Littérature scientifique sur le sujet « Perovskite-type Transition Metal Oxides »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Perovskite-type Transition Metal Oxides ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Perovskite-type Transition Metal Oxides"

1

Da Silva, Paulo Roberto Nagipe, et Ana Brígida Soares. « Lanthanum based high surface area perovskite-type oxide and application in CO and propane combustion ». Eclética Química Journal 34, no 1 (23 janvier 2018) : 31. http://dx.doi.org/10.26850/1678-4618eqj.v34.1.2009.p31-38.

Texte intégral
Résumé :
The perovskite-type oxides using transition metals present a promising potential as catalysts in total oxidation reaction. The present work investigates the effect of synthesis by oxidant co-precipitation on the catalytic activity of perovskite-type oxides LaBO3 (B= Co, Ni, Mn) in total oxidation of propane and CO. The perovskite-type oxides were characterized by means of X-ray diffraction, nitrogen adsorption (BET method), thermo gravimetric and differential thermal analysis (ATG-DTA) and X-ray photoelectron spectroscopy (XPS). Through a method involving the oxidant co-precipitation it’s possible to obtain catalysts with different BET surface areas, of 33-44 m2/g, according the salts of metal used. The characterization results proved that catalysts have a perovskite phase as well as lanthanum oxide, except LaMnO3, that presents a cationic vacancies and generation for known oxygen excess. The results of catalytic test showed that all oxides have a specific catalytic activity for total oxidation of CO and propane even though the temperatures for total conversion change for each transition metal and substance to be oxidized.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Azuma, Masaki, Yuki Sakai, Takumi Nishikubo, Masaichiro Mizumaki, Tetsu Watanuki, Takashi Mizokawa, Kengo Oka, Hajime Hojo et Makoto Naka. « Systematic charge distribution changes in Bi- and Pb-3d transition metal perovskites ». Dalton Transactions 47, no 5 (2018) : 1371–77. http://dx.doi.org/10.1039/c7dt03244g.

Texte intégral
Résumé :
Charge distribution changes in Bi- and Pb-3d transition metal perovskite type oxides were examined. The change in the depth of the d level of the transition metal causes the intermetallic charge transfer.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kim, Hyo-Young, Jeeyoung Shin, Il-Chan Jang et Young-Wan Ju. « Hydrothermal Synthesis of Three-Dimensional Perovskite NiMnO3 Oxide and Application in Supercapacitor Electrode ». Energies 13, no 1 (19 décembre 2019) : 36. http://dx.doi.org/10.3390/en13010036.

Texte intégral
Résumé :
Supercapacitors are attractive as a major energy storage device due to their high coulombic efficiency and semi-permanent life cycle. Transition metal oxides are used as electrode material in supercapacitors due to their high conductivity, capacitance, and multiple oxidation states. Nanopowder transition metal oxides exhibit low specific surface area, ion diffusion, electrical conductivity, and structural stability compared with the three-dimensional (3D) structure. Furthermore, unstable performance during long-term testing can occur via structural transition. Therefore, it is necessary to synthesize a transition metal oxide with a high specific surface area and a stable structure for supercapacitor application. Transition metal oxides with a perovskite structure control structural transition and improve conductivity. In this study, a NiMnO3 perovskite oxide with a high specific surface area and electrochemical properties was obtained via hydrothermal synthesis at low temperature. Hydrothermal synthesis was used to fabricate materials with an aqueous solution under high temperature and pressure. The shape and composition were regulated by controlling the hydrothermal synthesis reaction temperature and time. The synthesis of NiMnO3 was controlled by the reaction time to alter the specific surface area and morphology. The prepared perovskite NiMnO3 oxide with a three-dimensional structure can be used as an active electrode material for supercapacitors and electrochemical catalysts. The prepared NiMnO3 perovskite oxide showed a high specific capacitance of 99.03 F·g−1 and excellent cycle stability with a coulombic efficiency of 77% even after 7000 cycles.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Takegahara, Katsuhiko. « Electronic band structures in cubic perovskite-type oxides : bismuthates and transition metal oxides ». Journal of Electron Spectroscopy and Related Phenomena 66, no 3-4 (janvier 1994) : 303–20. http://dx.doi.org/10.1016/0368-2048(93)01853-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Tomioka, Y., A. Asamitsu, H. Kuwahara, Y. Moritomo, M. Kasai, R. Kumai et Y. Tokura. « Magnetic-field-induced metal-insulator transition in perovskite-type manganese oxides ». Physica B : Condensed Matter 237-238 (juillet 1997) : 6–10. http://dx.doi.org/10.1016/s0921-4526(97)00013-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sarkar, Abhishek, Ruzica Djenadic, Di Wang, Christina Hein, Ralf Kautenburger, Oliver Clemens et Horst Hahn. « Rare earth and transition metal based entropy stabilised perovskite type oxides ». Journal of the European Ceramic Society 38, no 5 (mai 2018) : 2318–27. http://dx.doi.org/10.1016/j.jeurceramsoc.2017.12.058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ishihara, S., M. Yamanaka et N. Nagaosa. « Orbital liquid in perovskite transition-metal oxides ». Physical Review B 56, no 2 (1 juillet 1997) : 686–92. http://dx.doi.org/10.1103/physrevb.56.686.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kang, Ju Hwan, Aeran Song, Yu Jung Park, Jung Hwa Seo, Bright Walker et Kwun-Bum Chung. « Tungsten-Doped Zinc Oxide and Indium–Zinc Oxide Films as High-Performance Electron-Transport Layers in N–I–P Perovskite Solar Cells ». Polymers 12, no 4 (26 mars 2020) : 737. http://dx.doi.org/10.3390/polym12040737.

Texte intégral
Résumé :
Perovskite solar cells (PSCs) have attracted tremendous research attention due to their potential as a next-generation photovoltaic cell. Transition metal oxides in N–I–P structures have been widely used as electron-transporting materials but the need for a high-temperature sintering step is incompatible with flexible substrate materials and perovskite materials which cannot withstand elevated temperatures. In this work, novel metal oxides prepared by sputtering deposition were investigated as electron-transport layers in planar PSCs with the N–I–P structure. The incorporation of tungsten in the oxide layer led to a power conversion efficiency (PCE) increase from 8.23% to 16.05% due to the enhanced electron transfer and reduced back-recombination. Scanning electron microscope (SEM) images reveal that relatively large grain sizes in the perovskite phase with small grain boundaries were formed when the perovskite was deposited on tungsten-doped films. This study demonstrates that novel metal oxides can be used as in perovskite devices as electron transfer layers to improve the efficiency.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Rodgers, Jennifer A., Anthony J. Williams et J. Paul Attfield. « High-pressure / High-temperature Synthesis of Transition Metal Oxide Perovskites ». Zeitschrift für Naturforschung B 61, no 12 (1 décembre 2006) : 1515–26. http://dx.doi.org/10.1515/znb-2006-1208.

Texte intégral
Résumé :
Perovskite and related Ruddlesden-Popper type transition metal oxides synthesised at high pressures and temperatures during the last decade are reviewed. More than 60 such new materials have been reported since 1995. Important developments have included perovskites with complex cation orderings on A and B sites, multiferroic bismuth-based perovskites, and new manganites showing colossal magnetoresistance (CMR) and charge ordering properties.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Terakura, K., J. Lee, J. Yu, I. V. Solovyev et H. Sawada. « Orbital and charge orderings and magnetism in perovskite-type transition-metal oxides ». Materials Science and Engineering : B 63, no 1-2 (août 1999) : 11–16. http://dx.doi.org/10.1016/s0921-5107(99)00045-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Perovskite-type Transition Metal Oxides"

1

Qasim, Ilyas. « Structural and Electronic Phase Transitions in Mixed Transition Metal Perovskite Oxides ». Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/10029.

Texte intégral
Résumé :
The reported multiferroic perovskite series Sr1-xAxTi1/2Mn1/2O3 has been the subject of numerous structural studies, without reaching consensus. In the current work, the cubic Pm3 ̅m is confirmed for end member SrTi1/2Mn1/2O3 in the Sr1-xAxTi1/2Mn1/2O3 ( A= Ca, La; 0 ≤ x ≤ 1) series. The Pm3 ̅m  I4/mcm  Pbnm structural evolution was observed with increased doping level of Ca. A cubic Pm3 ̅m  rhombohedral R3 ̅c transition occurred when La is substituted instead of Ca. Interesting magnetic behaviours were observed and the major contribution to this was concluded to be the mixed Mn4+/Mn3+ ratio. Ru and Ir have almost identical ionic radii and behave similarly in many ways. Remarkably the structure and properties of SrRuO3 and SrIrO3 are different. The current study revealed that the divalent transition metal doped materials of the type SrR1-xMxO3 (R = Ru, Ir, and M = 3d transition metals) are isostructural. This was achieved by the synthesis of a number of new materials of the type SrIr1-xMxO3. Therefore, these two series are comparatively described in the thesis. The structure and physical properties of the iron doped series SrIr1-xFexO3 are found to be different from those of the divalent doped ones, and this was even true for Ru analogues. Therefore, Fe-doped SrRuO3 and SrIrO3, based on the results of the same level doped materials are presented in a separate chapter. In the final chapter, the impact of Cu2+ doping on the structure and electronic properties of LaCrO3 is described. In order to understand structure property relationships, all the materials structurally characterised have had magnetic and resistivity measurements conducted. Special attention is given to realise the correlations between structure, magnetism, and conductivity.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Baskar, Dinesh. « High temperature magnetic properties of transition metal oxides with perovskite structure / ». Thesis, Connect to this title online ; UW restricted, 2008. http://hdl.handle.net/1773/9812.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Mete, Ersen. « Electronic Properties Of Transition Metal Oxides ». Phd thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/1069699/index.pdf.

Texte intégral
Résumé :
Transition metal oxides constitute a large class of materials with variety of very interesting properties and important technological utility. A subset with perovskite structure has been the subject matter of the current theoretical investigation with an emphasis on their electronic and structural behavior. An analytical and a computational method are used to calculate physical entities like lattice parameters, bulk moduli, band structures, density of electronic states and charge density distributions for various topologies. Results are discussed and compared with the available experimental findings.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Gierlich, Andreas [Verfasser]. « All-electron GW calculations for perovskite transition-metal oxides / Andreas Gierlich ». Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2011. http://d-nb.info/1014458021/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hopper, Harriet A. « An investigation of the structure and properties of 4d transition metal perovskite oxides ». Thesis, University of Aberdeen, 2017. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=232235.

Texte intégral
Résumé :
Perovskite-type materials have been widely studied in the literature as a result of the plethora of properties they have been found to exhibit. This is largely down to their versatile nature, which allows the substitution of a wide variety of different elements into the crystallographic sites. In addition to this the presence of 4d and 5d transition metal elements enables an even wider range of potential properties to be considered. The solid solution Sr1-xBaxMoO3 (x = 0.000, 0.025, 0.050, 0.075, 0.100 and 1.000) has been synthesised. Examination of the X-ray diffraction data via Rietveld refinement showed the materials crystallised with cubic Pm-3m symmetry, and there was a miscibility gap from x = 0.1 – 1.0. Examination of the optical properties showed that increasing x from 0 to 1 reduced the measured band gap, which was attributed to the electronic transition from the Mo 4d t2g band to the eg band, from 2.20 eV to 2.07 eV, as the ligand field splitting energy is closely related to the extent of hybridisation between Mo dx2-y2 and dz2 and the O 2p orbitals and the larger radius of Ba2+ compared to Sr2+ leads to longer Mo-O bonds and therefore weaker orbital mixing. The materials were examined as potential water-splitting photocatalysts but no evidence of hydrogen or oxygen evolution was found. In a similar fashion the solid solution Sr1-xCaxMoO3 (x = 0.00, 0.05, 0.10, 0.13, 0.15 and 0.17) was synthesised, and structural phase transitions were found to occur as x increased, from cubic Pm-3m to tetragonal I4/mcm to orthorhombic Imma. Discontinuities were observed in the cell parameters, bond lengths and angles at the transition from tetragonal to orthorhombic as a result of the switching of the octahedral rotation axis at the tetragonal to orthorhombic transition. The band gap was also found to decrease from 2.20 eV to 2.10 eV as x increased, which was further attributed to the octahedral tilting. The magnetic, electrical and structural properties of the Ruddlesden-Popper material – a variation on the perovskite structure – Sr3CoRuO7 were examined, and showed no structural changes down to 5 K, and no evidence of long-range magnetic order. A broad antiferromagnetic transition was observed at ~160 K which was attributed to short-range magnetism. The material was found to be semiconducting, and displayed Mott variable-range hopping behaviour below 240 K. The novel hexagonal perovskite series Ba3AMo2O9 (A = Sr, Ca, Nd and Pr0.5Nd0.5) was successfully synthesised, and attempts were made to synthesise the material Ba4Mo2O9, which was obtained mostly phase pure, with some minor impurities which were identified as polymorphs of the material and small amounts of Ba6Nb3O13.5 and Ba5.75Nb2.25O11.38. Examination of the magnetic properties revealed what appeared to be a transition at ~100 K in the Ba4Mo2O9, Ba3SrMo2O9 and Ba3CaMo2O9 materials, and spin gap formation was suspected below 100 K. The reduction in susceptibility was a possible indicator of spin dimer formation. Curie-Weiss fits were obtained for Ba4Mo2O9, Ba3CaMo2O9 and Ba3Pr0.5Nd0.5Mo2O9.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Gonzalez, Rosillo Juan Carlos. « Volume resistive switching in metallic perovskite oxides driven by the metal-Insulator transition ». Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/405305.

