Thèses sur le sujet « Personalized medicin »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Personalized medicin ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
BHARAT, ROHIT. « Targeting cancer cell metabolism : Gateway towards personalized medicine ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241161.
Texte intégralIn the recent decade, one of the important keynote message derived through the summation of our global efforts against cancer is the need to better understand cancer cell metabolism for the development of better and efficacious personalized therapy. Cancer cells undertake a multifaceted rewiring of metabolic pathways in order to support their proliferative and invasive nature, which requires a systems level investigation to fully comprehend the scale of metabolic deregulation. In this study, we systematically investigated the metabolic differences using untargeted metabolomics and 13C flux omics approach in oncogenic K-Ras driven tumours. We tested the effects of drug inhibitors targeting glucose and glutamine metabolism to unravel the alternative metabolic pathways required for cancer cell survival. We further expanded our research towards understanding the role of cellular metabolism in driving resistance to endocrine therapeutic drugs in ERα positive breast cancer. We identified specific metabolic mechanisms of utilization of glutamine in resistant cells while also providing further basis for the use of metformin as an adjuvant in the treatment of endocrine therapyresistant cancers. Finally, we contributed to current understanding about cancer cell metabolism by exploring the role of glutamine beyond its role as a carbon and nitrogen source in driving growth and proliferation of cancer cells. Upon substitution of glutamine with appropriateiv nitrogen and carbon sources, cancer cells exhibited reverse Warburg phenotype. The findings from this thesis open up new avenues of research through the identification of new putative targets and bring us one step closer towards designing much better and efficacious therapeutic strategy for the treatment of cancer patients.
Götze, Sarah, Daniella Ekström, Forssén Tore Larsson, Eric Sjöö, Frisinger Emma Svanberg et Linnea Wikström. « Personalized Medicine ». Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444200.
Texte intégralMarín, Falco Matías. « Estudio de la heterogeneidad regulatoria en cáncer y sus implicaciones en la medicina personalizada ». Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/165413.
Texte intégral[CA] El càncer és la segona causa de mort al món i es caracteritza principalment per la proliferació descontrolada de les cèl·lules que formen el tumor. Encara que el desenvolupament d'un tumor és possible a causa de certs processos comuns desencadenats per la desregulació de l'equilibri existent entre els components moleculars d'una cèl·lula i els seus elements de control, hi ha una gran heterogeneïtat en els mecanismes a través dels quals s'aconseguix aquesta desregulació. Gràcies a el desenvolupament de noves tecnologies de seqüenciació ha sigut possible observar com aquesta heterogeneïtat no només s'observa entre els diferents tipus de tumors sinó entre les pròpies cèl·lules d'un mateix tumor. La caracterització de l'heterogeneïtat tumoral ha tingut un gran impacte en la comprensió de la malaltia i el desenvolupament de noves teràpies dirigides. Per aquest motiu, per tal de millorar la caracterització d'alteracions en els diferents mecanismes reguladors, en aquesta tesi s'han desenvolupat dues metodologies amb gran potencial per a la seua aplicació en la medicina personalitzada i que permeten estudiar l'heterogeneïtat inter i intratumoral dels estats de activació d'elements reguladors. En primer lloc es va desenvolupar una metodologia que permet determinar en una mostra l'estat d'activació dels factors de transcripció (FTs) a partir de l'expressió dels gens als que regula. Es va aplicar la metodologia per a realitzar una anàlisi de pan-cancer en el qual es va caracteritzar per primera vegada l'escenari regulatori de 52 FTs a 11 tipus de càncer diferents. A més, al poder obtenir valors d'activació individuals per a cada mostra, va ser possible observar correlacions entre l'activació d'alguns FTs amb la supervivència, suggerint així el seu ús com a marcadors pronòstics. En segon lloc, es va desenvolupar una altra metodologia en la qual s'empra un model mecanístic per determinar l'estat d'activació d'al voltant de 1000 circuits de senyalització a partir d'experiments transcriptòmics de cèl·lules úniques (scRNAseq). L'ús d'aquest model mecanístic en dades de scRNAseq de 4 pacients de glioblastoma, a més de mostrar l'heterogeneïtat intratumoral present en les mostres, ha permès realitzar intervencions in silico per simular l'efecte de diferents drogues sobre les cèl·lules. D'aquesta manera, ha estat possible descriure possibles mecanismes mitjançant els quals un grup de cèl·lules poden evitar l'efecte d'una teràpia dirigida. Les metodologies desenvolupades en aquesta tesi, així com els resultats obtinguts després de la seva aplicació suposa una valuosa font d'informació per al desenvolupament de marcadors de diagnòstic, pronòstic i resposta que ajudin a entendre millor els diferents nivells d'heterogeneïtat presents en càncer, i així, poder augmentar l'eficàcia de les teràpies dirigides.
[EN] Cancer is the second leading cause of death in the world and is characterized mainly by the uncontrolled proliferation of the cells that make up the tumor. Although the development of a tumor is possible due to certain common processes triggered by the dysregulation of the existing balance between the molecular components of a cell and its control elements, there is great heterogeneity in the mechanisms through which this dysregulation is achieved. Thanks to the development of new sequencing technologies, it has been possible to observe how this heterogeneity is not only observed between the different types of tumors but also between the cells of the same tumor. The characterization of tumor heterogeneity has had a great impact on the understanding of the disease and the development of new targeted therapies. For this reason, in order to improve the characterization of alterations in the different regulatory mechanisms, in this thesis two methodologies have been developed that allow studying the inter- and intratumoral heterogeneity of the activation states of regulatory elements and with great potential for their application in personalized medicine. In the first place, a methodology that allows determining in a sample the activation state of the transcription factors (FTs) from the expression of the genes that it regulates was developed. The methodology was applied to perform a pan-cancer analysis in which the regulatory scenario of 52 FTs was characterized for the first time in 11 different types of cancer. Furthermore, by being able to obtain individual activation values for each sample, it was possible to observe correlations between the activation of some FTs with survival, thus suggesting their use as prognostic markers. Second, another methodology was developed using a mechanistic model to determine the activation state of around 1000 signaling circuits in single cell transcriptomic experiments (scRNAseq). The use of this mechanistic model in scRNAseq data from 4 glioblastoma patients, in addition to showing the intratumoral heterogeneity present in the samples, has allowed in silico interventions to simulate the effect of different drugs on cells. In this way, it has been possible to describe possible mechanisms by which a group of cells can avoid the effect of a targeted therapy. The methodologies developed in this thesis, as well as the results obtained after its application, is a valuable source of information for the development of diagnostic, prognostic and response markers that help to better understand the different levels of heterogeneity present in cancer, and thus, be able increase the effectiveness of targeted therapies.
Marín Falco, M. (2021). Estudio de la heterogeneidad regulatoria en cáncer y sus implicaciones en la medicina personalizada [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/165413
TESIS
Frunza, Oana Magdalena. « Personalized Medicine through Automatic Extraction of Information from Medical Texts ». Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22724.
Texte intégralTrincado, Alonso Juan Luis 1987. « Characterization of clinically relevant RNA alterations for personalized cancer medicine ». Doctoral thesis, Universitat Pompeu Fabra, 2019. http://hdl.handle.net/10803/665991.
