Sommaire
Littérature scientifique sur le sujet « Phopholamban »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Phopholamban ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Phopholamban"
Kranias, Evangelia G., et Roger J. Hajjar. « Modulation of Cardiac Contractility by the Phopholamban/SERCA2a Regulatome ». Circulation Research 110, no 12 (8 juin 2012) : 1646–60. http://dx.doi.org/10.1161/circresaha.111.259754.
Texte intégralTakagi, Yasushi, Kazushi Urasawa, Satoshi Kaneta, Noritsugu Nakano et Akira Kitabatake. « Phopholamban expression in the hearts of cardiomyopathic hamster, BIO53. 58 ». Journal of Cardiac Failure 4, no 3 (septembre 1998) : 110. http://dx.doi.org/10.1016/s1071-9164(98)90473-0.
Texte intégralXu, A., M. Jiang et N. Narayanan. « A16. Calmodulin triggers Cardiac SR Ca2+ pump function by disrupting Ca2+-ATPase-phopholamban interaction ». Journal of Molecular and Cellular Cardiology 40, no 6 (juin 2006) : 889. http://dx.doi.org/10.1016/j.yjmcc.2006.03.356.
Texte intégralHou, Zhanjia, Raffaello Verardi, Larry R. Masterson, Naomi Menards, Kim N. Ha, Alessandro Mascioni, Gianluigi Veglia et Seth L. Robia. « A Mutation Associated with DCM Increases Phospholamban Oligomerization and Decreases SERCA-Binding, but Does Not Change Phopholamban Tertiary Strucuture or Phosphorylation by PKA ». Biophysical Journal 98, no 3 (janvier 2010) : 434a. http://dx.doi.org/10.1016/j.bpj.2009.12.2356.
Texte intégralANTOONS, G. « 660 Altered phosphorylation status of phopholamban, PLB, and its contribution to the negative 6Ca2+9i-frequency relationship in the MLP-I-mouse with heart failure ». European Heart Journal 24, no 5 (mars 2003) : 118. http://dx.doi.org/10.1016/s0195-668x(03)94096-6.
Texte intégralThèses sur le sujet "Phopholamban"
TORRE, ELEONORA. « Role of SERCA stimulation and voltage-dependent Ca2+ channels in improving Ca2+ handling and sustaining heart automaticity ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/261917.
Texte intégralPart 1. Aim. Diabetic cardiomyopathy (DCM) is a multifactorial disease characterized by an early onset of diastolic dysfunction (DD). Mechanisms that can restore cardiac relaxation (lusitropic effect) improving intracellular Ca2+ dynamics, represent a promising therapeutic approach for cardiovascular diseases associated to DD. Istaroxime is a NaK ATPase (NKA) inhibitor with the property of accelerating Ca2+ re-uptake into sarcoplasmic reticulum (SR) through the SR Ca2+ pump (SERCA2a) stimulation. The project aims to characterize Istaroxime effects at a concentration mostly unaffecting NKA to isolate its effects dependent on SERCA2a only in a model of mild diabetes (type 1). Methods and results. Streptozotocin (STZ) treated rats were evaluated at 9 weeks after STZ injection in comparison to control (CTR) ones. SERCA2a-dependent Istaroxime effects were evaluated in cell-free system and in isolated left ventricular (LV) myocytes. STZ animals showed reduced SERCA2a protein level and activity and increased monomeric PLN/SERCA2a ratio. Intracellular Ca2+ handling and electrical activity were evaluated in isolated ventricular myocytes. In STZ myocytes, SERCA downregulation caused 1) increased diastolic Ca2+, 2) reduction in SR Ca2+ content and Ca2+ transient amplitude following control of membrane potential, 3) slower SR reloading process under Na/Ca exchanger (NCX) inhibition, 4) unchanged SR stability and Ca2+ sparks rate. Action potentials (APs) were significantly prolonged, resulting in an increased short-term variability (STV) of APD. Istaroxime (100 nM) significantly stimulated SERCA2a activity and reverted STZ-induced effects by 1) reducing diastolic Ca2+, 2) increasing Ca2+ transient amplitude and SR Ca2+ content, and 3) accelerating SR Ca2+ reuptake in STZ group. Moreover, Istaroxime, by stimulating SERCA2a, partially restored Ca2+ sparks characteristics and significantly accelerated Ca2+ sparks decay. Conclusions. SERCA2a stimulation by Istaroxime restores STZ-induced intracellular Ca2+ handling anomalies. Thus, SERCA2a stimulation can be considered a promising therapeutic approach for DD treatment. Part 2. Aim. Heart automaticity is generated in the sino-atrial node (SAN) by a functional interplay between ion channels of the plasma membrane and intracellular ryanodine receptor (RyR)-dependent Ca2+ release. SAN cells are characterized by the expression of voltage-gated L-type Cav1.3 and T-type Cav3.1 Ca2+ (Cav) channels in addition to L-type Cav1.2 channels, which are ubiquitously expressed in the heart. To investigate the significance of Cav expression for heart automaticity we used mutant mice carrying individual or concomitant genetic ablation of Cav1.3 and Cav3.1. Methods and results. Cav ablation additively reduced heart rate in mice. ECG recordings of intact Cav1.3-/-/Cav3.1-/- hearts showed atrioventricular rhythm dissociation and predominantly junctional, rather than SAN driven rhythmicity. Optical mapping of automaticity showed disruption of primary automaticity in Cav1.3-/-/Cav3.1-/- SAN and a shift of the leading pacemaker sites outside the SAN area. We also investigated the role of hyperpolarization-activated f-(HCN) channels, and TTX-sensitive Na+ (Nav) channels in residual automaticity of mutant mice. Concomitant pharmacologic inhibition of f-HCN and TTX-sensitive Nav channels slowed atrial automaticity in wild-type and Cav3.1-/-, while arrested it in 4/6 of Cav1.3-/-, 3/6 of Cav1.3-/-/Cav3.1-/-. Same results were confirmed in isolated Cav1.3-/-/Cav3.1-/- SAN pacemaker cells. Conclusions. Cav1.3 and Cav3.1 Ca2+ channels deletion disrupts normal heart automaticity by inducing bradycardia and altering cardiac conduction. Moreover, in the concomitant absence of Cav1.3 and Cav3.1 channels, f-HCN channels and TTX-sensitive Nav channels are the predominant mechanisms sustaining pacemaker activity.