Texte intégral
Résumé :
Los óxidos de perovskita fuertemente correlacionados son una clase de materials con fascinantes propiedades físicas intrínsecas debido a la interacción de efectos de carga, spin, órbita y cristalinos. Efectos exóticos, como superconductividad, ferromagnetismo, ferroelectricidad o transiciones metal-aislante se producen gracias a la competición de los diferentes grados de libertad del sistema. El uso de estos efectos en una nueva generación de dispositivos es una fuente de inspiración continua para la comunidad científica. Los dispositivos de Memoria Resistiva de Acceso aleatorio (RRAM) son uno de los candidatos más prometedores para ganar la carrera hacia la memoria universal del futuro, debido a sus excelentes propiedades en términos de escalabilidad, fatiga frente a ciclado, retención y velocidad de operación. Están basadas en el efecto de Conmutación Resistiva (RS), dónde dos (o más) estados de resistencia, reversibles y no volátiles son inducidos mediante la aplicación de un campo eléctrico intenso. Este fenómeno ha sido observado en una gran variedad de óxidos, donde es ampliamente aceptado que el movimiento de oxígeno juega un papel fundamental para explicar su origen. Sin embargo, el mecanismo físico preciso que gobierna el efecto depende del material, y en algunos de ellos, dicho mecanismo aún no es comprendido en su totalidad. Esta falta de compresión es hoy en vía es uno de los cuellos de botella que está retrasando el uso generalizado de esta tecnología. En esta tesis, presentamos un novedoso mecanismo de RS basado en la Transición Metal-Aislante (MIT) perovskitas metálicas con correlación electrónica fuerte. Hemos estudiado el comportamiento RS de tres diferentes familias de perovskitas metálicas: La1-xSrxMnO3, YBa2Cu3O7-d y RENiO3 y demostramos que estos tres sistemas con conducción mixta eletrónica-iónica pueden experimentar una MIT, como consecuencia de la aplicación del campo eléctrico intenso, y que puede transformar su volumen bulk. Esta conmutación resistiva de carácter volúmico tiene una naturaleza diferente the los usuales tipos filamentar e interfacial, y abre nuevas oportunidades para el diseño de nuevos dispositivos robustos. Hemos caracterizado conciencudamente el efecto de RS a la nanoescala mediante Microscopía de Fuerzas Atómicas en modo Conducción (C-AFM). Espectroscopía de Fuerza Túnel (STS) y medidas de transporte dependientes de la temperatura han sido realizadas en los diferentes estados resistivos para obtener detalles de su estructura electrónica. Hemos reproducido con éxito el comportamiento memristivo nanoscópico en una escala micrómetrica mediante el uso de sondas de W-Au en una estación de puntas. Usando esta aproximación, hemos llevado a cabo medidas en diferentes atmósferas, las cuales sugieren el intercambio de oxígeno con la atmósfera. Además, presentamos una prueba de concepto de una configuración de tres terminales, donde la conmutación resistiva es inducida en la puerta del dispositivo. En el caso particular del superconductor YBa2Cu3O7-d, hemos estudiado la influencia en las propiedades superconductoras de zonas de alta resistencia embebidas en la matriz del material. Esta aproximación sienta las bases hacia el diseño de dispositivos con zonas de anclaje de vórtices reconfigurables. La interpretación de los resultados se hará en términos de una transición volúmica de tipo Mott, que estimamos ser de validez general para perovskitas metálicas de óxidos complejos.
Strongly correlated perovskite oxides are a class of materials with fascinating intrinsic physical functionalities due to the interplay of charge, spin, orbital ordering and lattice effects. The exotic phenomena arising from these competing degrees of freedom include superconductivity, ferromagnetism, ferroelectricity and metal-insulator transitions, among others. The use of these exotic phenomena in a new generation of devices with new and enhanced functionalities is continuing inspiring the research community. In this sense, Resistive-Random Access Memories (RRAM) are one of the most promising candidates to win the race towards the universal memory of the future, which could overcome the limitations of actual technologies (Flash and Dynamic-RAM), due to their excellent properties in terms of scalability, endurance, retention and switching speeds. They are based on the Resistive Switching effect (RS), where the application of an electric field produces a reversible, non-volatile change in the resistance between two or more resistive states. This phenomenon has been observed in a large variety of oxide materials, where the motion of oxygen is widely accepted to play a key role in their outstanding properties. However, the exact mechanism governing this effect is material-dependent and for some of them it is still far to be understood. This lack of understanding is actually one of the main bottlenecks preventing the widespread use of this technology. In this thesis, we present a novel Resistive Switching mechanism based on the Metal-Insulator Transition (MIT) in metallic perovskite oxides with strong electron electron interaction. We analyse the RS behaviour of three different families of metallic perovskites: La1-xSrxMnO3, YBa2Cu3O7-δ and RENiO3 and demonstrate that the MIT of these mixed electronic-ionic conductors can be tuned upon the application of an electric field, being able to transform the entire bulk volume. This volume RS is different in nature from interfacial or filamentary type and opens new possibilities of robust device design. Thorough nanoscale electrical characterization of the RS effect in these systems has been performed by means of Conductive-Atomic Force Microscopy (C-AFM). Scanning Tunnelling Spectroscopy (STS) and temperature-dependent transport measurements were performed in the different resistive states to get insight into their electronic features. The nanoscale memristive behaviour of these systems is successfully reproduced at a micrometric scale with W-Au tips in probe station experiments. Using this approach, atmosphere dependent measurements were undertaken, where oxygen exchange with the ambience is strongly evidenced. In addition, we present a proof-of-principle result from a 3-Terminal configuration where the RS effect is applied at the gate of the device. In the particular case of superconducting YBa2Cu3O7-δ films, we have studied the influence of high resistance areas, which are embedded in the material, on the superconducting transport properties enabling vortex pinning modification and paving the way towards novel reconfigurable vortex pinning sites. We interpret the RS results of these strongly correlated systems in terms of a Mott volume transition, that we believe to be of general validity for metallic perovskite complex oxides. We have verified that strongly correlated metallic perovskite oxides are a unique class of materials very promising for RS applications due to its intrinsic MIT properties that boosts a robust volumetric resistive switching effect. This thesis settles down the framework to understand the RS effect in these strongly correlated pervoskites, which could eventually lead to a new generation of devices exploiting the intrinsic MIT of these systems.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ramesha, K. « Synthesis And Investigation Of Transition Metal Oxides Towards Realization Of Novel Materials Properties ». Thesis, Indian Institute of Science, 2000. https://etd.iisc.ac.in/handle/2005/264.

Texte intégral
Résumé :
Transition metal compounds, especially the oxides, containing dn (0 ≤ n ≤ 10) electronic configuration, constitute the backbone of solid state/materials chemistry aimed at realization of novel materials properties of technological importance. Some of the significant materials properties of current interest are spin-polarized metallic ferromagnetism, negative thermal expansion, second harmonic nonlinear optical (NLO) susceptibility, fast ionic and mixed electronic/ionic conductivity for application in solid state batteries, and last but not the least, high-temperature superconductivity. Typical examples for each one of these properties could be found among transition metal oxides. Thus, alkaline-earth metal (A) substituted rare-earth (Ln) manganites, Lnı.xAxMnΟ3, are currently important examples for spin-polarized magnetotransport, ZrV2O7 and ZrW2O8 for negative thermal expansion coefficient, KTiOPO4 and LiNbO3 for second harmonic NLO susceptibility, (Li, La) TiO3 and LiMn2O4 for fast-ionic and mixed electronic/ionic conductivity respectively, and the whole host of cuprates typified by YBa2Cu3O7 for high Tc superconductivity. Solid state chemists constantly endeavour to obtain structure-property relations of solids so as to be able to design better materials towards desired properties. Synthesis coupled with characterization of structure and measurement of relevant properties is a common strategy that chemists adopt for this task. The work described in this thesis is based on such a broad-based chemists' approach towards understanding and realization of novel materials properties among the family of metal oxides. A search for metallic ferro/ferrimagnetism among the transition metal perovskite oxides, metallicity and possibility of superconductivity among transition-metal substituted cuprates and second order NLO susceptibility among metal oxides containing d° cations such as Ti(IV), V(V) and Nb(V) - constitute the main focus of the present thesis. New synthetic strategies that combine the conventional ceramic approach with the chemistry-based 'soft1 methods have been employed wherever possible to prepare the materials. The structures and electronic properties of the new materials have been probed by state-of-the art techniques that include powder X-ray diffraction (XRD) together with Rietveld refinement, electron diffraction, thermogravimetry, measurement of magnetic susceptibility (including magnetoresistance), Mossbauer spectroscopy and SHG response (towards 1064 nm laser radiation), besides conventional analytical techniques for determination of chemical compositions. Some of the highlights of the present thesis are: (i) synthesis of new mixed valent [Mn(III)/Mn(IV)] perovskite-type manganites, ALaMn2O6-y (A = K, Rb) and ALaBMn3O9_y (A = Na, K; B = Ca, Sr) that exhibit ferromagnetism and magnetoresistance; (ii) investigation of a variety of ferrimagnetic double-perovskites that include ALaMnRuO6 (A = Ca, Sr, Ba) and ALaFeVO6 (A = Ca, Sr) and A2FeReO6 (A = Ca, Sr, Ba) providing new insights into the occurrence of metallic and nonmetallic ferrimagnetic behaviour among this family of oxides; (iii) synthesis of new K2NiF4-type oxides, La2-2xSr2XCui.xMxO4 (M = Ti, Mn, Fe, Ru) and investigation of Cu-O-M interaction in two dimension and (iv) identification of the structural rnotif(s) that gives rise to efficient second order NLO optical (SHG) response among d° oxides containing Ti(IV), V(V), Nb(V) etc., and synthesis of a new SHG material, Ba2-xVOSi2O7 having the fresnoite structure. The thesis consists of five chapters and an appendix, describing the results of the investigations carried out by the candidate. A brief introduction to transition metaloxides, perovskite oxides in particular, is presented in Chapter 1. Attention is focused on the structure and properties of these materials. Chapter 2 describes the synthesis and investigation of two series of anion-deficient perovskite oxides, ALaMn2O6-y (A = K, Rb, Cs) and ALaBMn3O9_y (A = Na, K; B = Ca, Sr). ALaMn2O6-y (A = K, Rb, Cs) series of oxides adopt 2 ap x 2 ap superstructure for K and Rb phases and √2 av x √2 ap x 2 ap superstructure (ap = perovskite subcell) for the Cs phase. Among ALaBMn3O9-y phases, the A = Na members adopt a new kind of perovskite superstructure, ap x 3 ap, while the A = K phases do not reveal an obvious superstructure of the perovskite. All these oxides are ferromagnetic (Tc ~ 260-325 K) and metallic exhibiting a giant magnetoresistance behaviour similar to alkaline earth metal substituted lanthanum manganites, Lai_xAxMnO3. However, unlike the latter, the resistivity peak temperature Tp for all the anion-deficient manganites is significantly lower than Tc. In Chapter 3, we have investigated structure and electronic properties of double-perovskite oxides, A2FeReO6 (A = Ca, Sr and Ba). The A = Sr, Ba phases are cubic (Fm3m) and metallic, while the A = Ca phase is monoclinic (P2yn) and nonmetallic. All the three oxides are ferrimagnetic with Tcs 315-385 K as reported earlier. A = Sr, Ba phases show a negative magnetoresistance (MR) (10-25 % at 5 T), while the Ca member does not show an MR effect. 57Fe Mossbauer spectroscopy shows that iron is present in the high-spin Fe3+ (S = 5/2) state in Ca compound, while it occurs in an intermediate state between high-spin Fe2+ and Fe3+ in the Ba compound. Monoclinic distortion and high covalency of Ca-O bonds appear to freeze the oxidation states at Fe+3/Re5+ in Ca2FeRe O6, while the symmetric structure and ionic Ba-O bonds render the FeReO6 array highly covalent and Ba2FeReO6 metallic. Mossbauer data for Sr2FeReO6 shows that the valence state of iron in this compound is intermediate between that in Ba and Ca compounds. It is likely that Sr2FeReO6 which lies at the boundary between metallic and insulating states is metastable, phase-seperating into a percolating mixture of different electronic states at the microscopic level. In an effort to understand the occurrence of metallicity and ferrimagnetism among double perovskites, we have synthesized several new members : ALaMnFeO6 (A = Ca, Sr, Ba), ALaMnRuO6 (A = Ca, Sr, Ba) and ALaVFeO6 (A = Ca, Sr) (Chapter 3). Electron diffraction reveals an ordering of Mn and Ru in ALaMnRuO6 showing a doubling of the primitive cubic perovskite cell, while ALaVFeO6 do not show an ordering. ALaMnRuOs are ferrimagnetic (Tcs ~ 200-250 K) semiconductors, but ALaVFeO6 oxides do not show a long range magnetic ordering . The present work together with the previous work on double perovskites shows that only a very few of them exhibit both metallicity and ferrimagnetism, although several of them are ferrimagnetic. For example, among the series Ba2MReO6 (M = Mn, Fe, Co, Ni), only the M = Fe oxide is both metallic and ferrimagnetic, while M = Mn and Ni oxides are ferrimagnetic semiconductors. Similarly, A2CrMoO6 (A = Ca, Sr), A2CrRe06 (A = Ca, Sr), and ALaMnRuO6 (A = Ca, Sr, Ba) are all ferrimagnetic but not metallic. While ferrimagnetism of double perovskites arise from an antiferromagnetic coupling of B and B' spins through the B-O-B' bridges, the occurrence of metallicity seems to require precise matching of the energies of d-states of B and B' cations and a high covalency in the BB'O6 array that allows a facile electron-transfer between B and B', Bn++B’m+↔B(n+1)++B’(m-1)+ without an energy cost, just as occurs in ReO3 and other metallic ABO3 perovskites. In an effort to understand the Cu-O-M (M = Ti, Mn, Fe, Ru) electronic interaction in two dimension, we have investigated K2N1F4 oxides of the general formula La2-2xSr2XCui.xMxO4 (M = Ti, Mn, Fe or Ru). These investigations are described in Chapter 4. For M = Ti, only the x = 0.5 member could be prepared, while for M = Mn and Fe, the composition range is 0 < x < 1.0, and for M = Ru, the composition range is 0 < x ≤ 0.5. There is no evidence for ordering of Cu(II) and M(IV) in the x = 0.5 members. While the members of the M = Ti, Mn and Ru series are semiconducting/insulating, the members of the M = Fe series are metallic, showing a broad metal-semiconductor transition around 100 K for 0 < x ≤ 0.15 that is possibly related to a Cu(II)-O-Fe(IV) < > Cu(III)-O-Fe(III) valence degeneracy. Increasing the strontium content at the expense of lanthanum in La2-2xSr2XCui.xFexO4 for x ≤ 0.20 renders the samples metallic but not superconducting. In a search for inorganic oxide materials showing second order nonlinear optical (NLO) susceptibility, we have investigated several borates, silicates and phosphates containing /ram-connected MO6 octahedral chains or MO5 square-pyramids, where M = d°: Ti(IV), Nb(V) or Ta(V). Our investigations, which are described in Chapter 5, have identified two new NLO structures: batisite, Na2Ba(TiO)2Si4O12, containing trans-connectd TiO6 octahedral chains, and fresnoite, Ba2TiOSi2O7, containing square-pyramidal T1O5. Investigation of two other materials containing square-pyramidal TiO5, viz., Cs2TiOP2O7 and Na4Ti2Si8O22. 4H2O, revealed that isolated TiO5 square-pyramids alone do not cause a second harmonic generation (SHG) response; rather, the orientation of T1O5 units to produce -Ti-O-Ti-O- chains with alternating long and short Ti-0 distances in the fresnoite structure is most likely the origin of a strong SHG response in fresnoite. Indeed, we have been able to prepare a new fresnoite type oxide, Ba2.xVOSi2O7 (x ~ 0.5) that shows a strong SHG response, confirming this hypothesis. In the Appendix, we have described three synthetic strategies that enabled us to prepare magnetic and NLO materials. We have shown that the reaction CrO3 + 2 NH4X > CrO2 + 2 NH3 + H2O + X2 (X = Br, I), which occurs quantitatively at 120-150 °C, provides a convenient method for the synthesis of CrO2. Unlike conventional methods, the method described here does not require the use of high pressure for the synthesis of this technologically important material. For the synthesis of magnetic double perovskites, we have developed a method that involves reaction of basic alkali metal carbonates with the acidic oxides (e.g. Re2O7) first, followed by reaction of this precursor oxide with the required transition metal/transition metal oxide (e.g. Fe/Fe2O3). By this method we have successfully prepared single-phase perovskite oxides, A2FeReO6, ACrMoO6 and ALaFeVO6. We have prepared the new NLO material Ba2_xV0Si207 from Ba2VOSi2O7 by a soft chemical redox reaction involving the oxidation of V(IV) to V(V) using Br2 in CH3CN/CHCI3. Ba2V0Si207 + 1/2 Br2 > Bai.5V0Si207 + 1/2 BaBr2. The work presented in this thesis was carried out by the candidate as part of the Ph.D. training programme. He hopes that the studies reported here will constitute a worthwhile contribution to the solid state chemistry of transition metal oxides and related materials.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ramesha, K. « Synthesis And Investigation Of Transition Metal Oxides Towards Realization Of Novel Materials Properties ». Thesis, Indian Institute of Science, 2000. http://hdl.handle.net/2005/264.

Texte intégral
Résumé :
Transition metal compounds, especially the oxides, containing dn (0 ≤ n ≤ 10) electronic configuration, constitute the backbone of solid state/materials chemistry aimed at realization of novel materials properties of technological importance. Some of the significant materials properties of current interest are spin-polarized metallic ferromagnetism, negative thermal expansion, second harmonic nonlinear optical (NLO) susceptibility, fast ionic and mixed electronic/ionic conductivity for application in solid state batteries, and last but not the least, high-temperature superconductivity. Typical examples for each one of these properties could be found among transition metal oxides. Thus, alkaline-earth metal (A) substituted rare-earth (Ln) manganites, Lnı.xAxMnΟ3, are currently important examples for spin-polarized magnetotransport, ZrV2O7 and ZrW2O8 for negative thermal expansion coefficient, KTiOPO4 and LiNbO3 for second harmonic NLO susceptibility, (Li, La) TiO3 and LiMn2O4 for fast-ionic and mixed electronic/ionic conductivity respectively, and the whole host of cuprates typified by YBa2Cu3O7 for high Tc superconductivity. Solid state chemists constantly endeavour to obtain structure-property relations of solids so as to be able to design better materials towards desired properties. Synthesis coupled with characterization of structure and measurement of relevant properties is a common strategy that chemists adopt for this task. The work described in this thesis is based on such a broad-based chemists' approach towards understanding and realization of novel materials properties among the family of metal oxides. A search for metallic ferro/ferrimagnetism among the transition metal perovskite oxides, metallicity and possibility of superconductivity among transition-metal substituted cuprates and second order NLO susceptibility among metal oxides containing d° cations such as Ti(IV), V(V) and Nb(V) - constitute the main focus of the present thesis. New synthetic strategies that combine the conventional ceramic approach with the chemistry-based 'soft1 methods have been employed wherever possible to prepare the materials. The structures and electronic properties of the new materials have been probed by state-of-the art techniques that include powder X-ray diffraction (XRD) together with Rietveld refinement, electron diffraction, thermogravimetry, measurement of magnetic susceptibility (including magnetoresistance), Mossbauer spectroscopy and SHG response (towards 1064 nm laser radiation), besides conventional analytical techniques for determination of chemical compositions. Some of the highlights of the present thesis are: (i) synthesis of new mixed valent [Mn(III)/Mn(IV)] perovskite-type manganites, ALaMn2O6-y (A = K, Rb) and ALaBMn3O9_y (A = Na, K; B = Ca, Sr) that exhibit ferromagnetism and magnetoresistance; (ii) investigation of a variety of ferrimagnetic double-perovskites that include ALaMnRuO6 (A = Ca, Sr, Ba) and ALaFeVO6 (A = Ca, Sr) and A2FeReO6 (A = Ca, Sr, Ba) providing new insights into the occurrence of metallic and nonmetallic ferrimagnetic behaviour among this family of oxides; (iii) synthesis of new K2NiF4-type oxides, La2-2xSr2XCui.xMxO4 (M = Ti, Mn, Fe, Ru) and investigation of Cu-O-M interaction in two dimension and (iv) identification of the structural rnotif(s) that gives rise to efficient second order NLO optical (SHG) response among d° oxides containing Ti(IV), V(V), Nb(V) etc., and synthesis of a new SHG material, Ba2-xVOSi2O7 having the fresnoite structure. The thesis consists of five chapters and an appendix, describing the results of the investigations carried out by the candidate. A brief introduction to transition metaloxides, perovskite oxides in particular, is presented in Chapter 1. Attention is focused on the structure and properties of these materials. Chapter 2 describes the synthesis and investigation of two series of anion-deficient perovskite oxides, ALaMn2O6-y (A = K, Rb, Cs) and ALaBMn3O9_y (A = Na, K; B = Ca, Sr). ALaMn2O6-y (A = K, Rb, Cs) series of oxides adopt 2 ap x 2 ap superstructure for K and Rb phases and √2 av x √2 ap x 2 ap superstructure (ap = perovskite subcell) for the Cs phase. Among ALaBMn3O9-y phases, the A = Na members adopt a new kind of perovskite superstructure, ap x 3 ap, while the A = K phases do not reveal an obvious superstructure of the perovskite. All these oxides are ferromagnetic (Tc ~ 260-325 K) and metallic exhibiting a giant magnetoresistance behaviour similar to alkaline earth metal substituted lanthanum manganites, Lai_xAxMnO3. However, unlike the latter, the resistivity peak temperature Tp for all the anion-deficient manganites is significantly lower than Tc. In Chapter 3, we have investigated structure and electronic properties of double-perovskite oxides, A2FeReO6 (A = Ca, Sr and Ba). The A = Sr, Ba phases are cubic (Fm3m) and metallic, while the A = Ca phase is monoclinic (P2yn) and nonmetallic. All the three oxides are ferrimagnetic with Tcs 315-385 K as reported earlier. A = Sr, Ba phases show a negative magnetoresistance (MR) (10-25 % at 5 T), while the Ca member does not show an MR effect. 57Fe Mossbauer spectroscopy shows that iron is present in the high-spin Fe3+ (S = 5/2) state in Ca compound, while it occurs in an intermediate state between high-spin Fe2+ and Fe3+ in the Ba compound. Monoclinic distortion and high covalency of Ca-O bonds appear to freeze the oxidation states at Fe+3/Re5+ in Ca2FeRe O6, while the symmetric structure and ionic Ba-O bonds render the FeReO6 array highly covalent and Ba2FeReO6 metallic. Mossbauer data for Sr2FeReO6 shows that the valence state of iron in this compound is intermediate between that in Ba and Ca compounds. It is likely that Sr2FeReO6 which lies at the boundary between metallic and insulating states is metastable, phase-seperating into a percolating mixture of different electronic states at the microscopic level. In an effort to understand the occurrence of metallicity and ferrimagnetism among double perovskites, we have synthesized several new members : ALaMnFeO6 (A = Ca, Sr, Ba), ALaMnRuO6 (A = Ca, Sr, Ba) and ALaVFeO6 (A = Ca, Sr) (Chapter 3). Electron diffraction reveals an ordering of Mn and Ru in ALaMnRuO6 showing a doubling of the primitive cubic perovskite cell, while ALaVFeO6 do not show an ordering. ALaMnRuOs are ferrimagnetic (Tcs ~ 200-250 K) semiconductors, but ALaVFeO6 oxides do not show a long range magnetic ordering . The present work together with the previous work on double perovskites shows that only a very few of them exhibit both metallicity and ferrimagnetism, although several of them are ferrimagnetic. For example, among the series Ba2MReO6 (M = Mn, Fe, Co, Ni), only the M = Fe oxide is both metallic and ferrimagnetic, while M = Mn and Ni oxides are ferrimagnetic semiconductors. Similarly, A2CrMoO6 (A = Ca, Sr), A2CrRe06 (A = Ca, Sr), and ALaMnRuO6 (A = Ca, Sr, Ba) are all ferrimagnetic but not metallic. While ferrimagnetism of double perovskites arise from an antiferromagnetic coupling of B and B' spins through the B-O-B' bridges, the occurrence of metallicity seems to require precise matching of the energies of d-states of B and B' cations and a high covalency in the BB'O6 array that allows a facile electron-transfer between B and B', Bn++B’m+↔B(n+1)++B’(m-1)+ without an energy cost, just as occurs in ReO3 and other metallic ABO3 perovskites. In an effort to understand the Cu-O-M (M = Ti, Mn, Fe, Ru) electronic interaction in two dimension, we have investigated K2N1F4 oxides of the general formula La2-2xSr2XCui.xMxO4 (M = Ti, Mn, Fe or Ru). These investigations are described in Chapter 4. For M = Ti, only the x = 0.5 member could be prepared, while for M = Mn and Fe, the composition range is 0 < x < 1.0, and for M = Ru, the composition range is 0 < x ≤ 0.5. There is no evidence for ordering of Cu(II) and M(IV) in the x = 0.5 members. While the members of the M = Ti, Mn and Ru series are semiconducting/insulating, the members of the M = Fe series are metallic, showing a broad metal-semiconductor transition around 100 K for 0 < x ≤ 0.15 that is possibly related to a Cu(II)-O-Fe(IV) < > Cu(III)-O-Fe(III) valence degeneracy. Increasing the strontium content at the expense of lanthanum in La2-2xSr2XCui.xFexO4 for x ≤ 0.20 renders the samples metallic but not superconducting. In a search for inorganic oxide materials showing second order nonlinear optical (NLO) susceptibility, we have investigated several borates, silicates and phosphates containing /ram-connected MO6 octahedral chains or MO5 square-pyramids, where M = d°: Ti(IV), Nb(V) or Ta(V). Our investigations, which are described in Chapter 5, have identified two new NLO structures: batisite, Na2Ba(TiO)2Si4O12, containing trans-connectd TiO6 octahedral chains, and fresnoite, Ba2TiOSi2O7, containing square-pyramidal T1O5. Investigation of two other materials containing square-pyramidal TiO5, viz., Cs2TiOP2O7 and Na4Ti2Si8O22. 4H2O, revealed that isolated TiO5 square-pyramids alone do not cause a second harmonic generation (SHG) response; rather, the orientation of T1O5 units to produce -Ti-O-Ti-O- chains with alternating long and short Ti-0 distances in the fresnoite structure is most likely the origin of a strong SHG response in fresnoite. Indeed, we have been able to prepare a new fresnoite type oxide, Ba2.xVOSi2O7 (x ~ 0.5) that shows a strong SHG response, confirming this hypothesis. In the Appendix, we have described three synthetic strategies that enabled us to prepare magnetic and NLO materials. We have shown that the reaction CrO3 + 2 NH4X > CrO2 + 2 NH3 + H2O + X2 (X = Br, I), which occurs quantitatively at 120-150 °C, provides a convenient method for the synthesis of CrO2. Unlike conventional methods, the method described here does not require the use of high pressure for the synthesis of this technologically important material. For the synthesis of magnetic double perovskites, we have developed a method that involves reaction of basic alkali metal carbonates with the acidic oxides (e.g. Re2O7) first, followed by reaction of this precursor oxide with the required transition metal/transition metal oxide (e.g. Fe/Fe2O3). By this method we have successfully prepared single-phase perovskite oxides, A2FeReO6, ACrMoO6 and ALaFeVO6. We have prepared the new NLO material Ba2_xV0Si207 from Ba2VOSi2O7 by a soft chemical redox reaction involving the oxidation of V(IV) to V(V) using Br2 in CH3CN/CHCI3. Ba2V0Si207 + 1/2 Br2 > Bai.5V0Si207 + 1/2 BaBr2. The work presented in this thesis was carried out by the candidate as part of the Ph.D. training programme. He hopes that the studies reported here will constitute a worthwhile contribution to the solid state chemistry of transition metal oxides and related materials.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Takeiri, Fumitaka. « Topochemical and High-Pressure Routes to Synthesize Transition-Metal Mixed Anion Oxides ». Kyoto University, 2017. http://hdl.handle.net/2433/228237.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Akizuki, Yasuhide. « High-Pressure Synthesis and Properties of Novel Perovskite Oxides ». 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199319.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Perovskite-type Transition Metal Oxides"

1

B, Goodenough John, et Cooper S. L. 1960-, dir. Localized to itinerant electronic transition in perovskite oxides. Berlin : New York, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Cooper, S. L., J. S. Zhou, John B. Goodenough, T. Egami et J. B. Goodenough. Localized to Itinerant Electronic Transition in Perovskite Oxides. Springer London, Limited, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Perovskite-type Transition Metal Oxides"

1

Srilakshmi, Chilukoti. « Perovskite-Type Transition Metal Oxide Nanocatalysts ». Dans ACS Symposium Series, 319–51. Washington, DC : American Chemical Society, 2020. http://dx.doi.org/10.1021/bk-2020-1359.ch011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Mizokawa, T., et A. Fujimori. « Unrestricted Hartree-Fock Study of Perovskite-Type Transition-Metal Oxides ». Dans Spectroscopy of Mott Insulators and Correlated Metals, 117–25. Berlin, Heidelberg : Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-57834-2_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Arima, T., et Y. Tokura. « Systematics of Optical Gaps in Perovskite-Type 3d Transition Metal Oxides ». Dans Spectroscopy of Mott Insulators and Correlated Metals, 150–59. Berlin, Heidelberg : Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-57834-2_13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Cooper, S. L. « Optical Spectroscopic Studies of Metal-Insulator Transitions in Perovskite-Related Oxides ». Dans Localized to Itinerant Electronic Transition in Perovskite Oxides, 161–219. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45503-5_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Gonzalez-Rosillo, Juan Carlos, Rafael Ortega-Hernandez, Júlia Jareño-Cerulla, Enrique Miranda, Jordi Suñe, Xavier Granados, Xavier Obradors, Anna Palau et Teresa Puig. « Volume Resistive Switching in Metallic Perovskite Oxides Driven by the Metal-Insulator Transition ». Dans Electronic Materials : Science & ; Technology, 289–310. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-42424-4_12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Goodenough, J. B., A. Hamnett et D. Telles. « Counter-Cation Roles in Ru(IV) Oxides with Perovskite or Pyrochlore Structures ». Dans Localization and Metal-Insulator Transitions, 161–81. Boston, MA : Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2517-8_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

MATSUMOTO, H., T. OTAKE, T. KUDO, Y. SASAKI, K. YASHIRO, A. KAIMAI, T. KAWADA et al. « MIXED PROTONIC-ELECTRONIC CONDUCTION IN TRANSITION-METAL-DOPED PEROVSKITE-TYPE OXIDES ». Dans Solid State Ionics, 213–20. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702586_0021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

RAMANAN, A., J. GOPALAKRISHNAN et C. N. R. RAO. « Relative Stabilities of Layered Perovskite and Pyrochlore Structures in Transition Metal Oxides Containing Trivalent Bismuth ». Dans Solid State Chemistry, 479–84. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789812795892_0039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Jolivet, Jean-Pierre. « Titanium, Manganese, and Zirconium Dioxides ». Dans Metal Oxide Nanostructures Chemistry. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780190928117.003.0011.

Texte intégral
Résumé :
The dioxides of titanium (TiO2), manganese (MnO2), and zirconium (ZrO2) are important materials because of their technological uses. TiO2 is used mainly as white pigment. Because of its semiconducting properties, TiO2, in its nanomaterial form, is also used as an active component of photocells and photocatalysis for self-cleaning glasses and cements . MnO2 is used primarily in electrode materials. ZrO2 is used in refractory ceramics, abrasive materials, and stabilized zirconia as ionic conductive materials stable at high temperature. Many of these properties are, of course, dependent on particle size and shape (§ Chap. 1). Dioxides of other tetravalent elements with interesting properties have been studied elsewhere in this book, especially VO2, which exhibits a metal–isolator transition at 68°C, used, for instance, in optoelectronics (§ 4.1.5), and silica, SiO2 (§ 4.1.4), which is likely the most ubiquitous solid for many applications and uses. Aqueous chemistry is of major interest in synthesizing these oxides in the form of nanoparticles from inorganic salts and under simple, cheap, and envi­ronmental friendly conditions. However, as the tetravalent elements have re­stricted solubility in water (§ 2.2), metal–organic compounds such as titanium and zirconium alkoxides are frequently used in alcoholic solution as precursors for the synthesis of TiO2 and ZrO2 nanoparticles. An overview of the conversion of alkoxides into oxides is indicated about silica formation (§ 4.1.4), and since well-documented works have already been published, these compounds are not considered here. The crystal structures of most MO2 dioxides are of TiO2 rutile type for hexacoordinated cations (e.g., Ti, V, Cr, Mn, Mo, W, Sn, Pb) and CaF2 fluorite type for octacoordinated, larger cations (e.g., Zr, Ce), but polymorphism is common. Some dioxides of elements such as chromium and tin form only one crystal­line phase. So, hydrolysis of SnCl4 or acidification of stannate [Sn(OH)6]2− leads both to the same rutile-type phase, cassiterite, SnO2. Many other dioxides are polymorphic, especially TiO2, which exists in three main crystal phases: anatase, brookite, and rutile; and MnO2, which gives rise to a largely diversified crystal chemistry.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Mishra, Mukesh K., Srikanta Moharana, Santosh Kumar Satpathy, Priyambada Mallick et Ram Naresh Mahaling. « Perovskite-type dielectric ceramic-based polymer composites for energy storage applications ». Dans Perovskite Metal Oxides, 285–312. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-99529-0.00014-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Perovskite-type Transition Metal Oxides"

1

Wagner, L. K. « Progress in quantum Monte Carlo calculations of perovskite transition metal oxides ». Dans Fundamental Physics of Ferroelectrics 2003. AIP, 2003. http://dx.doi.org/10.1063/1.1609959.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Vikhnin, V. S., I. Kislova, A. B. Kutsenko et S. E. Kapphan. « Excitonic-type polaron states : photoluminescence in SBN and in other ferroelectric oxides ». Dans XI Feofilov Symposium on Spectropscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, sous la direction de Alexander A. Kaplyanskii, Boris Z. Malkin et Sergey I. Nikitin. SPIE, 2002. http://dx.doi.org/10.1117/12.475343.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Misra, Sunasira. « Transition metal substituted SrTiO[sub 3] perovskite oxides as promising functional materials for oxygen sensor ». Dans FUNCTIONAL MATERIALS : Proceedings of the International Workshop on Functional Materials (IWFM-2011). AIP, 2012. http://dx.doi.org/10.1063/1.4736925.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Salas, Jaylene B., Nasim Farahmand et Stephen O'Brien. « Synthetic Transition Metal Oxides Prepared by Gel Collection and Characterization of Perovskite Nanocrystal Thin Films for High Performance Dielectric Applications ». Dans 2019 IEEE MIT Undergraduate Research Technology Conference (URTC). IEEE, 2019. http://dx.doi.org/10.1109/urtc49097.2019.9660555.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

CHERGUI, Majed. « Charge Carrier and Phonon Dynamics in Transition Metal Oxide and in Lead-Halide Perovskite Nanoparticles ». Dans nanoGe Fall Meeting 2018. València : Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.fallmeeting.2018.265.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

CHERGUI, Majed. « Charge Carrier and Phonon Dynamics in Transition Metal Oxide and in Lead-Halide Perovskite Nanoparticles ». Dans nanoGe Fall Meeting 2018. València : Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.nfm.2018.265.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Boulon, G., C. Garapon et A. Monteil. « Spectroscopy of new chromium/neodymium-doped oxide laser materials : garnets and aluminates ». Dans International Laser Science Conference. Washington, D.C. : Optica Publishing Group, 1986. http://dx.doi.org/10.1364/ils.1986.the2.

Texte intégral
Résumé :
Applications to laser materials processing requires a novel solid state laser characterized by higher efficiency and larger output energy than the standard commercial materials. There is a revival of interest in the laser-type materials doped either by rare-earth ions (Nd3+, Er3+, Ho3+) or by metal-transition ions (Ni2+, Co2+, V2+, Cr3+, Ti3+). The spectral range of the emission is located in the near infrared and we have the possibility to obtain both a single-frequency laser with rare-earth centers and a tunable-frequency laser with metal-transition centers. In this paper we deal with: Nd3+-doped GGG-type garnets and Nd3+-doped lanthanum magnesium aluminate; Cr3+-doped GGG-type garnets and Cr3+-doped lanthanum magnesium aluminate; Cr3+/Nd3+-codoped GGG-type garnets.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kim, Wan Gee, Min Gyu Sung, Sook Joo Kim, Ja Yong Kim, Ji Won Moon, Sung Joon Yoon, Jung Nam Kim et al. « Dependence of the switching characteristics of resistance random access memory on the type of transition metal oxide ». Dans ESSDERC 2010 - 40th European Solid State Device Research Conference. IEEE, 2010. http://dx.doi.org/10.1109/essderc.2010.5618197.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Lewis, K. L., et A. M. Pitt. « The Effect of Composition on the Properties of Magnetron Sputtered Vanadium Oxide Films ». Dans Optical Interference Coatings. Washington, D.C. : Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oic.1992.otue9.

Texte intégral
Résumé :
The vanadium oxide system is well known for its multiphase behaviour. Many compositions are known, ranging from VO0.2 to V2O5. Several of these materials exhibit semiconductor-metallic phase transitions at temperatures between 10 and 400K, the most well known being found in the case of vanadium dioxide at 341K. A large number of studies have addressed the properties of thin films of VO2 using material deposited by a number of different techniques, but there is no systematic study reported of the sensitivity of the phase transition to composition in the range close to x=2.0. This work seeks to address this issue using material deposited by reactive sputtering using an RF planar magnetron source under ultra-clean (UHV-type) conditions. The problems posed in the use of reactive sputtering for the deposition of such oxide films arise because of the affinity of the metal target for the reactive gas used during sputtering which results in a highly non-linear process characteristic as discussed by Berg [1] and others. For the deposition of materials in their highest oxidation states (eg alumina, V2O5) etc), this doesn't usually present too much difficulty, since it is only necessary to provide sufficient reactive gas to overcome the level of poisoning at the target surface. In the case of vanadium oxide however, the control of composition is of paramount importance in achieving the optimum film properties.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hou, Changjun, Jiale Dong, Yan Xu, Danqun Huo, Yike Tang et Jun Yang. « Preparation and Characterization of Pt/WO3 Nano-Film and Its Hydrogen-Sensing Properties ». Dans 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2008. http://dx.doi.org/10.1115/micronano2008-70010.

Texte intégral
Résumé :
Tungsten trioxide is an n-type semiconductor, which has been extensively used for the development of metal oxide semiconductor gas sensors. The hydrogen gas sensing performance of platinum (Pt) catalyst activated WO3 thin films were investigated here. All of the Pt/WO3 films membranes are sensitive to hydrogen gas and the sample by sol-gel and DC reactive magnetron sputtering methods. X-ray diffraction results indicate that the tungsten trioxide is cubic crystal, and the AFM analysis shows molecular structures of the samples are tetrahedron. It means the four consecutive quadrilateral forms we observed in the 9nmx9nm molecular structure are scattergram of tungsten-ions and oxide-ions on 106 sides in WO2.9 structure cell, and the lost one oxide-ion resulted in the transition of WO3 to WO2.9. With anneal temperature rising, the membranous poriness decreasing. The higher crystal degree is, the lower gasochromic efficiency is. The change of combining environment and content of O−2 ions in colorized / decolorized state WOx films was observed in XPS analysis of Pt/WO3 film, the peak shape had changed greatly. As a result, the explanation to this phenomenon is available here according to XPS chemical shift of electric potential model theory.
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Perovskite-type Transition Metal Oxides"

1

Miller, Virginia L., et Steven C. Tidrow. Investigations of Transition Metal Oxide with the Perovskite Structure as Potential Multiferroics. Fort Belvoir, VA : Defense Technical Information Center, octobre 2008. http://dx.doi.org/10.21236/ada487226.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie