Littérature scientifique sur le sujet « Phase quantification »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Phase quantification ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Phase quantification"
Döbelin, Nicola. « Validation of XRD phase quantification using semi-synthetic data ». Powder Diffraction 35, no 4 (13 octobre 2020) : 262–75. http://dx.doi.org/10.1017/s0885715620000573.
Texte intégralTakehara, L., M. A. Z. Vasconcellos, R. Hinrichs, J. B. M. da Cunha et F. Chemale Jr. « Phase quantification in iron ore ». Mineral Processing and Extractive Metallurgy 118, no 3 (septembre 2009) : 168–74. http://dx.doi.org/10.1179/174328509x431445.
Texte intégralHall, Caitrín, Ji Chul Kim et Alexandra Paxton. « Multidimensional recurrence quantification analysis of human-metronome phasing ». PLOS ONE 18, no 2 (23 février 2023) : e0279987. http://dx.doi.org/10.1371/journal.pone.0279987.
Texte intégralHarnett, L., M. Stennett, E. Maddrell et N. Hyatt. « Characterisation of glass ceramic wasteforms using quantitative image analysis of electron micrographs ». MRS Advances 7, no 5-6 (9 février 2022) : 86–89. http://dx.doi.org/10.1557/s43580-022-00227-0.
Texte intégralErgin, F. Gökhan. « Accuracy Improvement Quantification Using Phase-Separated PIV Measurements ». Proceedings of the International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics 21 (8 juillet 2024) : 1–7. http://dx.doi.org/10.55037/lxlaser.21st.4.
Texte intégralSheiati, Shohreh, Hoang Nguyen, Paivo Kinnunen et Navid Ranjbar. « Cementitious phase quantification using deep learning ». Cement and Concrete Research 172 (octobre 2023) : 107231. http://dx.doi.org/10.1016/j.cemconres.2023.107231.
Texte intégralReddy, K. Chiranjeevi, et Kolluru V. L. Subramaniam. « Quantitative phase analysis of slag hydrating in an alkaline environment ». Journal of Applied Crystallography 53, no 2 (13 mars 2020) : 424–34. http://dx.doi.org/10.1107/s1600576720001399.
Texte intégralHagni, Ann M. « Phase identification, phase quantification, and phase association determinations utilizing automated mineralogy technology ». JOM 60, no 4 (avril 2008) : 33–37. http://dx.doi.org/10.1007/s11837-008-0045-8.
Texte intégralWininger, Michael, Alex Krasner, Nam Hun Kim et William Craelius. « Phase plane quantification of single-joint smoothness ». Journal of Biomedical Engineering and Informatics 4, no 1 (15 mai 2018) : 40. http://dx.doi.org/10.5430/jbei.v4n1p40.
Texte intégralIlbagi, A., H. Henein et A. B. Phillion. « Phase quantification of impulse atomized Al68.5Ni31.5 alloy ». Journal of Materials Science 46, no 19 (2 novembre 2010) : 6235–42. http://dx.doi.org/10.1007/s10853-010-4972-8.
Texte intégralThèses sur le sujet "Phase quantification"
Butler, Jonny. « Phase structure, phrase structure, and quantification ». Thesis, University of York, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415175.
Texte intégralGouverneur, Yves. « Phase de Berry et quantification de skyrmions ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0002/MQ33663.pdf.
Texte intégralBeese, Allison M. « Quantification of phase transformation in stainless steel 301LN sheets ». Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/44870.
Texte intégralIncludes bibliographical references (p. 101-102).
This thesis investigates the large deformation behavior of stainless steel 301LN cold-rolled sheets which is largely governed by the initial anisotropy combined with the phase transformation during deformation. Stainless steel offers high strength with relatively high ductility as compared with other structural steels. The effect of initial anisotropy on the strength in different material directions is studied in order to predict forming and crash response of vehicle components. It is observed that loading in the material rolling direction results in increased strength in the cross direction, however loading in the material cross-rolling direction results in decreased strength in the rolling direction. The mechanism responsible for the above cross-hardening is complex and requires investigation of the microstructural evolution of the sheets. The austenitic stainless steel studied is comprised of only austenite when in bulk form. However, the process of cold-rolling the bulk material into sheets results in strain-induced martensitic phase transformation. Additional straining of the material leads to even more transformation of austenite to martensite. Because martensite is a harder phase than austenite, micromechanical arguments suggest that the amount of martensite has an effect on the plasticity and eventual fracture of this material. In this thesis, the martensitic evolution as a function of material direction and strain level is measured using three different techniques: X-ray diffraction, microscopy, and magnetic induction. The first two methods require interrupted tests, while using a Feritscope allows for in-situ measurement of the martensite content. However, the Feritscope must be calibrated by another measurement method.
(cont.) Observations of the measurements from each of the three methods confirm that the output of the Feritscope, Ferrite Number, is proportional to the martensite content. Therefore in-situ tests employing the Feritscope will allow for monitoring of the martensite content with evolution of stress and strain. From experiments described here, a directional dependence on martensite content is observed. The results from this study can be used to formulate an anisotropic martensite transformation kinetics law to describe the evolution of martensite content as a function of material anisotropy, stress state, and strain state.
by Allison M. Beese.
S.M.
Chatzimavroudis, George P. « Quantification of valvular regurgitation with magnetic resonance phase velocity mapping ». Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/11808.
Texte intégralWallin, Ashley Kay. « Renal Arterial Blood Flow Quantification by Breath-held Phase-velocity Encoded MRI ». Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4982.
Texte intégralEngberg, Jonas. « Deep morphological quantification and clustering of brain cancer cells using phase-contrast imaging ». Thesis, Uppsala universitet, Avdelningen för visuell information och interaktion, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-454959.
Texte intégralLin, Hung-Yu. « REAL-TIME FLOW QUANTIFICATION TECHNIQUES IN CARDIOVASCULAR MRI APPLICATIONS ». The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1238594589.
Texte intégralMilet, Sylvain F. « Visualization and quantification of left heart blood flow by phase encoding magnetic resonance imaging ». Thesis, Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/16056.
Texte intégralROTEM, RANY. « Development of Reliable Experimental Models for the Study of the Biological Behavior of Drug Nanocarriers ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241245.
Texte intégralThe curative effectiveness of current and new drugs is often limited by poor pharmacokinetics in-vivo. The use of nanoparticles as drug carriers seems promising in solving this problem. In this work we aimed to further explore and improve common drug delivery components and techniques. Starting with the synthesis of nanoparticles with a controlled number of molecular recognition ligands, we used bulky ligands and gel separation to obtain nanoparticles with a discrete number of chemical functional groups, used later to conjugate the same number of molecular recognition ligands. These nanoparticles later showed substantial difference in the in-vivo behavior. A second project focused on the in-depth characterization of the relationship between hydrophobic inorganic nanoparticles and the polymer surfactants used to enable their water dispersibility, as well enabling their functionalization. This investigation was done through separate quantification of polymer and inorganic nanoparticles and assessment of stability. Our results showed that the removal of excess polymer from such systems can result in loss of colloidal stability. A third project was aimed to describe the mechanism of polymeric nanoparticle’s endosomal escape and provide a platform for qualitative investigation and enhancement of this process. This goal was accomplished through two complementary in-vitro experiments testing two proposed mechanisms of endosomal escape. These results raised a key consideration when matching a particle capable of endosomal escape to a specific cell type as well as methods reduce interaction with serum proteins. A fourth project focused on developing an assay to quantify cytosolic delivery of nanoparticles and theoretically assessed the possibility of using fluorescence resonance energy transfer (FRET) - which was found to be not practical in this case - as well as implementing a pro-fluorophore to generate a measurable signal. Our preliminary results indicate this method might indeed be useful for this purpose in the future.
Deroche, Annabelle. « Optimisation de la limite de quantification d'une méthode chromatographique en phase gazeuse couplée à une détection par capture d'électrons : développement et application au dosage d'un antiandrogène dans le plasma humain ». Paris 5, 1997. http://www.theses.fr/1997PA05P224.
Texte intégralLivres sur le sujet "Phase quantification"
Khan, Zahid K. Phase I report : Ash quantification and characterization study. [Sacramento, CA] (1851 Heritage Lane, Sacramento, 95815) : R.W. Beck and Associates, 1992.
Trouver le texte intégralCurrens, James C. Characterization and quantification of nonpoint source pollution in a conduit-flow dominated karst aquifer underlying an extensive use agricultural region--phase III : Final report. [Lexington, Ky.] : Kentucky Geological Survey, University of Kentucky, 1999.
Trouver le texte intégralGillespie, J. L. Installation Restoration Program : Phase II--confirmation/quantification stage 2 : final report for Wurtsmith Air Force Base, Michigan : hydrogeology near Wurtsmith Air Force Base, Michigan. Offut Air Force Base, Neb : USAF Environmental Quality Branch, Headquarters Strategic Air Command, 1991.
Trouver le texte intégralGeological Survey (U.S.). Water Resources Division. et United States. Air Force. Environmental Quality Branch., dir. Installation Restoration Program : Phase II--confirmation/quantification stage 2 : final report for Wurtsmith Air Force Base, Michigan : hydrogeology near Wurtsmith Air Force Base, Michigan. Offut Air Force Base, Neb : USAF Environmental Quality Branch, Headquarters Strategic Air Command, 1991.
Trouver le texte intégralKadmon, Nirit. On unique and non-unique reference and asymmetric quantification. [Amherst, Mass : Dept of Linguistics, University of Massachusetts], 1987.
Trouver le texte intégralKadmon, Nirit. On unique and non-unique reference and asymmetric quantification. New York : Garland Pub., 1992.
Trouver le texte intégralRösler, Kai M., et Michel R. Magistris. The size of motor-evoked potentials : influencing parameters and quantification. Sous la direction de Charles M. Epstein, Eric M. Wassermann et Ulf Ziemann. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780198568926.013.0009.
Texte intégralWendling, Fabrice, Marco Congendo et Fernando H. Lopes da Silva. EEG Analysis. Sous la direction de Donald L. Schomer et Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0044.
Texte intégralPitt, Matthew. Motor unit anatomy and physiology. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198754596.003.0006.
Texte intégralChapitres de livres sur le sujet "Phase quantification"
Hayward-Lester, A., B. S. Chilton, P. A. Underhill, P. J. Oefner et P. A. Doris. « Quantification of Specific Nucleic Acids, Regulated RNA Processing, and Genomic Polymorphisms Using Reversed-Phase HPLC ». Dans Gene Quantification, 45–78. Boston, MA : Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-4164-5_4.
Texte intégralWei, Ya, Siming Liang et Weikang Kong. « Phase Quantification by Different Techniques ». Dans Mechanical Properties of Cementitious Materials at Microscale, 91–144. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6883-9_4.
Texte intégralJung, Bernd, et Michael Markl. « Phase-Contrast MRI and Flow Quantification ». Dans Magnetic Resonance Angiography, 51–64. New York, NY : Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-1686-0_3.
Texte intégralHamilton, Robert G. « Antigen Quantification : Measurement of Multivalent Antigens by Solid-Phase Immunoassay ». Dans Immunochemistry of Solid-Phase Immunoassay, 139–50. Boca Raton : CRC Press, 2024. http://dx.doi.org/10.1201/9780367812775-9.
Texte intégralSeuntjens, J. M., F. Y. Clark, T. J. Headley, A. C. Kilgo et N. Y. C. Yang. « Quantification of Second Phase Morphology in SSCL VQP Samples ». Dans Advances in Cryogenic Engineering Materials, 793–98. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-9053-5_101.
Texte intégralBrown, Andrew M., et Jennifer L. DeLessio. « Test-Analysis Modal Correlation of Rocket Engine Structures in Liquid Hydrogen – Phase II ». Dans Model Validation and Uncertainty Quantification, Volume 3, 413–30. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47638-0_46.
Texte intégralPlatz, Roland, et Benedict Götz. « Non-probabilistic Uncertainty Evaluation in the Concept Phase for Airplane Landing Gear Design ». Dans Model Validation and Uncertainty Quantification, Volume 3, 161–69. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54858-6_17.
Texte intégralLi, Qi, Gaohui Wang, Aral Sarrafi, Zhu Mao et Wenbo Lu. « Feasibility of Applying Phase-Based Video Processing for Modal Identification of Concrete Gravity Dams ». Dans Model Validation and Uncertainty Quantification, Volume 3, 137–44. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74793-4_18.
Texte intégralCanul-Polanco, J. A., et O. M. Jensen. « Variation in Phase Quantification of White Portland Cement by XRD ». Dans Concrete Durability and Service Life Planning, 8–12. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43332-1_2.
Texte intégralBurhenne, Heike, et Volkhard Kaever. « Quantification of Cyclic Dinucleotides by Reversed-Phase LC-MS/MS ». Dans Cyclic Nucleotide Signaling in Plants, 27–37. Totowa, NJ : Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-441-8_3.
Texte intégralActes de conférences sur le sujet "Phase quantification"
Sjödahl, Mikael, et Joel Wahl. « Bi-directional digital holographic imaging for the quantification of the scattering phase function of natural snow ». Dans Digital Holography and Three-Dimensional Imaging, Tu5A.5. Washington, D.C. : Optica Publishing Group, 2024. http://dx.doi.org/10.1364/dh.2024.tu5a.5.
Texte intégralJudson, Robert, Miroslav Hejna, Aparna Jorapur, Jun S. Song et Yuntian Zhang. « Quantification of mammalian tumor cell state plasticity with digital holographic cytometry ». Dans Quantitative Phase Imaging IV, sous la direction de Gabriel Popescu et YongKeun Park. SPIE, 2018. http://dx.doi.org/10.1117/12.2290462.
Texte intégralLee, Ariel J., Mahn Jae Lee, Hye-Jin Kim, WeiSun Park et YongKeun Park. « Label-free quantification of oxidative stress on HS68 cells using optical diffraction tomography ». Dans Quantitative Phase Imaging VII, sous la direction de Gabriel Popescu, YongKeun Park et Yang Liu. SPIE, 2021. http://dx.doi.org/10.1117/12.2584888.
Texte intégralYoon, Jonghee, Su-a. Yang, Kyoohyun Kim et YongKeun Park. « Quantification of neurotoxic effects on individual neuron cells using optical diffraction tomography (Conference Presentation) ». Dans Quantitative Phase Imaging II, sous la direction de Gabriel Popescu et YongKeun Park. SPIE, 2016. http://dx.doi.org/10.1117/12.2213780.
Texte intégralNiu, Mengxuan, et Renjie Zhou. « Compact and simultaneous three-wavelength quantitative phase microscopy for hemoglobin concentration quantification in red blood cells ». Dans Quantitative Phase Imaging VIII, sous la direction de Gabriel Popescu, YongKeun Park et Yang Liu. SPIE, 2022. http://dx.doi.org/10.1117/12.2610467.
Texte intégralCho, Hyewon, Nurbolat Aimakov, Inwoo Park, Myeonghoon Choi, Yerim Kim, Geosong Na, Sunghoon Lim et Woonggyu Jung. « Glomerulus quantification with deep learning based on novel multi-modal label-free quantitative phase imaging from a near-infrared (Conference Presentation) ». Dans Quantitative Phase Imaging IX, sous la direction de YongKeun Park et Yang Liu. SPIE, 2023. http://dx.doi.org/10.1117/12.2651095.
Texte intégralBennetzen, Martin Vad, Theis Ivan Solling et Xiomara Marquez. « Towards Four Phase Autosegmentation and Microporosity Quantification ». Dans Abu Dhabi International Petroleum Exhibition and Conference. Society of Petroleum Engineers, 2014. http://dx.doi.org/10.2118/171721-ms.
Texte intégralLangley, J., et Qun Zhao. « Quantification of SPIO nanoparticles using phase gradient mapping ». Dans 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2009. http://dx.doi.org/10.1109/iembs.2009.5333758.
Texte intégralOates, William S., et Justin Collins. « Uncertainty quantification in quantum informed ferroelectric phase field modeling ». Dans SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, sous la direction de Nakhiah C. Goulbourne. SPIE, 2015. http://dx.doi.org/10.1117/12.2084413.
Texte intégralManapuram, Ravi Kiran, Venugopal Reddy Manne, Narendran Sudheendran, Esteban F. Carbajal et Kirill V. Larin. « Quantification of microbubbles in blood with phase-sensitive SSOCT ». Dans BiOS, sous la direction de Valery V. Tuchin, Donald D. Duncan et Kirill V. Larin. SPIE, 2010. http://dx.doi.org/10.1117/12.842295.
Texte intégralRapports d'organisations sur le sujet "Phase quantification"
Nadiga, Balasubramanya T., et Emilio Baglietto. Uncertainty Quantification of Multi-Phase Closures. Office of Scientific and Technical Information (OSTI), octobre 2017. http://dx.doi.org/10.2172/1406195.
Texte intégralDibert, Ana, et Daniel Rehn. Yttrium solid phase equation of state with uncertainty quantification. Office of Scientific and Technical Information (OSTI), septembre 2024. http://dx.doi.org/10.2172/2440689.
Texte intégralMcQuerry, Meredith, et Reannan Riedy. Development of a Phase Change Material (PCM) Measurement Methodology for Fabric Surface Quantification. Ames (Iowa) : Iowa State University. Library, janvier 2019. http://dx.doi.org/10.31274/itaa.8293.
Texte intégralHerman, Brook, Todd Swannack, Nathan Richards, Nancy Gleason et Safra Altman. Development of a General Anadromous Fish Habitat Model : phase 2 : initial model quantification. Engineer Research and Development Center (U.S.), septembre 2020. http://dx.doi.org/10.21079/11681/38249.
Texte intégralWESTON (ROY F) INC WEST CHESTER PA. Installation Restoration Program, Phase II - Confirmation/Quantification Stage 1 for Travis Air Force Base, California. Fort Belvoir, VA : Defense Technical Information Center, avril 1986. http://dx.doi.org/10.21236/ada168077.
Texte intégralWESTON (ROY F) INC WEST CHESTER PA. Installation Restoration Program. Phase 2. Confirmation/Quantification. Stage 2. Volume 3. Luke Air Force Base, Arizona. Fort Belvoir, VA : Defense Technical Information Center, juin 1988. http://dx.doi.org/10.21236/ada199228.
Texte intégralWESTON (ROY F) INC WEST CHESTER PA. Installation Restoration Program. Phase 2. Confirmation/Quantification. Stage 2. Volume 4. Luke Air Force Base, Arizona. Fort Belvoir, VA : Defense Technical Information Center, juin 1988. http://dx.doi.org/10.21236/ada199229.
Texte intégralBrusseau, Mark L., Mart Oostrom et Mark White. Partitioning Tracers for In Situ Detection and Quantification of Dense Nonaqueous Phase Liquids in Groundwater Systems. Office of Scientific and Technical Information (OSTI), juin 1999. http://dx.doi.org/10.2172/827261.
Texte intégralAlexander, W. J., S. L. Winters et S. A. Guthrie. Installation Restoration Program. Phase 2. Confirmation/Quantification, Stage 2 for Seymour Johnson Air Force Base, North Carolina. Volume 1. Fort Belvoir, VA : Defense Technical Information Center, novembre 1988. http://dx.doi.org/10.21236/ada203412.
Texte intégralAlexander, W. J., S. L. Winters et S. A. Guthrie. Installation Restoration Program. Phase 2. Confirmation/Quantification, Stage 2 for Seymour Johnson Air Force Base, North Carolina. Volume 2. Fort Belvoir, VA : Defense Technical Information Center, novembre 1988. http://dx.doi.org/10.21236/ada203413.
Texte intégral