Texte intégralLa presente tesis intenta arrojar luz sobre la pregunta de si las alteraciones del ARN son informativas para el tratamiento clínico de pacientes con cancer. Para ello, este trabajo se centra en resolver dos cuestiones principales: el desarrollo de metodos computaciones para el estudio de perfiles de ARN en multiples tumores y la identificación de marcadores que puedan ser predictivos de prognosis y terapia. La tesis está dividida en tres capítulos: Primero, el desarollo de un nuevo método para la cuantificación rápida de splicing diferencial: SUPPA2. Segundo, una nueva metodologia para dilucidar el potencial prognóstico de tránscritos alternativos en tumores humanos. Y tercero, un nuevo método para la detección de junctions aberrantes tumorales y su evaluacion antigénica
Bachur, Catherine. « Integrating social context into personalized medicine ». Master's thesis, Temple University Libraries, 2019. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/549613.
Texte intégralM.A.
Personalized medicine is the idea that every patient can be treated in a unique manner, tailored specifically to his or her individual needs. Traditionally the field of personalized medicine has focused on using genetic information to determine medical treatment. However, humans are not only the sum of their genetic parts. All people exist within the context of their environment, their experiences, and their relationships. While the connection between this greater context and medical treatment may not be immediately obvious, it exists. If we are to truly tailor medical care, it must occur in a holistic manner, combining both genetics and social context. A thorough understanding of the way that they interact, as well as the individual limitations of both, is the best way to offer individualized care to all patients.
Temple University--Theses
Papke, Todd Alan. « Personalized audio warning alerts in medicine ». Diss., University of Iowa, 2014. https://ir.uiowa.edu/etd/1378.
Texte intégralAhmed, Abdul-Kareem H. « SIGN HERE : informed consent in personalized medicine ». Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/83832.
Texte intégralVita. Cataloged from PDF version of thesis.
Includes bibliographical references (pages 27-30).
The next era of medicine will be one of personalization, scientists and physicians promise. Personalized medicine is a refined clinical approach in which clinicians will utilize your genomic information to help you prevent disease, and tailor targeted therapies for you when you fall ill. This is the future science has slowly been approaching. However, the human genome is not enough, not unless we can decipher its language. One ambitious study to this effect is the Personal Genome Project, led by Dr. George Church at Harvard Medical School. This project will eventually recruit 100,000 volunteers to donate their genomes and a full body of information concerning their biological health. With this data, Church hopes others can cross-analyze these profiles and better determine the role in disease of each gene of the human genome. However, the Personal Genome Project is as much a study in the ethical, legal and social aspects of genomic studies as it is an effort toward personalized medicine. Church envisions a future where privacy cannot be guaranteed. Society is becoming more open and technology is more invasive than ever. Considering this, Church has informed his participants that their information will likely not remain anonymous. With their fully informed consent, he has in turn made all this data public, to promote open science. This ethical approach raises several important questions about expansive genomic studies. The scientific community will have to decide on an approach that will eventually deliver personalized medicine. On one end of the spectrum, there is Church's open approach, and the other, more security, more firewalls and more legislation. In order for personalized medicine to become a reality, society will have to prepare itself for our ever-changing ethical, technological and scientific landscape.
by Abdul-Kareem H. Ahmed.
S.M.in Science Writing
Ceccato, Filippo. « Personalized medical treatment for pituitary adenoma ». Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3421850.
Texte intégralIntroduzione e scopo: Gli adenomi ipofisari sono neoplasie frequenti, con una prevalenza di un caso ogni 1000 soggetti. I pazienti con adenoma ipofisario possono presentare segni e sintomi in correlazione alla secrezione autonoma (o deficitaria) di ormoni ipofisari, oppure possono presentarsi come “effetto massa” dovuto alla lesione occupante spazio in loggia ipofisaria. Sebbene la chirurgia e la radioterapia siano state molto utilizzate in passato, il controllo a lungo termine non è completo, sia in termini di secrezione che di lesione adenomatosa, esponendo comunque il paziente agli effetti collaterali dell’intervento o dell’irradiazione. Pertanto, la terapia medica è sempre più utilizzata, non solo nelle recidive post-chirurgiche, ma anche quando ulteriori interventi sono inefficaci, o in attesa degli effetti della radioterapia. Gli analoghi della somatostatina (SSA) sono stati per anni la principale terapia degli adenoma GH-secernenti, e al giorno d’oggi vengono utilizzati anche in quelli ACTH-secernenti, dato il loro effetto differenziale sui recettori della somatostatina (SSTR), soprattutto il tipo 2 nei GH-secernenti e il tipo 5 negli ACTH-secernenti. Purtroppo, fino al 50% dei pazienti non risponde in maniera soddisfacente alle terapie mediche, pertanto una maggior conoscenza della biologia cellulare ipofisaria è necessaria, per capire quale sia la strategia migliore per il paziente. Inoltre, in alcuni casi gli adenomi non sono sempre benigni (circa il 15-20% delle principali serie descritte in letteratura), caratterizzandosi per la resistenza alle terapie convenzionali, l’invasione dei tessuti locali o la rapida crescita. In tali casi, il termine Tumore Neuroendocrino Ipofisario (PitNET) viene recentemente proposto in letteratura. Lo scopo di questa tesi di dottorato è di studiare gli effetti delle terapie mediche in pazienti con PitNET; per sviluppare nuove strategie terapeutiche, per capire l’efficacia dei farmaci disponibili e per testare la loro combinazione. Materiali e metodi: I pazienti che sono seguiti presso l’ambulatorio ipofisi dell’Unità Operativa di Endocrinologia dell’Azienda Ospedaliero-Universitaria di Padova (120 con PitNET GH-secernenti, 134 ACTH-secernenti, 171 PRL-secernenti, 6 TSH- secernenti e 150 PitNET non funzionanti) sono stati seguiti in uno studio retrospettivo e prospettico. I dati clinici, bioumorali, di terapia, radiologici e patologici sono stati raccolti e analizzati. Tra le varie terapie mediche, maggior risalto è stato dato all’everolimus e alla temozolomide (TMZ) nei PitNET aggressivi e al metirapone (MET) in pazienti con Sindrome di Cushing. In casi selezionati sono state allestite linee cellulari derivanti dall’adenoma del pazienti (primarie). Risultati: in termini di terapia medica abbiamo analizzato 1. In un paziente con sclerosi tuberosa e PitNET silente abbiamo testato l’efficacia dell’everolimus in colture primarie, osservando una generale riduzione della vitalità cellulare. Abbiamo poi riscontrato una nuova variante del gene TSC2, gli studi in silico predicono la ritenzione di un introne con perdita di un sito di splicing, che andrà confermato in ulteriori studi funzionali. 2. Considerando la terapia con TMZ in PitNET aggressivi abbiamo raccolto i dati di 31 pazienti provenienti da uno studio multicentrico italiano. 11 casi hanno presentato una riduzione del PitNET, con una mediana di terapia di 18 mesi. Il 90% e il 60% dei pazienti erano liberi da malattia a 2 e 4 anni dalla terapia con TMZ. Abbiamo poi trattato un paziente con TMZ e cabergolina, ottenendo ottimi risultati. 3. 31 pazienti con Sindrome di Cushing sono stati trattati per 9 mesi con 1000 mg di MET. I parametri ormonali (cortisoluria e cortisolo salivare notturno) si sono ridotti rapidamente già dopo un solo mese di terapia, normalizzando la secrezione di cortisolo fino a 12 e 24 mesi. I pazienti con ipercorticismo severo (>5 volte i valori normali al baseline) hanno raggiunto il controllo biochimico di malattia più lentamente, tuttavia il 70% dei pazienti normalizzava la cortisoluria all’ultima visita, con una riduzione media di peso di 4kg. In generale il MET era ben tollerato, senza importanti effetti collaterali. 4. Nei pazienti con acromegalia, lo sviluppo di insufficienza surrenalica centrale (CAI) non è trascurabile nel follow-up. Mentre la terapia medica non aumenta il rischio di CAI, il 18% dei pazienti (10/57) svilippa iposurrenalismo dopo la chirurgia, mentre il 53% (9/17) lo sviluppa dopo la radioterapia. Analizzando in vitro gli aspetti che potrebbero predire la efficacia della terapia con SSA nei pazienti con acromegalia, abbiamo studiato i pathway molecolari di AIP-AHR e del GIPR. L’asse AIP-AHR, coinvolto nella detossificazione di varie molecole interferenti endocrine e inquinanti chimici, si trova maggiormente mutato in pazienti acromegalici con malattia più severa e con minor risposta agli SSA, soprattutto se vivono in zone molto inquinate. Abbiamo inoltre scoperto un ruolo promuovente del recettore dell’IGF-1 nel recettore del GIP, coinvolto nella tumorogenesi ipofisaria e quindi nuovo aspetto da studiare nei PitNET GH-secernenti. Conclusioni: Comprendere a fondo la fisiopatologia dei PitNET è l’inizio della personalizzazione della terapia medica, sempre più usata oggigiorno. Nella pratica clinica quotidiana, pertanto, un team multidisciplinare è fondamentale per proporre al paziente il corretto piano terapeutico, personalizzato secondo le proprie caratteristiche biologiche.
Ayati, Marzieh. « Algorithms to Integrate Omics Data for Personalized Medicine ». Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1527679638507616.
Texte intégralFonseca, Filipa Alexandra Ponte. « Farmacogenómica ». Master's thesis, [s.n.], 2014. http://hdl.handle.net/10284/4510.
Texte intégralDiferenças inter-individuais na eficácia e toxicidade da medicação são comuns entre os pacientes. Estima-se que a genética possa explicar entre 20 a 95 por cento da variabilidade na resposta aos fármacos. Porém associados à genética, existem fatores tais como, a idade, sexo, doenças secundárias e outros fatores ambientais que afetam a absorção, distribuição, metabolização e excreção dos fármacos podendo levar, habitualmente, à ocorrência de reações adversas. Estas reações são responsáveis por milhões de hospitalizações e milhares de mortes por ano apenas nos Estados Unidos. Identificação e caracterização de um grande número de polimorfismos genéticos (biomarcadores) nas enzimas metabolizadoras e transportadoras dos fármacos pode fornecer um conhecimento aprofundado sobre os mecanismos de diferenças inter- individuais na resposta à droga. O uso de novas tecnologias moleculares, nomeadamente de sequenciação do genoma, e de diagnóstico para avaliar o perfil genético e os biomarcadores das doenças abrem novos caminhos para permitir a cada doente o esquema de tratamento que lhe pode trazer os melhores resultados. Este esquema de tratamento, além de diminuir o número de reações adversas evita a exposição do paciente a um longo período de terapia baseado na tentativa e erro. Para os doentes, a medicina personalizada detém a promessa de terapêuticas mais eficazes e com menos efeitos secundários, podendo assim, ser poupados à perspetiva de um tratamento com efeitos adversos significativos e pouco ou nenhum efeito terapêutico Farmacogenética e farmacogenómica são duas áreas que emergiram para investigar a variabilidade individual na resposta aos fármacos. A indústria farmacêutica utiliza, cada vez mais, técnicas relacionadas com a farmacogenómica e com a farmacogenética e a informação que delas resulta para o processo de desenvolvimento de novos fármacos, promovendo a prescrição de um medicamento apropriado na dose certa para cada paciente. Inter-individual differences in the efficacy and toxicity of medication are common among patients. It is estimated that genetic factors can account for 20 to 95 percent of variability in drug responses. However associated with genetic, there are factors such as age, sex, secondary diseases and other environmental factors that affect the absorption, distribution, metabolism and excretion of drugs and may lead to adverse reactions. These reactions are responsible for millions of hospitalizations and thousands of deaths each year in the United States. Identification and characterization of a large number of genetic polymorphisms (biomarkers) in metabolizing enzymes and transporters of drugs can provide a thorough understanding of the mechanisms of inter-individual differences in drug response. The use of new molecular technologies, in particular genome sequencing, diagnosis for assessing the genetic profile and assessing biomarkers of disease open new paths to individualize each patient's treatment plan, optimizing it’s results. This treatment schedule, while decreasing the number of adverse reactions avoids exposing the patient to a long-term therapy based on trial and error. For patients, personalized medicine holds the promise of more effective therapies with fewer side effects, and may thus spare the prospect of a treatment with significant adverse effects and little or no therapeutic effect Pharmacogenetics and pharmacogenomics are two areas that have emerged to investigate the individual variability in response to drugs. The pharmaceutical industry uses increasingly techniques related to pharmacogenetics and pharmacogenomics and the information that follows them to the process of drug development, promoting the prescription of appropriate medication in the right dose for each patient.
Schneider, Anna-Maria. « Personalized asthma medication ». Thesis, Umeå universitet, Designhögskolan vid Umeå universitet, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-125892.
Texte intégralKim, Hannah Yejin. « Personalised Medicine in the Treatment of Cancer ». Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/20103.
Texte intégralBerglund, Nadja. « Inkjet Printing and Personalised Medicine:Possibilities and Practicalities ». Thesis, Umeå universitet, Farmakologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-146874.
Texte intégralShen, Yuanyuan. « Ordinal Outcome Prediction and Treatment Selection in Personalized Medicine ». Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17463982.
Texte intégralBiostatistics
Reggiani, Francesco. « Development and assessment of bioinformatics methods for personalized medicine ». Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3424693.
Texte intégralIl genoma umano è una risorsa ricca di informazioni per i ricercatori che si dedicano allo studio delle patologie complesse. L’obiettivo di questo genere di ricerche è giungere ad una migliore comprensione di queste malattie e quindi sviluppare nuove strategie terapeutiche per la cura dei pazienti affetti. Dall’inizio di questo secolo, un numero crescente di tecnologie per il sequenziamento del DNA sono state sviluppate, sono conosciute come tecnologie “Next Generation Sequencing” (NGS). Le tecnologie NGS hanno gradualmente diminuito il costo del sequenziamento di un genoma umano fino a circa 1000 dollari, ciò ha consentito l’utilizzo di questi strumenti nella pratica clinica e nella ricerca, in particolare negli studi di associazione genome-wide o “Genome-wide association studies” (GWAS). Questi lavori hanno portato alla luce l’associazione di alcune varianti con alcune patologie o caratteri complessi. Queste varianti potrebbero essere utilizzate per valutare il rischio che un individuo sviluppi una particolare patologia. Sfortunatamente diverse sorgenti di errore sono in grado di ostacolare l’uso e l’interpretazione dei dati genomici: da una parte abbiamo il rumore legato al processo di sequenziamento e gli errori di allineamento delle reads. Dall’altra parte gli SNP non sempre possono essere utilizzati in modo affidabile per predire l’insorgenza della malattia a cui sono stati associati. Il Critical Assessment of Genome Interpretation è stato organizzato con l’obiettivo di definire lo stato dell’arte nei metodi che stimano l’effetto di variazioni genetiche a livello molecolare o fenotipico. Negli anni il CAGI ha dato vita a più competizioni in cui diversi gruppi di ricerca hanno testato i loro metodi di predizione su diversi dataset condivisi. L’assenza di linee generali su come condurre la valutazione delle performance dei predittori, ha reso difficile un confronto fra metodi sviluppati in edizioni diverse del CAGI. In questo contesto, il progetto di dottorato si è focalizzato nello sviluppo di un software per la valutazione di metodi di apprendimento automatici basati sulla regressione o la predizione di fenotipi multipli. Questo strumento si fonda su criteri di analisi della performance, derivanti dalla letteratura e da precedenti esperimenti del CAGI. Questo software è stato sviluppato in R ed utilizzato per ripetere o valutare ex novo la qualità dei predittori in un gran numero di esperimenti del CAGI. Le conoscenze acquisite durante lo sviluppo di questo progetto, sono state utilizzate per valutare due competizioni del CAGI 5: la Pericentriolar Material 1 (PCM1) e il Pannello per le Disabilità Intellettive (ID). L’esperienza derivante dal completamento dei lavori precedentemente elencati, ha guidato lo sviluppo e il miglioramento delle prestazioni di un metodo predittivo. In particolare è stato sviluppato un software per la predizione dei livelli di colesterolo, basato su dati genotipici, di cui è stata testata la validità con criteri matematici allo stato dell’arte. Questo strumento è stato la pietra portante di un progetto fondato dal Ministero della Salute Italiano.
Rubio, Pérez Carlota 1990. « Understanding the genomic makeup of tumors to guide personalized medicine ». Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/664287.
Texte intégralEl càncer és una malaltia del genoma. L'estudi de les alteracions genòmiques dels tumors s’utilitza com a guia en varies estratègies de medicina de precisió, algunes d'elles aprovades i d'altres en assajos clínics. D'altra banda, l’estudi de la immunitat tumoral està esdevenint una peça clau per l’èxit d’altres estratègies terapèutiques, anomenades immunoteràpies. Al llarg d'aquesta tesi, mitjançant l'estudi de les dades “òmiques” tumorals, he contribuït de varies maneres cap a l'avenç de la medicina de precisió pel càncer. Primer, he identificat el panorama de les teràpies anticanceroses guiades per alteracions genòmiques. Segon, he desenvolupat OncoPaD, una eina pel disseny cost-efectiu i racional de panells de seqüenciació per càncer. A més, he contribuït al desenvolupament del Cancer Genome Interpreter, una eina que ajuda a la interpretació biològica i terapèutica de les variants presents a tumors novament seqüenciats. Per últim, he identificat diversos mecanismes mitjançant els quals els tumors són capaços d'evadir l’atac del sistema immunològic.
Valencia, Arboleda Carlos Felipe. « Contributions to statistical learning and its applications in personalized medicine ». Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49143.
Texte intégralYung, Hoi-chu, et 翁海珠. « Rapid and direct DNA extraction from saliva for personalized medicine ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45986599.
Texte intégralZhuo, Ying Daisy. « New algorithms in machine learning with applications in personalized medicine ». Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119284.
Texte intégralThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 165-173).
Recent advances in machine learning and optimization hold much promise for influencing real-world decision making, especially in areas such as health care where abundant data are increasingly being collected. However, imperfections in the data pose a major challenge to realizing their full potential: missing values, noisy observations, and unobserved counterfactuals all impact the performance of data-driven methods. In this thesis, with a fresh perspective from optimization, I revisit some of the well-known problems in statistics and machine learning, and develop new methods for prescriptive analytics. I show examples of how common machine learning tasks, such as missing data imputation in Chapter 2 and classication in Chapter 3, can benet from the added edge of rigorous optimization formulations and solution techniques. In particular, the proposed opt.impute algorithm improves imputation quality by 13.7% over state-of-the-art methods, as averaged over 95 real data sets, which leads to further performance gains in downstream tasks. The power of prescriptive analytics is shown in Chapter 4 by our approach to personalized diabetes management, which identifies response patterns using machine learning and individualizes treatments via optimization. These newly developed machine learning algorithms not only demonstrate improved performance in large-scale experiments, but are also applied to solve the problems in health care that motivated them. Our simulated trial for diabetic patients in Chapter 4 demonstrates a clinically relevant reduction in average hemoglobin A1c levels compared to current practice. Finally, when predicting mortality for cancer patients in Chapter 5, applying opt.impute on missing data along with the cutting-edge algorithm Optimal Classication Tree on a rich data set prepared from electronic medical records, we are able to accurately risk stratify patients, providing physicians with interpretable insights and valuable risk estimates at time of treatment decisions and end-of-life planning.
by Ying Daisy Zhuo.
Ph. D.
Deshmukh, Ameya. « MMP-Degradable Biosensors : Applications in Drug Delivery and Personalized Medicine ». The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1585925271421393.
Texte intégralSchrenk, Sandra. « MODEL SYSTEMS OF INTESTINAL INFLAMMATION : A STEP TOWARDS PERSONALIZED MEDICINE ». Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3422306.
Texte intégralLe malattie infiammatorie croniche intestinali (MICI) sono un gruppo di patologie complesse ad eziologia multifattoriale, caratterizzate da uno stato infiammatorio cronico del tratto gastrointestinale, la cui incidenza a livello mondiale è in continuo aumento. Nonostante nel corso degli ultimi anni siano stati fatti numerosi progressi nel controllo della malattia, l’attuale approccio terapeutico rimane ancora lontano dall’essere soddisfacente e l’esito clinico che ne deriva è estremamente variabile a causa della vasta eterogeneità tra i pazienti. La terapia tradizionale, che consiste nella somministrazione di farmaci antinfiammatori, corticosteroidi, antibiotici o farmaci immunomodulatori, garantisce il controllo della malattia in alcuni pazienti, ma, a causa della non-specificità e del lungo periodo di utilizzo, è correlata all’insorgenza di numerose complicanze ed effetti collaterali. Un significativo miglioramento nella gestione della malattia è stato raggiunto attraverso l’introduzione di farmaci biologici, il cui target è rappresentato principalmente dalle citochine pro-infiammatorie implicate nella patologia, come ad esempio il TNF-α. Nonostante il forte impatto clinico, l’utilizzo di farmaci biologici, come l’anti-TNF-α ha mostrato diversi svantaggi, tra cui un’alta percentuale di non-responsività al trattamento oppure la perdita di risposta nel corso del tempo. La grande variabilità che si riscontra nella risposta clinica riflette di fatto la variabilità che sussiste tra i diversi individui, ed è dovuta principalmente a differenze a livello genetico, nello stile di vita e nello stato infiammatorio. Di conseguenza, cresce sempre più la necessità di definire nello specifico lo stato infiammatorio e le complicanze caratteristiche di ciascun paziente e di sviluppare nuovi sistemi di screening in-vitro che possano predire la risposta al trattamento e quindi consentire un approccio terapeutico specifico per ciascun individuo. Nell’ottica di una medicina predittiva e della terapia personalizzata, in questa tesi sono stati sviluppati differenti modelli in-vitro, che prendono in considerazione diversi aspetti e compartimenti implicati nelle malattie infiammatorie croniche intestinali, quali il sistema nervoso enterico, la fibrillina-1, componente della matrice extracellulare, così come colture tridimensionali a breve e lungo termine derivate da campioni bioptici umani. Questi modelli sperimentali di infiammazione cronica intestinale potranno costituire uno strumento clinico utile per applicazioni di medicina personalizzata.
