can create a stable photosensitizing complex which produces controlled amounts of H2O2 in the presence of ascorbic acid and light. WSCP–Chl a is highly reactive and allows for tightly controlled formation of H2O2 by regulating light intensity. TtAA9 together with WSCP–Chl a shows increased cellulose oxidation under low light conditions, and the WSCP–Chl a complex remains stable after 24 h of light exposure. Additionally, the WSCP–Chl a complex demonstrates stability over a range of temperatures and pH conditions relevant for enzyme activity in industrial settings. Conclusion With WSCP–Chl a as the photosensitizer, the need to replenish Chl is greatly reduced, enhancing the catalytic lifetime of light-driven LPMOs and increasing the efficiency of cellulose depolymerization. WSCP–Chl a allows for stable photobiocatalysis providing a sustainable solution for biomass processing.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Wang, Jian-Peng, Min-Hua Zong et Ning Li. « Photobiocatalysis : A promising tool for sustainable synthesis ». Chem Catalysis, février 2024, 100933. http://dx.doi.org/10.1016/j.checat.2024.100933.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie