Littérature scientifique sur le sujet « Perturbative computations »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Perturbative computations ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Perturbative computations"
Shindler, Andrea. « Gradient Flow : Perturbative and Non-Perturbative Renormalization ». EPJ Web of Conferences 274 (2022) : 01005. http://dx.doi.org/10.1051/epjconf/202227401005.
Texte intégralDebbio, Luigi Del, Francesco Di Renzo et Gianluca Filaci. « High-order perturbative expansions in massless gauge theories with NSPT ». EPJ Web of Conferences 175 (2018) : 11023. http://dx.doi.org/10.1051/epjconf/201817511023.
Texte intégralLüscher, M., et P. Weisz. « Efficient numerical techniques for perturbative lattice gauge theory computations ». Nuclear Physics B 266, no 2 (mars 1986) : 309–56. http://dx.doi.org/10.1016/0550-3213(86)90094-5.
Texte intégralBern, Z. « Perturbative gravity from gauge theory ». Modern Physics Letters A 29, no 32 (20 octobre 2014) : 1430036. http://dx.doi.org/10.1142/s0217732314300365.
Texte intégralDEMETERFI, KRESIMIR, ANTAL JEVICKI et JOĀO P. RODRIGUES. « PERTURBATIVE RESULTS OF COLLECTIVE STRING FIELD THEORY ». Modern Physics Letters A 06, no 35 (20 novembre 1991) : 3199–212. http://dx.doi.org/10.1142/s0217732391003699.
Texte intégralReyes, Edilson, et Raffaele Fazio. « High-Precision Calculations of the Higgs Boson Mass ». Particles 5, no 1 (17 février 2022) : 53–73. http://dx.doi.org/10.3390/particles5010006.
Texte intégralMANIN, YURI I. « Renormalisation and computation II : time cut-off and the Halting Problem ». Mathematical Structures in Computer Science 22, no 5 (6 septembre 2012) : 729–51. http://dx.doi.org/10.1017/s0960129511000508.
Texte intégralSURGULADZE, LEVAN R. « COMPUTER PROGRAMS FOR ANALYTICAL PERTURBATIVE CALCULATIONS IN HIGH ENERGY PHYSICS ». International Journal of Modern Physics C 05, no 06 (décembre 1994) : 1089–101. http://dx.doi.org/10.1142/s0129183194001161.
Texte intégralKaranikas, A. I., et C. N. Ktorides. « Polyakov's spin factor and new algorithms for efficient perturbative computations in QCD ». Physics Letters B 500, no 1-2 (février 2001) : 75–86. http://dx.doi.org/10.1016/s0370-2693(01)00062-4.
Texte intégralCreedon, Ryan, Bernard Deconinck et Olga Trichtchenko. « High-Frequency Instabilities of a Boussinesq–Whitham System : A Perturbative Approach ». Fluids 6, no 4 (1 avril 2021) : 136. http://dx.doi.org/10.3390/fluids6040136.
Texte intégralThèses sur le sujet "Perturbative computations"
Heymes, David Verfasser], Michal [Akademischer Betreuer] [Czakon et Werner [Akademischer Betreuer] Bernreuther. « A general subtraction scheme for next to next to leading order computations in perturbative quantum chromodynamics / David Heymes ; Michal Czakon, Werner Bernreuther ». Aachen : Universitätsbibliothek der RWTH Aachen, 2015. http://d-nb.info/1128157233/34.
Texte intégralHeymes, David [Verfasser], Michal [Akademischer Betreuer] Czakon et Werner [Akademischer Betreuer] Bernreuther. « A general subtraction scheme for next to next to leading order computations in perturbative quantum chromodynamics / David Heymes ; Michal Czakon, Werner Bernreuther ». Aachen : Universitätsbibliothek der RWTH Aachen, 2015. http://d-nb.info/1128157233/34.
Texte intégralRATTI, CARLOALBERTO. « Topics in sym theories : * Ads/CFT & ; Mesonic Spectra ** Superspace & ; Scattering Amplitudes ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2010. http://hdl.handle.net/10281/11607.
Texte intégralElago, David. « Robust computational methods for two-parameter singular perturbation problems ». Thesis, University of the Western Cape, 2010. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_1693_1308039217.
Texte intégralThis thesis is concerned with singularly perturbed two-parameter problems. We study a tted nite difference method as applied on two different meshes namely a piecewise mesh (of Shishkin type) and a graded mesh (of Bakhvalov type) as well as a tted operator nite di erence method. We notice that results on Bakhvalov mesh are better than those on Shishkin mesh. However, piecewise uniform meshes provide a simpler platform for analysis and computations. Fitted operator methods are even simpler in these regards due to the ease of operating on uniform meshes. Richardson extrapolation is applied on one of the tted mesh nite di erence method (those based on Shishkin mesh) as well as on the tted operator nite di erence method in order to improve the accuracy and/or the order of convergence. This is our main contribution to this eld and in fact we have achieved very good results after extrapolation on the tted operator finitete difference method. Extensive numerical computations are carried out on to confirm the theoretical results.
Ettenhuber, Christian. « Computational approaches for metabolic flux analysis in 13C perturbation experiments ». [S.l. : s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=974209961.
Texte intégralLindquist, Dana Rae. « Computation of unsteady transonic flowfields using shock capturing and the linear perturbation Euler equations ». Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/13090.
Texte intégralGilbert, Michael Stephen. « A Small-Perturbation Automatic-Differentiation (SPAD) Method for Evaluating Uncertainty in Computational Electromagnetics ». The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354742230.
Texte intégralHiggins, Erik Tracy. « Multi-Scale Localized Perturbation Method for Geophysical Fluid Flows ». Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/99889.
Texte intégralMaster of Science
Natural flows, such as those in our oceans and atmosphere, are seen everywhere and affect human life and structures to an amazing degree. Study of these complex flows requires special care be taken to ensure that mathematical equations correctly approximate them and that computers are programmed to correctly solve these equations. This is no different for researchers and engineers interested in studying how man-made flows, such as one generated by the wake of a plane, wind turbine, cruise ship, or sewage outflow pipe, interact with natural flows found around the world. These interactions may yield complex phenomena that may not otherwise be observed in the natural flows alone. The natural and artificial flows may also mix together, rendering it difficult to study just one of them. The multi-scale localized perturbation method is devised to aid in the simulation and study of the interactions between these natural and man-made flows. Well-known equations of fluid dynamics are modified so that the natural and man-made flows are separated and tracked independently, which gives researchers a clear view of the current state of a region of air or water all while retaining most, if not all, of the complex physics which may be of interest. Once the multi-scale localized perturbation method is derived, its mathematical equations are then translated into code for OpenFOAM, an open-source software toolkit designed to simulate fluid flows. This code is then tested by running simulations to provide a sanity check and verify that the new form of the equations of fluid dynamics have been programmed correctly, then another, more complicated simulation is run to showcase the benefits of the multi-scale localized perturbation method. This simulation shows some of the complex fluid phenomena that may be seen in nature, yet through the multi-scale localized perturbation method, it is easy to view where the man-made flows end and where the natural flows begin. The complex interactions between the natural flow and the artificial flow are retained in spite of separating the flow into two parts, and setting up the simulation is simplified by this separation. Potential uses of the multi-scale localized perturbation method include multi-scale simulations, where researchers simulate natural flow over a large area of land or ocean, then use this simulation data for a second, small-scale simulation which covers an area within the large-scale simulation. An example of this would be simulating wind currents across a continent to find a potential location for a wind turbine farm, then zooming in on that location and finding the optimal spacing for wind turbines at this location while using the large-scale simulation data to provide realistic wind conditions at many different heights above the ground. Overall, the multi-scale localized perturbation method has the potential to be a powerful tool for researchers whose interest is flows in the ocean and atmosphere, and how these natural flows interact with flows created by artificial means.
Khabir, Mohmed Hassan Mohmed. « Numerical singular perturbation approaches based on spline approximation methods for solving problems in computational finance ». Thesis, University of the Western Cape, 2011. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_7416_1320395978.
Texte intégralPASTORE, Mariachiara. « Multireference Perturbation Theories for the accurate calculation of energy and molecular properties ». Doctoral thesis, Università degli studi di Ferrara, 2009. http://hdl.handle.net/11392/2388724.
Texte intégralLivres sur le sujet "Perturbative computations"
Kamiński, Marcin. The Stochastic Perturbation Method for Computational Mechanics. Chichester, UK : John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118481844.
Texte intégralH, Miller John J., dir. Singular perturbation problems in chemical physics : Analytic and computational methods. New York : J. Wiley, 1997.
Trouver le texte intégralFreidman, M. J. Accurate computation and continuation of homoclinic and heteroclinic orbits for singular perturbation problems. [Washington, DC] : National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1993.
Trouver le texte intégralFriedman, M. J. Accurate computation and continuation of homoclinic and heteroclinic orbits for singular perturbation problems. Huntsvilla, Ala : George C. Marshall Space Flight Center, 1993.
Trouver le texte intégralCelestial mechanics : A computational guide for the practitioner. New York : Wiley, 1985.
Trouver le texte intégralLindquist, Dana R. Computation of unsteady transonic flowfields using shock capturing and the linear perturbation Euler equations. Cambridge, Mass : Gas Turbine Laboratory, Massachusetts Institute of Technology, 1991.
Trouver le texte intégralC, Monteiro A., et United States. National Aeronautics and Space Administration., dir. Accurate computation and continuation of homoclinic and heteroclinic orbits for singular perturbation problems : Preliminary technical report for the period February 22, 1990, through October 21, 1992. [Huntsville, Ala.] : Research Institute, University of Alabama in Huntsville, 1992.
Trouver le texte intégralStanley, Turner Michael, Fermi National Accelerator Laboratory et United States. National Aeronautics and Space Administration., dir. Second-order reconstruction of the inflationary potential. Batavia, IL : Fermi National Accelerator Laboratory, 1994.
Trouver le texte intégralStanley, Turner Michael, Fermi National Accelerator Laboratory et United States. National Aeronautics and Space Administration., dir. Second-order reconstruction of the inflationary potential. Batavia, IL : Fermi National Accelerator Laboratory, 1994.
Trouver le texte intégralStanley, Turner Michael, Fermi National Accelerator Laboratory et United States. National Aeronautics and Space Administration., dir. Second-order reconstruction of the inflationary potential. Batavia, IL : Fermi National Accelerator Laboratory, 1994.
Trouver le texte intégralChapitres de livres sur le sujet "Perturbative computations"
Jorba, Àngel. « Computational Methods in Perturbation Theory ». Dans Perturbation Theory, 153–65. New York, NY : Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2621-4_758.
Texte intégralKvale, Mark, et Christoph E. Schreiner. « Perturbative M-Sequences for Auditory Systems Identification ». Dans Computational Neuroscience, 615–17. Boston, MA : Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-4831-7_102.
Texte intégralJorba, Àngel. « Computational Methods in Perturbation Theory ». Dans Encyclopedia of Complexity and Systems Science, 1–13. Berlin, Heidelberg : Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-642-27737-5_758-1.
Texte intégralHeijungs, Reinout, et Sangwon Suh. « Perturbation theory ». Dans The Computational Structure of Life Cycle Assessment, 131–50. Dordrecht : Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-015-9900-9_6.
Texte intégralChe, Maolin, et Yimin Wei. « Perturbation Theory ». Dans Theory and Computation of Complex Tensors and its Applications, 51–96. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2059-4_3.
Texte intégralSverdlov, Viktor. « Perturbative Methods for Band Structure Calculations in Silicon ». Dans Computational Microelectronics, 63–81. Vienna : Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-7091-0382-1_6.
Texte intégralO’Malley, Robert. « Singular Perturbation Problems ». Dans Encyclopedia of Applied and Computational Mathematics, 1330–33. Berlin, Heidelberg : Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-540-70529-1_145.
Texte intégralQuiney, Harry M. « Relativistic Many-Body Perturbation Theory ». Dans Methods in Computational Chemistry, 227–78. Boston, MA : Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0711-2_5.
Texte intégralDinkler, D., et B. Kroplin. « Perturbation Sensitivity of Dynamically Loaded Structures ». Dans Computational Mechanics ’88, 677–80. Berlin, Heidelberg : Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-61381-4_176.
Texte intégralSurján, Péter R., et Ágnes Szabados. « Perturbative Approximations to Avoid Matrix Diagonalization ». Dans Challenges and Advances in Computational Chemistry and Physics, 83–95. Dordrecht : Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-2853-2_4.
Texte intégralActes de conférences sur le sujet "Perturbative computations"
TAYLOR, WASHINGTON. « PERTURBATIVE COMPUTATIONS IN STRING FIELD THEORY ». Dans TASI 2003 Lecture Notes. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812775108_0006.
Texte intégralSemenoff, Gordon W. « Perturbative computations in SUSYM : Testing AdS/CFT ». Dans STRING THEORY ; 10th Tohwa University International Symposium on String Theory. AIP, 2002. http://dx.doi.org/10.1063/1.1454377.
Texte intégralSafronov, Anton, Carlo Flore, Daniel Kikola, Aleksander Kusina, Jean-Philippe Lansberg, Olivier Mattelaer et Hua-Sheng Shao. « A tool for automated perturbative cross section computations of asymmetric hadronic collisions at next-to-leading order using the $\texttt{MadGraph5_aMC@NLO}$ framework ». Dans 41st International Conference on High Energy physics. Trieste, Italy : Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.414.0494.
Texte intégralBerman, Gennady, D. I. Kamenev et V. I. Tsifrinovich. « Perturbation Approach for Quantum Computation ». Dans International Conference on Quantum Information. Washington, D.C. : OSA, 2001. http://dx.doi.org/10.1364/icqi.2001.pb20.
Texte intégralSumino, Yukinari. « Computation of Heavy Quarkonium Spectrum in Perturbative QCD ». Dans Loops and Legs in Quantum Field Theory. Trieste, Italy : Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.260.0011.
Texte intégralPerlt, Holger. « Perturbative subtraction of lattice artefacts in the computation of renormalization constants ». Dans The 30th International Symposium on Lattice Field Theory. Trieste, Italy : Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.164.0239.
Texte intégralKim, Namhyo, et David L. Rhode. « A New CFD-Perturbation Model for the Rotordynamics of Incompressible Flow Seals ». Dans ASME Turbo Expo 2000 : Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/2000-gt-0402.
Texte intégralBlouin, Vincent Y., et Michael M. Bernitsas. « Cognate Space Identification for Forced Response Structural Redesign ». Dans ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/omae2002-28135.
Texte intégralValorani, Mauro, Francesco Creta, Antonino Li Brizzi, Habib Najm et Dimitris Goussis. « Surrogate Fuel Analysis and Reduction using Computational Singular Perturbation ». Dans 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-1009.
Texte intégralLan, Hu, et Jiang Renpei. « Perturbation Theory and Simulation Computation For Dual-mode Ferrite Devices ». Dans 2006 CIE International Conference on Radar. IEEE, 2006. http://dx.doi.org/10.1109/icr.2006.343321.
Texte intégral