Catley, Christina Anne. « Engaging Health Care Professionals in Personalized Medicine : A Pilot Study Comparing Two Professional Engagement Approaches ». Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32054.
Texte intégralMukherjee, Payal. « Translation of 3D technologies for personalised medicine in Otology ». Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23399.
Texte intégralChapin, Stephen Clifford. « Encoded hydrogel microparticles for high-throughput molecular diagnostics and personalized medicine ». Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/76565.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (p. 141-161).
The ability to accurately detect and quantify biological molecules in complex mixtures is crucial in basic research as well as in clinical settings. Advancements in genetic analysis, molecular diagnostics, and patient-tailored medicine require robust detection technologies that can obtain high-density information from a range of physiological samples in a rapid and cost-effective manner. Compared to conventional microarrays and methods based on polymerase chain reaction (PCR), suspension (particle-based) arrays offer several advantages in the multiplexed detection of biomolecules, including higher rates of sample processing, reduced consumption of sample and reagent, and rapid probe-set modification for customizable assays. This thesis expands the utility of a novel hydrogel-based microparticle array through (1) the creation of a microfluidic, flow-through fluorescence scanner for high-throughput particle analysis, (2) the development of a suite of techniques for the highly sensitive and specific detection of microRNA (miRNA) biomarkers, and (3) the investigation of new methods for directly measuring biomolecules at the single-cell level. Graphically-encoded hydrogel microparticles synthesized from non-fouling, bioinert poly(ethylene glycol) (PEG) and functionalized with biomolecule probes offer great promise in the development of high-performance, multiplexed bioassays. To extend this platform to applications in high-throughput analysis, particle design was optimized to ensure mechanical stability in high-velocity flow systems, and a single-color microfluidic scanner was constructed for the rapid fluorescence interrogation of each particle's spatially-segregated "code" and "probe" regions. The detection advantages of three-dimensional, probe-laden hydrogel scaffolds and the operational efficiencies of suspension array technology were then leveraged for the rapid multiplexed expression profiling of miRNA. The graphical encoding method and ligationbased labeling scheme implemented here allowed for scalable multiplexing with a simple workflow and an unprecedented combination of sensitivity, flexibility, and throughput. Through the rolling circle amplification of a labeling oligonucleotide, it was possible to further enhance the system's sensitivity and resolve single-molecule miRNA binding events on particle surfaces, enabling the first direct detection of low-abundance miRNA in human serum without the need for RNA extraction or target amplification. Finally, by arraying cells and gel particles in polydimethylsiloxane (PDMS) microwells, it was possible to dramatically improve the particles' target capture efficiency and thereby move closer to a regime in which miRNAs and other biological molecules may be directly detected without target amplification from single cells.
by Stephen Clifford Chapin.
Ph.D.
Grenet, Guillaume. « Challenges in personalized evidence-based medicine, applications in type 2 diabetes ». Thesis, Lyon, 2019. https://n2t.net/ark:/47881/m62f7ms7.
Texte intégralEvidence based medicine requires randomized clinical trials for estimating a mean treatment effect. The personalization of this treatment effect needs prognostic biomarker for assessing the spontaneous risk of the disease and the absolute benefit of the treatment; and the search for potential theranostic biomarker, associated with a different relative treatment effect. Surrogate endpoints are also proposed, as their measure would reflect the treatment effect on the clinical outcome of interest. Taking care of patients with type 2 diabetes is based on hypoglycemic drugs. Several of them have been retrospectively associated with serious adverse events. They need to be assessed with cardiovascular outcome trials. Taking care of those patients also include handling other cardiovascular risk factor, as high blood pressure. Antihypertensive treatment is based on a “target to treat” strategy, which raise several questions. Finally, many theranostic biomarkers of the hypoglycemic drugs effect have been studied, with conflicting results. Statistical power is a high challenge in randomized trial looking for such interaction. We aimed to provide a mean treatment effect estimation of hypoglycemic drugs on cardiovascular outcomes and to explore potential tools for personalizing the treatment effect estimation. The first part of this thesis reports a network meta-analysis assessing the contemporary hypoglycemic drugs in type 2 diabetes patients on overall mortality, cardiovascular mortality and major adverse cardiovascular events. We confirmed the superiority of SGLT2 inhibitors and of GLP1 receptor agonists compared to control and to DPP4 inhibitors. We also showed the need for direct comparison, especially for clarifying the position of metformin in the pharmacological strategy. The second part of this thesis reports a meta-regression analysis, assessing the association between the decrease in blood pressure through antihypertensive drugs and the risk of cardiovascular events. We confirmed the association between the blood pressure control and the risk of stroke, but did not find any association regarding overall mortality, cardiovascular mortality and myocardial infarction. The third part reports a statistical comparison of the parallel group design and the cross-over design, regarding their capacity to assess a potential theranostic biomarker. We showed that the advantage of the cross-over for reducing the sample size lead on the intra-subject correlation, as already known for estimating the treatment effect. Finally, we highlighted the need for comparisons of hypoglycemic drugs for preventing macrovascular events. We emphasized pitfalls in estimating benefit—risk balance. Individual patient data meta-analyses would help better assessing the effect of glucose control on macrovascular events. High-throughput genome sequencing technologies would help to identify both prognostic and theranostic biomarkers. Lastly, we proposed an extended version of the effect model, which allow to grasp the benefit—risk balance of a treatment, according to different biomarkers. To conclude, assessing a mean and a stratified treatment effect should be conducted taking into account the global benefit—risk balance estimation
Petersen, Katelin E. « Physicians' Perceptions of the Elements, Barriers, and Availability of Personalized Medicine ». University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1367942619.
Texte intégralLiu, Xiaoman. « Personalised medicine and its application in patients with complex disorders ». Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/20488.
Texte intégralBarradas, Bautista Didier. « Protein-protein docking for interactomic studies and its aplication to personalized medicine ». Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/401708.
Texte intégralCassa, Christopher A. « Privacy and identifiability in clinical research, personalized medicine, and public health surveillance ». Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45624.
Texte intégralThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 191-200).
Electronic transmission of protected health information has become pervasive in research, clinical, and public health investigations, posing substantial risk to patient privacy. From clinical genetic screenings to publication of data in research studies, these activities have the potential to disclose identity, medical conditions, and hereditary data. To enable an era of personalized medicine, many research studies are attempting to correlate individual clinical outcomes with genomic data, leading to thousands of new investigations. Critical to the success of many of these studies is research participation by individuals who are willing to share their genotypic and clinical data with investigators, necessitating methods and policies that preserve privacy with such disclosures. We explore quantitative models that allow research participants, patients and investigators to fully understand these complex privacy risks when disclosing medical data. This modeling will improve the informed consent and risk assessment process, for both demographic and medical data, each with distinct domain-specific scenarios. We first discuss the disclosure risk for genomic data, investigating both the risk of re-identification for SNPs and mutations, as well as the disclosure impact on family members. Next, the deidentification and anonymization of geospatial datasets containing information about patient home addresses will be examined, using mathematical skewing algorithms as well as a linear programming approach. Finally, we consider the re-identification potential of geospatial data, commonly shared in both textual form and in printed maps in journals and public health practice. We also explore methods to quantify the anonymity afforded when using these anonymization techniques.
by Christopher A. Cassa.
Ph.D.
Shibata, Saiko. « Mechanism-Based Personalized Medicine for Cystic Fibrosis by Suppressing Pseudo Exon Inclusion ». Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263526.
Texte intégralVercellino, Giuseppe Filiberto [Verfasser]. « Personalized approach in gynecology / Giuseppe Filiberto Vercellino ». Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2015. http://d-nb.info/1072410710/34.
Texte intégralChaparro, Eduarda de Aguilhar Chaparro E. A. « Soro Autólogo de uso ocular Enfoque em Medicina Personalizada / ». Botucatu, 2019. http://hdl.handle.net/11449/182156.
Texte intégralResumo: Introdução: A Síndrome do Olho Seco (SOS) é uma doença multifatorial das lágrimas e da superfície ocular que resulta em desconforto, distúrbios visuais e instabilidade do filme lacrimal e afeta principalmente adultos com mais de 50 anos e mulheres. É uma doença que pode ter grande impacto negativo na qualidade de vida dos pacientes. A abordagem terapêutica com soro autólogo tem sido preconizada desde 1986 com prós e contras na literatura. Esta pesquisa teve como objetivo realizar uma revisão sistemática e metanálise para analisar a efetiva contribuição do Soro Autólogo segundo os protocolos, ensaios terapêuticos publicados nos últimos 10 anos e o atendimento dos pacientes portadores de Síndrome do olho seco (SOS) no Hospital das Clínicas da Faculdade de Medicina de Botucatu .Objetivos: 1) realizar revisão sistemática e metanálise para avaliar a eficácia do uso do soro autólogo em comparação com lágrimas artificiais comerciais no tratamento para adultos com olho seco. 2) realizar um trabalho retrospectivo da contribuição do soro autólogo de uso ocular no tratamento da SOS nos pacientes do ambulatório do Hospital das Clínicas de 2014-2018 comparando com o período anterior (2008-2013). Materiais e Métodos: Para a revisão sistemática e metanálise foi pesquisado na base de dados do Pubmed não usando restrições de língua, apenas trabalhos dos últimos 10 anos. Para os desfechos primários e secundários foi utilizado um intervalo de confiança de 95%. O levantamento de dados dos pacien... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Introduction: Dry Eye Syndrome is a multifactorial disease of tears and ocular surface that results into discomfort, visual disturbances and tear film instability and affects mainly female adults, over 50 years. It is a disease which may cause a great negative impact on the patients’ quality of life. The therapeutic approach employing autologous serum has been advocated in 1986, with pros and cons in the literature. This study aimed to perform a systematic review and a meta-analysis to investigate the effective contribution of Autologus Serum according to the protocols and clinical trials published in the last 10 years, and the SOS patients care at Hospital das Clínicas, during two periods: 2008-2013 and 2014- 2018.Objectives: 1) to perform a systematic review and meta-analysis to evaluate the efficacy of the autologous serum, in comparison to commercial artificial tears for the treatment of dry eye in adults. 2) to carry out a retrospective study of the ocular autologous serum contribution for SOS out patients’ treatment, at Hospital das Clínicas (2014 to 2018), comparing with the previous period (2008-2013).Materials and Methods: For the systematic review and meta-analysis, searches were realized in Pubmed databases, with no language restrictions, for papers published in the last 10 years, with full text availability, for researches dated until 10/12/2018. For the primary and secondary outcomes, a 95% confidence interval was used. For the outpatients’ data collection, each ... (Complete abstract click electronic access below)
Mestre
Sun, Hong [Verfasser], et Martin [Akademischer Betreuer] Schumacher. « Clinical trials for personalized, marker-based treatment strategies ». Freiburg : Universität, 2016. http://d-nb.info/1122647131/34.
Texte intégralSathirapongsasuti, Jarupon Fah. « Post-Genomic Approaches to Personalized Medicine : Applications in Exome Sequencing, Microbiome, and COPD ». Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11574.
Texte intégralHolland, Chad D. (Chad Darrel). « Personalized medicine, population genetics and privacy : an empirical study of international gene banks ». Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33089.
Texte intégralIncludes bibliographical references.
The promise of personalized medicine lies in its potential to fundamentally change healthcare. In the past, pharmaceuticals were prescribed on a "one size fits all" basis-patients with certain disease phenotypes were given what were thought to be appropriate drugs. There is growing evidence however that the effectiveness of these drugs may differ by individual and by sub-group; presumably due to fundamental genetic differences in disease and metabolic pathways. Drugs like Herceptin, Gleevec and Iressa are part of an emerging trend in the biopharmaceutical arena of drugs that are accompanied by genetic diagnostic tests and prescribed only for patients with genotypes in which the agents are most effective.
by Chad D. Holland.
S.M.M.O.T.
S.M.
Gonzalez, Paola. « Chronic Myeloid Leukemia : from Therapy Monitoring to Personalized Medicine. Assessment of Industrial Process ». Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3422302.
Texte intégralIntroduzione: La Leucemia Mieloide Cronica (LMC) è un disordine mieloproliferativo delle cellule staminali pluripotenti caratterizzato per la presenza del gene di fusione BCR-ABL. Questo disturbo è causato da una traslocazione reciproca di materiale genetico tra il cromosoma 9 e 22 t(9; 22)(q34; 11) comunemente riconosciuta come cromosoma Philadelphia (Ph), che porta alla formazione di una proteina tirosinchinasica con un’attività alterata, causante della patogenesi della LMC. L’elevata efficacia degli inibitori della tirosinchinasa (TKIs) nel trattamento della LMC ha originato la necessità di metodi molto sensibili per monitorare il corso terapeutico. La quantificazione dei trascritti BCR-ABL con qRT-PCR Real Time si è dimostrato il metodo disponibile più accurato al giorno di oggi. Secondo le raccomandazioni degli esperti appartenenti alla European LeukemiaNet, la mancanza di risposta iniziale può essere rilevata solo dopo 3-6 mesi dal momento della diagnosi. La capacità di comprendere come i pazienti rispondono ai diversi TKIs disponibili nel momento della diagnosi aiuterebbe ai medici a prescrivere la terapia di prima linea più conveniente in ogni caso, riducendo l’insorgere di una futura resistenza ai farmaci e riducendo così i costi del trattamento. Materiali e Metodi: Abbiamo sviluppato e validato due dispositivi (RQ-BCR-ABL p210 One-Step e RQ-BCR- ABL p190 One-Step) per il monitoraggio terapeutico della LMC. Il kit RQ-BCR-ABL p210 One-Step ha subito un’ulteriore validazione esterna in tre diversi centri di riferimento per la LMC appartenenti alla rete italiana LabNet. Per quanto riguarda alla previsione della risposta terapeutica, l’Università degli Studi di Verona ha sviluppato LeukoPredict, un dispositivo in-vitro per individuare il potenziale inibitorio di diversi farmaci che hanno BCR-ABL come bersaglio, ottenendo il percentile d’inibizione rispetto agli stessi campioni non trattati. Abbiamo partecipato a questo progetto nell’ambito della pianificazione industriale, eseguendo un’analisi Freedom to Operate e un’analisi costo-efficacia sul prodotto. Risultati: Entrambi I kit basati sulla tecnologia qRT-PCR Real-Time One-Step hanno mostrato una elevata riproducibilità e un’alta sensibilità nella quantificazione dei trascritti BCR-ABL, dimostrando di essere adatti alla marcatura CE-IVD. Inoltre, il kit RQ-BCR-ABL p210 One-Step è stato certificato dalla rete LabNet come un dispositivo adatto per il monitoraggio della LMC, migliorando notevolmente la riproducibilità dei sistemi attuali utilizzati nella routine. L’analisi Freedom to Operate di LeukoPredict ha rilevato alcuni brevetti relazionati con la tecnologia presente nel dispositivo, ma nessuno potrebbe ostacolare la sua uscita nel mercato in questo momento. L’analisi costo-efficacia ha dimostrato che LeukoPredict ha un costo ridotto ed è molto conveniente a livello economico secondo lo scenario analizzato, generando rilevanti risparmi per i sistemi sanitari. Conclusioni: Questo progetto è in grado di collegare le problematiche attuali della LMC. Da un lato abbiamo sviluppato e validato due dispositivi che soddisfano completamente le richieste del mercato farmaceutico per il monitoraggio terapeutico, proporzionando un panello completo per la gestione della LMC. Lo sviluppo di dispositivi come LeukoPredict aiuta a diminuire il rischio di progressione della malattia verso fasi più aggressive, personalizzando la terapia e ottenendo la massima efficacia delle diverse scelte terapeutiche. Ciò aiuterebbe ai medici nella decisione della miglior terapia basandosi sull’evidenza, evitando potenziali conflitti d’interesse e fornendo una spiegazione razionale ad altri tipi di trattamento quando il rischio di fallimento terapeutico è troppo alto. Infine, la sua tecnologia è stata definita come molto conveniente potendo contribuire a contenere il costo dell’assistenza sanitaria.
Alderdice, Matthew. « Personalised medicine in rectal cancer : understanding and predicting response to neoadjuvant chemoradiotherapy ». Thesis, Queen's University Belfast, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725327.
Texte intégralLuangwitchajaroen, Yuvared. « Preparation of nanosusponanoemulsion and nanosuspomicroemulsion : novel combination formulations suitable for personalised medicine ». Thesis, King's College London (University of London), 2017. https://kclpure.kcl.ac.uk/portal/en/theses/preparation-of-nanosusponanoemulsion-and-nanosuspomicroemulsion(e2a714c8-bcdf-4609-a525-c991b380c779).html.
Texte intégralSantiago, Jessica de. « Extracting informative spatio-temporal features from fMRI dynamics : a model-based characterization of timescales ». Doctoral thesis, Universitat Pompeu Fabra, 2021. http://hdl.handle.net/10803/671346.
Texte intégralEn neuropsiquiatría, el desarrollo de imágenes cerebrales y el análisis de datos dedicados a la medicina personalizada prometen predecir tanto la evolución de las enfermedades como las respuestas a los tratamientos. La capacidad de estimar el curso temporal de la enfermedad es el primer paso para comprender la respuesta a posibles tratamientos, lo que implica el desarrollo de métodos capaces de capturar características específicas del sujeto, además de la discriminación entre condiciones patológicas. Sin embargo, todavía faltan métodos que caractericen eficazmente la actividad neuronal a nivel de todo el cerebro, y actualmente se están haciendo muchos esfuerzos en los campos de la investigación clínica y la neurociencia. Lo anterior es particularmente problemático para interpretar los datos funcionales de las imágenes de resonancia magnética (fMRI por sus siglas en inglés), que están acoplados indirectamente con la actividad neuronal debido a la hemodinámica, lo que produce señales mucho más lentas que la actividad neuronal. En este trabajo, proponemos un método multiescala que combina un modelo computacional de cerebro completo con aprendizaje automático para resolver este problema. En nuestro enfoque, el modelo relaciona la actividad neuronal y las señales de resonancia magnética funcional de manera mecanicista, lo que permite el acceso a la actividad neuronal con una precisión de milisegundos. Específicamente, utilizamos una nueva metodología que permite la extracción de patrones espacio-temporales en diferentes escalas temporales a través de ventanas de tiempo. Después, usamos aprendizaje automático para estudiar qué rango de escalas de tiempo en la actividad neuronal modelada es más informativo, para separar la dinámica del cerebro durante el descanso, distinguiendo sujetos, tareas y condiciones neuropsiquiátricas. Nuestro enfoque computacional multiescala es un paso más para estudiar las múltiples escalas de tiempo de la dinámica del cerebro y predecir las interacciones dinámicas entre las regiones del cerebro. En general, este método aumenta las perspectivas para detectar biomarcadores y predecir la respuesta de tratamientos.
Leuschner, Machel. « Assessing inter-method agreement of drug-based phenotyping metrics between dried blood spot and plasma sampling ». Thesis, University of Pretoria, 2019. http://hdl.handle.net/2263/73046.
Texte intégralThesis (PhD)--University of Pretoria, 2019.
National Research Foundation
Pharmacology
PhD (Pharmacology)
Unrestricted
Zvereva, Alexandra [Verfasser], et Katia [Akademischer Betreuer] Parodi. « Advanced modeling for personalized dosimetry in nuclear medicine applications / Alexandra Zvereva ; Betreuer : Katia Parodi ». München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2017. http://d-nb.info/1170061192/34.
Texte intégralPawlowski, Colin. « Machine learning for problems with missing and uncertain data with applications to personalized medicine ». Thesis, Massachusetts Institute of Technology, 2019.
Trouver le texte intégralThesis: Ph. D., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 205-215).
When we try to apply statistical learning in real-world applications, we frequently encounter data which include missing and uncertain values. This thesis explores the problem of learning from missing and uncertain data with a focus on applications in personalized medicine. In the first chapter, we present a framework for classification when data is uncertain that is based upon robust optimization. We show that adding robustness in both the features and labels results in tractable optimization problems for three widely used classification methods: support vector machines, logistic regression, and decision trees. Through experiments on 75 benchmark data sets, we characterize the learning tasks for which adding robustness provides the most value. In the second chapter, we develop a family of methods for missing data imputation based upon predictive methods and formal optimization.
We present formulations for models based on K-nearest neighbors, support vector machines, and decision trees, and we develop an algorithm OptImpute to find high quality solutions which scales to large data sets. In experiments on 84 benchmark data sets, we show that OptImpute outperforms state-of-the-art methods in both imputation accuracy and performance on downstream tasks. In the third chapter, we develop MedImpute, an extension of OptImpute specialized for imputing missing values in multivariate panel data. This method is tailored for data sets that have multiple observations of the same individual at different points in time. In experiments on the Framingham Heart Study and Dana Farber Cancer Institute electronic health record data, we demonstrate that MedImpute improves the accuracy of models predicting 10-year risk of stroke and 60-day risk of mortality for late-stage cancer patients.
In the fourth chapter, we develop a method for tensor completion which leverages noisy side information available on the rows and/or columns of the tensor. We apply this method to the task of predicting anti-cancer drug response at particular dosages. We demonstrate significant gains in out-of-sample accuracy filling in missing values on two large-scale anticancer drug screening data sets with genomic side information.
by Colin Pawlowski.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center
MUSETTI, CLAUDIO. « The struggle for personalized medicine : from genes to viruses in the modern transplant era ». Doctoral thesis, Università del Piemonte Orientale, 2016. http://hdl.handle.net/11579/115182.
Texte intégralCheah, Boon Chong. « Metabolomic sensing system for personalised medicine using an integrated CMOS sensor array technology ». Thesis, University of Glasgow, 2017. http://theses.gla.ac.uk/8115/.
Texte intégralFAZZARI, MARIA. « NOVEL APPROACHES OF ¿PERSONALISED MEDICINE¿ AS PROOF-OF-PRINCIPLE FOR CDKL5-RELATED PATHOLOGIES ». Doctoral thesis, Università degli Studi di Milano, 2018. http://hdl.handle.net/2434/548108.
Texte intégralMatsouaka, Roland Albert. « Contributions to Imputation Methods Based on Ranks and to Treatment Selection Methods in Personalized Medicine ». Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10078.
Texte intégralBragazzi, Nicola Luigi [Verfasser], et Norbert [Akademischer Betreuer] Hampp. « Nanogenomics and Nanoproteomics Enabling Personalized, Predictive and Preventive Medicine / Nicola Luigi Bragazzi. Betreuer : Norbert Hampp ». Marburg : Philipps-Universität Marburg, 2014. http://d-nb.info/1051935334/34.
Texte intégralSantos, Tânia Margarida Oliveira. « Nanoteranóstica e Medicina Personalizada ». Master's thesis, 2018. http://hdl.handle.net/10316/84627.
Texte intégral“Right drug, right patient, right moment, right space, and right dose” is a key concept of the current personalized medicine.Due to the limitations of the standard diagnostic and therapeutic strategies, the term “personalized medicine” has recently emerged as a promising way to optimize treatment for each patient, considering the interindividual variability in the therapeutic response to achieve maximal efficacy along with a high safety profile.Theranostics, the integration of therapeutic and diagnostic capability in a single system, may significantly contribute to the ever-growing field of personalized medicine.Nanoparticles are one of the possible agents of theranostics that, due to their high loading capacity, are able to combine target therapeutic and diagnostic functions into a single system.Polymers, dendrimers, liposomes, polymeric micelles, silica nanoparticles, iron oxide nanoparticles, gold nanoparticles and quantum dots, have been previously investigated and are candidate nanoplatforms for building up nanoparticle-based theranostics.The clinical application of nanotheranostics will enable earlier detection, treatment of diseases and monitoring of therapeutic response, which is expected to play a significant role in the era of personalized medicine.In this monograph, the recent advances in molecular imaging technologies and theranostic nanoparticles will be described, exhibiting the advantages and drawbacks of each imaging modality and nanoparticles used in theranostics. Finally, the use of theranostic nanomedicines for early diagnosis and therapy of glioblastoma will be addressed.
“O fármaco certo, para o doente certo, no momento certo e na dose certa”, é um conceito-chave da medicina personalizada.Devido às limitações das estratégias convencionais de diagnóstico e tratamento surgiu recentemente o termo “medicina personalizada” com o objetivo de otimizar o tratamento, específico para cada doente, considerando a variabilidade interindividual na resposta à terapêutica para atingir a máxima eficácia com um elevado perfil de segurança.A teranóstica, que combina o diagnóstico e terapêutica num único sistema, pode contribuir significativamente para o desenvolvimento da medicina personalizada.Um dos possíveis agentes de teranóstico são as nanopartículas que, devido à sua elevada capacidade de carga, podem combinar funções de diagnóstico e terapêutica num único sistema.Nanopartículas poliméricas, dendrímeros, lipossomas, micelas poliméricas,nanopartículas de sílica, nanopartículas de óxido de ferro, nanopartículas de ouro e pontos quânticos têm sido investigados e são possíveis “nanoplataformas” para o desenvolvimento de nanopartículas teranósticas.A aplicação da nanoteranóstica na clínica permite a deteção precoce, o tratamento de doenças, bem como a monitorização da resposta ao tratamento, desempenhando assim um papel importante na medicina personalizada.Nesta monografia serão descritos os avanços recentes na tecnologia de imagem molecular e nanopartículas teranósticas, referindo as vantagens e desvantagens de cada modalidade de imagem, bem como das nanopartículas utilizadas na teranóstica. Por fim, será abordada a aplicação de nanopartículas teranósticas no diagnóstico precoce e terapia do glioblastoma.
Zagalo, Daniela Mariana Marques. « VACINAS DE RNA - Nova abordagem da Medicina Personalizada na Imunoterapia no Cancro ». Master's thesis, 2017. http://hdl.handle.net/10316/83728.
Texte intégralCancer is a collective term which comprehends a multiplicity of diseases, that, in spite of being different amongst each other, occur in the same form, more specifically through the uncontrolled invasive growth of cells which are not recognized by the Natural-Killer T-Lymphocytes of the immune system. Nowadays, there are thousands of people worldwide who live with a diagnosis of cancer, which makes the development of new treatments, such as immuno-oncology, an unquestionable necessity.In order to accomplish the development of new therapeutic methods, it is essential to proceed to the correct identification of therapeutic targets, that is to say the identification of genetic mutations in the tumor, which represent an important source of neo-antigens. Therefore, there has been a significant progress on several methods which aid the prognostic and development of specific treatments for each patient, through techniques such as next-generation sequencing, proteomics, flux cytometry, mass spectrometry and bioinformatics.This monography aims to present the recent advances of investigation in the context of the utilization of personalized mRNA vaccine technology in different types of cancer, recognizing its tremendous therapeutic potential.The clinical trials developed demonstrated that the mRNA vaccines show a positive safety and tolerability profile, as well as some implications on the capacity to induce cellular and humoral immune responses against countless antigens. Currently, there are several clinical trials taking place, which are not centered exclusively on the monotherapy with mRNA vaccines, but also on the conjugation of combined therapy, especially checkpoint-inhibitors.It is important to emphasize that every development aims to transform the complexity of cancer in its major vulnerability, unveiling a new Era of Personalized Medicine, as an emergent necessity in multiple cancer patients to which other pharmacological options are not satisfactory.
O cancro corresponde a um termo coletivo que abrange uma multiplicidade de doenças, que apesar de diferentes entre si, surgem da mesma forma, mais especificamente, através de um crescimento celular descontrolado e invasivo, não reconhecido pelos linfócitos T natural killer do sistema imunitário. Atualmente, existem a nível mundial, milhões de pessoas que vivem com um diagnóstico de cancro, pelo que o desenvolvimento de novas terapêuticas, como a imuno-oncologia, constitui uma necessidade inquestionável. Para o desenvolvimento de novas terapêuticas é fundamental a identificação correta de alvos terapêuticos, ou seja, a identificação das mutações genéticas tumorais que constituem uma fonte importante de neo-antigénios. Estão, por isso, a emergir significativamente vários métodos que auxiliam o prognóstico e desenvolvimento de terapêuticas específicas para cada paciente, através da sequenciação de próxima geração, proteómica, citometria de fluxo, espetrometria de massa e bioinformática.A presente monografia procura apresentar os recentes avanços inovadores das investigações no âmbito da utilização da tecnologia de vacinas personalizadas de mRNA em diferentes tipos de cancro, reconhecendo o seu enorme interesse e potencial terapêutico. Os ensaios clínicos desenvolvidos demonstraram que as vacinas de mRNA apresentam um perfil de segurança e tolerabilidade favorável, e implicações na capacidade de induzir respostas imunitárias celulares e humorais contra inúmeros antigénios. Atualmente, estão a decorrer vários ensaios clínicos que não se centram apenas na monoterapia com vacinas de mRNA, mas também na conjugação de terapêuticas combinadas sobretudo com checkpoint-inhibitors.É de realçar que todos os desenvolvimentos pretendem transformar a complexidade do cancro na sua maior vulnerabilidade, inaugurando uma nova Era da Medicina Personalizada, como necessidade emergente em múltiplos doentes cancerígenos na qual outras opções farmacológicas não apresentam respostas satisfatórias.