Littérature scientifique sur le sujet « Periodontal ligament Anatomy »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Periodontal ligament Anatomy ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Periodontal ligament Anatomy"

1

Becker, J., D. Schuppan, J. P. Rabanus, R. Rauch, U. Niechoy et H. R. Gelderblom. « Immunoelectron microscopic localization of collagens type I, V, VI and of procollagen type III in human periodontal ligament and cementum. » Journal of Histochemistry & ; Cytochemistry 39, no 1 (janvier 1991) : 103–10. http://dx.doi.org/10.1177/39.1.1983870.

Texte intégral
Résumé :
We examined the ultrastructural localization of collagens Type I, V, VI and of procollagen Type III in decalcified and prefixed specimens of the periodontal ligament and cementum, by immunoelectron microscopy using ultra-thin cryostat sections. Immunostaining for collagen Type I was pronounced on the major cross-striated fibrils entering cementum and in cementum proper, whereas staining for procollagen Type III was almost exclusively observed on the major fibrils in the periodontal ligament situated more remote from cementum. Reactivity for collagen Type V was limited to aggregated, unbanded filamentous material of about 12 nm diameter that was found mainly in larger spaces between bundles of cross-striated collagen fibrils and occasionally on single microfibrils that apparently originated from the ends of the major collagen fibrils, which may support the concept of this collagen as a component of core fibrils. Collagen Type VI was present as microfilaments appearing to interconnect single cross-striated fibrils. In the densely packed fibril bundles of the periodontal ligament, no collagen type VI was detected. Neither Type V or Type VI collagen was observed in cementum.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Häkkinen, L., O. Oksala, T. Salo, F. Rahemtulla et H. Larjava. « Immunohistochemical localization of proteoglycans in human periodontium. » Journal of Histochemistry & ; Cytochemistry 41, no 11 (novembre 1993) : 1689–99. http://dx.doi.org/10.1177/41.11.8409375.

Texte intégral
Résumé :
Proteoglycans (PGs) are extracellular and cell surface-associated macromolecules that regulate cell adhesion, cell growth, matrix formation, and bind growth factors. In this work we studied the distribution of core proteins of four PGs (decorin, biglycan, a large molecular weight PG, and CD44) in human gingiva and periodontal ligament by immunohistochemical staining of frozen tissue sections with specific antibodies. Decorin, a major PG of this tissue, was localized on collagen fiber bundles in the gingival and periodontal connective tissues. Staining for decorin was most intense at the subepithelial region. Biglycan was a minor PG component of the human periodontium, showing some accumulation in connective tissue under the oral epithelium. At the immunohistochemical level, biglycan appeared to form fine filament-like structures on extracellular matrix fibers. Localization of large molecular weight PG differed from that of decorin and biglycan. It was concentrated in deep connective tissue areas of the gingiva and in the periodontal ligament, and was only weakly present at the subepithelial region. CD44 was mainly concentrated in cell-cell contact areas of basal and spinous layers of oral epithelium. In the connective tissue of gingiva and periodontal ligament, CD44 was localized on fibroblast cell surfaces. Connective tissue area under the junctional epithelium contained relatively small amounts of PGs. The results indicate that different parts of human periodontium contain a typical variety of PGs, suggesting a specific function for each PG species in the location at which they accumulate.
Styles APA, Harvard, Vancouver, ISO, etc.
3

de Jong, T., A. D. Bakker, V. Everts et T. H. Smit. « The intricate anatomy of the periodontal ligament and its development : Lessons for periodontal regeneration ». Journal of Periodontal Research 52, no 6 (21 juin 2017) : 965–74. http://dx.doi.org/10.1111/jre.12477.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Sawada, Takashi, Yuu Sugawara, Tomohiro Asai, Natsuko Aida, Takaaki Yanagisawa, Kazumasa Ohta et Sadayuki Inoue. « Immunohistochemical Characterization of Elastic System Fibers in Rat Molar Periodontal Ligament ». Journal of Histochemistry & ; Cytochemistry 54, no 10 (16 juin 2006) : 1095–103. http://dx.doi.org/10.1369/jhc.5a6905.2006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Abuduwali, Nuersailike, Stefan Lossdörfer, Jochen Winter, Michael Wolf, Werner Götz et Andreas Jäger. « Autofluorescent characteristics of human periodontal ligament cells in vitro ». Annals of Anatomy - Anatomischer Anzeiger 195, no 5 (octobre 2013) : 449–54. http://dx.doi.org/10.1016/j.aanat.2013.03.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

McCulloch, C. A. G. « Progenitor cell populations in the periodontal ligament of mice ». Anatomical Record 211, no 3 (mars 1985) : 258–62. http://dx.doi.org/10.1002/ar.1092110305.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Cho, Moon-Il, et Philias R. Garant. « 3H-mannose utilization by fibroblasts of the periodontal ligament ». Anatomical Record 218, no 1 (mai 1987) : 5–13. http://dx.doi.org/10.1002/ar.1092180103.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Oehmke, Matthias J., Christopher R. C. Schramm, Erich Knolle, Nathalie Frickey, Thomas Bernhart et Hans-Joachim Oehmke. « Age-dependent changes of the periodontal ligament in rats ». Microscopy Research and Technique 63, no 4 (2004) : 198–202. http://dx.doi.org/10.1002/jemt.20027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Nagai, Nobuhiro, Ayumi Hirakawa, Nao Otani et Masanobu Munekata. « Development of Tissue-Engineered Human Periodontal Ligament Constructs with Intrinsic Angiogenic Potential ». Cells Tissues Organs 190, no 6 (2009) : 303–12. http://dx.doi.org/10.1159/000213247.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hirashima, Shingo, Tomonoshin Kanazawa, Keisuke Ohta et Kei-ichiro Nakamura. « Three-dimensional ultrastructural imaging and quantitative analysis of the periodontal ligament ». Anatomical Science International 95, no 1 (10 septembre 2019) : 1–11. http://dx.doi.org/10.1007/s12565-019-00502-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Periodontal ligament Anatomy"

1

Ashworth, Jonathan F. « Immunohistochemical study of marmoset periodontal ligament microvasculature : a confocal laser scanning microscopic study ». Title page, contents and summary only, 1999. http://web4.library.adelaide.edu.au/theses/09DM/09dma831.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Gallardo, Venegas Camila. « Efecto del envejecimiento en la proporción de células troncales de la pulpa dental y del ligamento periodontal de ratones ». Tesis, Universidad de Chile, 2017. http://repositorio.uchile.cl/handle/2250/148043.

Texte intégral
Résumé :
Trabajo de Investigación Requisito para optar al Título de Cirujano Dentista
Introducción El envejecimiento es un proceso fisiológico que genera una disminución en la capacidad funcional de los tejidos. Una de las principales hipótesis desarrolladas para explicar este fenómeno, postula que una disminución en el número y/o actividad de las células troncales a lo largo del tiempo, induciría una declinación en la capacidad del individuo para mantener la homeostasis. Actualmente, se ha descrito una reducción en el número de células troncales de múltiples tejidos durante el envejecimiento. Sin embargo, en los tejidos dentarios la evidencia disponible es escasa. Es por esto que el objetivo de este trabajo es determinar el efecto del envejecimiento en el porcentaje de células troncales de la pulpa dental y del ligamento periodontal. Para ello, se utilizará STRO-1 y CD146, dos marcadores de MSC en médula ósea, pulpa dental y ligamento periodontal que son sensibles a la edad del individuo, ya que se ha descrito que su expresión es mayor en células aisladas de pacientes jóvenes que en células aisladas de pacientes viejos. Materiales y métodos Maxilares superiores de ratones de 2, 14 y 18 meses fueron fijados y desmineralizados. Se obtuvieron secciones histológicas de 5μm, algunas de las cuales fueron destinadas para tinción histológica con Tricrómico de Masson y otras para inmunohistoquímica de fluorescencia con anticuerpos primarios STRO1 y CD146 y tinción de ADN con Hoechst. Se cuantificaron las células positivas para STRO-1 o CD146 en relación al total de células. Los datos se analizaron mediante la prueba no paramétrica Mann Whitney, considerándose diferencias significativas cuando p ≤ 0,05. Resultados El porcentaje de células positivas para STRO-1 en relación al total de células, fue disminuyendo a medida que aumenta la edad, tanto en la pulpa dental como en el ligamento periodontal. En la pulpa dental se obtuvieron valores de 8,63 ± 2,68% en el grupo de 2 meses, 4,56 ± 3,83% en el grupo de 14 meses y 2,64 ± 2,18% en el grupo de 18 meses. Mientras que en el ligamento periodontal fue de 11,43 ± 4,17% en el grupo de 2 meses, 6,94 ± 5,7% en el de 14 meses y 4,5 ± 2,47 % en el grupo 18 meses. El porcentaje de células positivas para CD146, en relación al total de células, fue disminuyendo a medida que aumenta la edad, tanto en la pulpa dental como en el ligamento periodontal. En la pulpa dental se obtuvieron valores de 9,33 ± 4,03% en el grupo de 2 meses, 4,83 ± 3,91% en el de 14 meses y 3,12 ± 2,72% en el de 18 meses. Mientras que en el ligamento periodontal fue de 11,09 ± 4,06% en el grupo de 2 meses, 6,59 ± 3,66% en el de 14 meses y 4,63 ± 3,11% en el de 18 meses. Conclusiones El porcentaje de células positivas para STRO-1 y CD146 en la pulpa dental y ligamento periodontal, disminuye a medida que aumenta la edad del ratón.
Adscrito a Proyecto FONDECYT 111400064 (MC)
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Periodontal ligament Anatomy"

1

Atkinson, Martin E. « Radiological anatomy of the oral cavity ». Dans Anatomy for Dental Students. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199234462.003.0040.

Texte intégral
Résumé :
The radiographs most frequently taken in general dental practice are of the teeth and their immidiate supporting tissues for detection of dental caries or assessment of bone loss in periodontal disease. Intraoral radiographs are taken by placing the X-ray-sensitive film or receptor in the mouth close to the teeth being investigated. Extraoral radiographs use larger films or receptors positioned externally and produce a view of the entire dentition and its supporting structures on a single film; they are used to ascertain the state of development of the dentitions prior to orthodontic treatment, for example. Dental panoramic tomographs (DPTs) are the most frequent extraoral radiographs. A radiograph is a negative photographic record. Dense structures such as bone are designated as radio-opaque; they absorb some X-rays and appear white on radiographs. More X-rays pass through less dense radiolucent structures such as air-filled cavities which show up as black areas. The contrast between different tissues of the structures which the X-ray beam passes through is determined by their radiodensity which, in turn, is largely due to their content of metallic elements. Calcium and iron are the prevalent heavy metals in the body. Calcium is combined with phosphate to form hydroxyapatite crystals in bones and mineralized tissues in teeth. Iron is present in haemoglobin in blood, but only large concentrations of blood, such as those found within the heart chambers, show up on X-rays. In sequence from densest to most lucent, the radiodensity of the dental and periodontal tissues are: enamel, dentine, cementum, compact bone, cancellous bone, demineralized carious enamel and dentine, dental soft tissues such as pulp and periodontal ligament, and air; gold and silver–mercury amalgam metallic restorative materials are even denser than enamel. A radiograph is a two-dimensional representation of a three-dimensional situation. The orientation of anatomical structures relative to the X-ray beam is a major factor determining their appearance on the film. For example, a beam travelling through the long axis of a radiodense structure will produce a whiter image on the film than one passing through its shorter axis because more X-rays are absorbed; the structure will also have a different shape.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie