Articles de revues sur le sujet « Periodic and quasi-Periodic media »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Periodic and quasi-Periodic media.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Periodic and quasi-Periodic media ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Su, Xifeng, et Rafael de la Llave. « KAM Theory for Quasi-periodic Equilibria in One-Dimensional Quasi-periodic Media ». SIAM Journal on Mathematical Analysis 44, no 6 (janvier 2012) : 3901–27. http://dx.doi.org/10.1137/12087160x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Pang, Gen-Di. « Optical properties of quasi-periodic media ». Journal of Physics C : Solid State Physics 21, no 31 (10 novembre 1988) : 5455–63. http://dx.doi.org/10.1088/0022-3719/21/31/016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Sinai, Yakov G. « Anomalous transport in quasi-periodic media ». Russian Mathematical Surveys 54, no 1 (28 février 1999) : 181–208. http://dx.doi.org/10.1070/rm1999v054n01abeh000120.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Su, Xifeng, et Rafael de la Llave. « KAM theory for quasi-periodic equilibria in 1D quasi-periodic media : II. Long-range interactions ». Journal of Physics A : Mathematical and Theoretical 45, no 45 (19 octobre 2012) : 455203. http://dx.doi.org/10.1088/1751-8113/45/45/455203.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kimura, S., G. Schubert et J. M. Straus. « Instabilities of Steady, Periodic, and Quasi-Periodic Modes of Convection in Porous Media ». Journal of Heat Transfer 109, no 2 (1 mai 1987) : 350–55. http://dx.doi.org/10.1115/1.3248087.

Texte intégral
Résumé :
Instabilities of steady and time-dependent thermal convection in a fluid-saturated porous medium heated from below have been studied using linear perturbation theory. The stability of steady-state solutions of the governing equations (obtained numerically) has been analyzed by evaluating the eigenvalues of the linearized system of equations describing the temporal behavior of infinitesimal perturbations. Using this procedure, we have found that time-dependent convection in a square cell sets in at Rayleigh number Ra=390. The temporal frequency of the simply periodic (P(1)) convection at Rayleigh numbers exceeding this value is given by the imaginary part of the complex eigenvalue. The stability of this (P(1)) state has also been studied; transition to quasi-periodic convection (QP2) occurs at Ra ≈ 510. A reverse transition to a simply periodic state (P(2)) occurs at Ra ≈ 560; a slight jump in the frequency of the P(2) state occurs at Ra between 625 and 640. The jump coincides with a second narrow (in terms of Ra) region of quasi-periodicity.
Styles APA, Harvard, Vancouver, ISO, etc.
6

de la Llave, Rafael, Xifeng Su et Lei Zhang. « Resonant Equilibrium Configurations in Quasi-Periodic Media : KAM Theory ». SIAM Journal on Mathematical Analysis 49, no 1 (janvier 2017) : 597–625. http://dx.doi.org/10.1137/15m1048598.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

de la Llave, Rafael, Xifeng Su et Lei Zhang. « Resonant Equilibrium Configurations in Quasi-periodic Media : Perturbative Expansions ». Journal of Statistical Physics 162, no 6 (8 février 2016) : 1522–38. http://dx.doi.org/10.1007/s10955-016-1464-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gao, Yixian, Weipeng Zhang et Shuguan Ji. « Quasi-Periodic Solutions of Nonlinear Wave Equation with x-Dependent Coefficients ». International Journal of Bifurcation and Chaos 25, no 03 (mars 2015) : 1550043. http://dx.doi.org/10.1142/s0218127415500431.

Texte intégral
Résumé :
This paper is devoted to the study of quasi-periodic solutions of a nonlinear wave equation with x-dependent coefficients. Such a model arises from the forced vibration of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. Based on the partial Birkhoff normal form and an infinite-dimensional KAM theorem, we can obtain the existence of quasi-periodic solutions for this model under the general boundary conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Pang, Gen-Di, et Fu-Cho Pu. « Non-linear optical effects in quasi-periodic multi-layered media ». Journal of Physics C : Solid State Physics 21, no 22 (10 août 1988) : L853—L856. http://dx.doi.org/10.1088/0022-3719/21/22/014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ben-Messaoud, Tahar, Jason Riordon, Alexandre Melanson, P. V. Ashrit et Alain Haché. « Photoactive periodic media ». Applied Physics Letters 94, no 11 (16 mars 2009) : 111904. http://dx.doi.org/10.1063/1.3095478.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Chulaevsky, Victor. « The KAM approach to the localization in “haarsch” quasi-periodic media ». Journal of Mathematical Physics 59, no 1 (janvier 2018) : 013509. http://dx.doi.org/10.1063/1.4995024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Cluni, F., et V. Gusella. « Estimation of residuals for the homogenized solution of quasi-periodic media ». Probabilistic Engineering Mechanics 54 (octobre 2018) : 110–17. http://dx.doi.org/10.1016/j.probengmech.2017.09.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Werner, P. « Resonances in periodic media ». Mathematical Methods in the Applied Sciences 14, no 4 (mai 1991) : 227–63. http://dx.doi.org/10.1002/mma.1670140403.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Ayoul-Guilmard, Quentin, Anthony Nouy et Christophe Binetruy. « Tensor-based multiscale method for diffusion problems in quasi-periodic heterogeneous media ». ESAIM : Mathematical Modelling and Numerical Analysis 52, no 3 (mai 2018) : 869–91. http://dx.doi.org/10.1051/m2an/2018022.

Texte intégral
Résumé :
This paper proposes to address the issue of complexity reduction for the numerical simulation of multiscale media in a quasi-periodic setting. We consider a stationary elliptic diffusion equation defined on a domain D such that D̅ is the union of cells {D̅i}i∈I and we introduce a two-scale representation by identifying any function v(x) defined on D with a bi-variate function v(i,y), where i ∈ I relates to the index of the cell containing the point x and y ∈ Y relates to a local coordinate in a reference cell Y. We introduce a weak formulation of the problem in a broken Sobolev space V(D) using a discontinuous Galerkin framework. The problem is then interpreted as a tensor-structured equation by identifying V(D) with a tensor product space ℝI⊗ V(Y) of functions defined over the product set I × Y. Tensor numerical methods are then used in order to exploit approximability properties of quasi-periodic solutions by low-rank tensors.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Gorshkov, A. S., et K. I. Volyak. « The Interaction Video Pulses and Quasi-Harmonic Signals in Periodic Nonlinear Media ». Japanese Journal of Applied Physics 34, Part 1, No. 9A (15 septembre 1995) : 5070–75. http://dx.doi.org/10.1143/jjap.34.5070.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Krejčí, Pavel. « Periodic solutions to Maxwell equations in nonlinear media ». Czechoslovak Mathematical Journal 36, no 2 (1986) : 238–58. http://dx.doi.org/10.21136/cmj.1986.102088.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Kuznetsov, Sergey V. « Fundamental Solutions for Periodic Media ». Advances in Mathematical Physics 2014 (2014) : 1–4. http://dx.doi.org/10.1155/2014/473068.

Texte intégral
Résumé :
Necessity for the periodic fundamental solutions arises when the periodic boundary value problems should be analyzed. The latter are naturally related to problems of finding the homogenized properties of the dispersed composites, porous media, and media with uniformly distributed microcracks or dislocations. Construction of the periodic fundamental solutions is done in terms of the convergent series in harmonic polynomials. An example of the periodic fundamental solution for the anisotropic porous medium is constructed, along with the simplified lower bound estimate.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Alcocer, F. J., V. Kumar et P. Singh. « Permeability of periodic porous media ». Physical Review E 59, no 1 (1 janvier 1999) : 711–14. http://dx.doi.org/10.1103/physreve.59.711.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Griffiths, David J., et Carl A. Steinke. « Waves in locally periodic media ». American Journal of Physics 69, no 2 (février 2001) : 137–54. http://dx.doi.org/10.1119/1.1308266.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Haché, Alain, Mohit Malik, Marcus Diem, Lasha Tkeshelashvili et Kurt Busch. « Measuring randomness with periodic media ». Photonics and Nanostructures - Fundamentals and Applications 5, no 1 (février 2007) : 29–36. http://dx.doi.org/10.1016/j.photonics.2006.11.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Molotkov, L. A., et A. E. Khilo. « Averaging periodic, nonideal elastic media ». Journal of Soviet Mathematics 32, no 2 (janvier 1986) : 186–92. http://dx.doi.org/10.1007/bf01084156.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Blank, Carsten, Martina Chirilus-Bruckner, Vincent Lescarret et Guido Schneider. « Breather Solutions in Periodic Media ». Communications in Mathematical Physics 302, no 3 (1 février 2011) : 815–41. http://dx.doi.org/10.1007/s00220-011-1191-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Sab, K., et F. Pradel. « Homogenisation of periodic Cosserat media ». International Journal of Computer Applications in Technology 34, no 1 (2009) : 60. http://dx.doi.org/10.1504/ijcat.2009.022703.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Manela, Ofer, Mordechai Segev et Demetrios N. Christodoulides. « Nondiffracting beams in periodic media ». Optics Letters 30, no 19 (1 octobre 2005) : 2611. http://dx.doi.org/10.1364/ol.30.002611.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Caffarelli, Luis A., et Rafael de la Llave. « Planelike minimizers in periodic media ». Communications on Pure and Applied Mathematics 54, no 12 (2001) : 1403–41. http://dx.doi.org/10.1002/cpa.10008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Mikaeeli, Ameneh, Alireza Keshavarz, Ali Baseri et Michal Pawlak. « Controlling Thermal Radiation in Photonic Quasicrystals Containing Epsilon-Negative Metamaterials ». Applied Sciences 13, no 23 (4 décembre 2023) : 12947. http://dx.doi.org/10.3390/app132312947.

Texte intégral
Résumé :
The transfer matrix approach is used to study the optical characteristics of thermal radiation in a one-dimensional photonic crystal (1DPC) with metamaterial. In this method, every layer within the multilayer structure is associated with its specific transfer matrix. Subsequently, it links the incident beam to the next layer from the previous layer. The proposed structure is composed of three types of materials, namely InSb, ZrO2, and Teflon, and one type of epsilon-negative (ENG) metamaterial and is organized in accordance with the laws of sequencing. The semiconductor InSb has the capability to adjust bandgaps by utilizing its thermally responsive permittivity, allowing for tunability with temperature changes, while the metamaterial modifies the bandgaps according to its negative permittivity. Using quasi-periodic shows that, in contrast to employing absolute periodic arrangements, it produces more diverse results in modifying the structure’s band-gaps. Using a new sequence arrangement mixed-quasi-periodic (MQP) structure, which is a combination of two quasi periodic structures, provides more freedom of action for modifying the properties of the medium than periodic arrangements do. The ability to control thermal radiation is crucial in a range of optical applications since it is frequently unpolarized and incoherent in both space and time. These configurations allow for the suppression and emission of thermal radiation in a certain frequency range due to their fundamental nature as photonic band-gaps (PBGs). So, we are able to control the thermal radiation by changing the structure arrangement. Here, the We use an indirect method based on the second Kirchoff law for thermal radiation to investigate the emittance of black bodies based on a well-known transfer matrix technique. We can measure the transmission and reflection coefficients with associated transmittance and reflectance, T and R, respectively. Here, the effects of several parameters, including the input beam’s angle, polarization, and period on tailoring the thermal radiation spectrum of the proposed structure, are studied. The results show that in some frequency bands, thermal radiation exceeded the black body limit. There were also good results in terms of complete stop bands for both TE and TM polarization at different incident angles and frequencies. This study produces encouraging results for the creation of Terahertz (THz) filters and selective thermal emitters. The tunability of our media is a crucial factor that influences the efficiency and function of our desired photonic outcome. Therefore, exploiting MQP sequences or arrangements is a promising strategy, as it allows us to rearrange our media more flexibly than quasi-periodic sequences and thus achieve our optimal result.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Eberhard, J. P., N. Suciu et C. Vamoş. « On the self-averaging of dispersion for transport in quasi-periodic random media ». Journal of Physics A : Mathematical and Theoretical 40, no 4 (9 janvier 2007) : 597–610. http://dx.doi.org/10.1088/1751-8113/40/4/002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Danilenko, V. A., et S. I. Skurativskyy. « Invariant chaotic and quasi-periodic solutions of nonlinear nonlocal models of relaxing media ». Reports on Mathematical Physics 59, no 1 (février 2007) : 45–51. http://dx.doi.org/10.1016/s0034-4877(07)80003-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Parnell, W. J., et I. D. Abrahams. « Dynamic homogenization in periodic fibre reinforced media. Quasi-static limit for SH waves ». Wave Motion 43, no 6 (juin 2006) : 474–98. http://dx.doi.org/10.1016/j.wavemoti.2006.03.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Blass, Timothy, et Rafael de la Llave. « The Analyticity Breakdown for Frenkel-Kontorova Models in Quasi-periodic Media : Numerical Explorations ». Journal of Statistical Physics 150, no 6 (20 février 2013) : 1183–200. http://dx.doi.org/10.1007/s10955-013-0718-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Topolnikov, A. S. « Argumentation of Application if Quasi-Stationary Model to Describe the Periodic Regime of Oil Well ». Proceedings of the Mavlyutov Institute of Mechanics 12, no 1 (2017) : 15–26. http://dx.doi.org/10.21662/uim2017.1.003.

Texte intégral
Résumé :
In the paper the argumentation of application of quasi-stationary model of gas-liquid flow is presented to describe periodic regime of oil well operating. It is shown that this simplification actually does not affect the solution accuracy, but allows to essentially diminish the calculating time. In view of the considered problem specification the transition from non-stationary model of media to the quasi-stationary model greatly increases the computational speed, which is the necessary condition for execution the optimization calculations.
Styles APA, Harvard, Vancouver, ISO, etc.
32

LEVENSON, J. A., et P. VIDAKOVIC. « QUANTUM NOISE REDUCTION IN TRAVELLING-WAVE QUASI-PHASE-MATCHED SECOND HARMONIC GENERATION ». Journal of Nonlinear Optical Physics & ; Materials 05, no 04 (octobre 1996) : 879–98. http://dx.doi.org/10.1142/s0218863596000623.

Texte intégral
Résumé :
The present calculation on squeezing capabilities of quadratic nonlinear media in which the phase matching condition is achieved artificially by a periodic poling of the nonlinear susceptibility shows that interesting performance can be obtained for highly integrable and nonlinear materials, using technologies already developed. The origin of squeezing in quasi-phase matched (QPM) media is the cascading of two second order nonlinearities, which at small second harmonic conversion rates has properties similar to a more familiar, purely third order nonlinear effect—Kerr effect.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Lipton, Robert, et Robert Viator Jr. « Creating Band Gaps in Periodic Media ». Multiscale Modeling & ; Simulation 15, no 4 (janvier 2017) : 1612–50. http://dx.doi.org/10.1137/16m1083396.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Carlsson, N., A. Mahanti, Zongpeng Li et D. Eager. « Optimized Periodic Broadcast of Nonlinear Media ». IEEE Transactions on Multimedia 10, no 5 (août 2008) : 871–84. http://dx.doi.org/10.1109/tmm.2008.922847.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Delyon, François, Yves-Emmanuel Lévy et Bernard Souillard. « Nonperturbative Bistability in Periodic Nonlinear Media ». Physical Review Letters 57, no 16 (20 octobre 1986) : 2010–13. http://dx.doi.org/10.1103/physrevlett.57.2010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Liao, Shih-Gang, et Chin-Chin Wu. « Propagation failure in discrete periodic media ». Journal of Difference Equations and Applications 19, no 8 (août 2013) : 1268–75. http://dx.doi.org/10.1080/10236198.2012.739169.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Conca, Carlos, Rafael Orive et Muthusamy Vanninathan. « On Burnett coefficients in periodic media ». Journal of Mathematical Physics 47, no 3 (mars 2006) : 032902. http://dx.doi.org/10.1063/1.2179048.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Hizi, Uzi, et David J. Bergman. « Molecular diffusion in periodic porous media ». Journal of Applied Physics 87, no 4 (15 février 2000) : 1704–11. http://dx.doi.org/10.1063/1.372081.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Frankel, Michael, et Victor Roytburd. « Dynamics of SHS in periodic media ». Nonlinear Analysis : Theory, Methods & ; Applications 63, no 5-7 (novembre 2005) : e1507-e1515. http://dx.doi.org/10.1016/j.na.2005.01.046.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Bankov, S. E. « Electrodynamics of Inhomogeneous 2D Periodic Media ». Journal of Communications Technology and Electronics 64, no 11 (novembre 2019) : 1159–69. http://dx.doi.org/10.1134/s1064226919110044.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Saeger, R. B., L. E. Scriven et H. T. Davis. « Transport processes in periodic porous media ». Journal of Fluid Mechanics 299 (25 septembre 1995) : 1–15. http://dx.doi.org/10.1017/s0022112095003399.

Texte intégral
Résumé :
The Stokes equation system and Ohm's law were solved numerically for fluid in periodic bicontinuous porous media of simple cubic (SC), body-centred cubic (BCC) and face-centred cubic (FCC) symmetry. The Stokes equation system was also solved for fluid in porous media of SC arrays of disjoint spheres. The equations were solved by Galerkin's method with finite element basis functions and with elliptic grid generation. The Darcy permeability k computed for flow through SC arrays of spheres is in excellent agreement with predictions made by other authors. Prominent recirculation patterns are found for Stokes flow in bicontinuous porous media. The results of the analysis of Stokes flow and Ohmic conduction through bicontinuous porous media were used to test the permeability scaling law proposed by Johnson, Koplik & Schwartz (1986), which introduces a length parameter Λ to relate Darcy permeability k and the formation factor F. As reported in our earlier work on the SC bicontinuous porous media, the scaling law holds approximately for the BCC and FCC families except when the porespace becomes nearly spherical pores connected by small orifice-like passages. We also found that, except when the porespace was connected by the small orifice-like passages, the permeability versus porosity curve of the bicontinuous media agrees very well with that of arrays of disjoint and fused spheres of the same crystallographic symmetry.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Claes, I., et C. Van den Broeck. « Dispersion of particles in periodic media ». Journal of Statistical Physics 70, no 5-6 (mars 1993) : 1215–31. http://dx.doi.org/10.1007/bf01049429.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Molotkov, L. A., et A. E. Khilo. « Effective media for periodic anisotropic systems ». Journal of Soviet Mathematics 30, no 5 (septembre 1985) : 2445–50. http://dx.doi.org/10.1007/bf02107408.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Drouot, A., C. L. Fefferman et M. I. Weinstein. « Defect Modes for Dislocated Periodic Media ». Communications in Mathematical Physics 377, no 3 (19 juin 2020) : 1637–80. http://dx.doi.org/10.1007/s00220-020-03787-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Blonskyi, I., V. Kadan, Y. Shynkarenko, O. Yarusevych, P. Korenyuk, V. Puzikov et L. Grin’. « Periodic femtosecond filamentation in birefringent media ». Applied Physics B 120, no 4 (7 août 2015) : 705–10. http://dx.doi.org/10.1007/s00340-015-6186-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Kaminer, Ido, Carmel Rotschild, Ofer Manela et Mordechai Segev. « Periodic solitons in nonlocal nonlinear media ». Optics Letters 32, no 21 (29 octobre 2007) : 3209. http://dx.doi.org/10.1364/ol.32.003209.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Craster, R. V., J. Kaplunov et A. V. Pichugin. « High-frequency homogenization for periodic media ». Proceedings of the Royal Society A : Mathematical, Physical and Engineering Sciences 466, no 2120 (10 mars 2010) : 2341–62. http://dx.doi.org/10.1098/rspa.2009.0612.

Texte intégral
Résumé :
An asymptotic procedure based upon a two-scale approach is developed for wave propagation in a doubly periodic inhomogeneous medium with a characteristic length scale of microstructure far less than that of the macrostructure. In periodic media, there are frequencies for which standing waves, periodic with the period or double period of the cell, on the microscale emerge. These frequencies do not belong to the low-frequency range of validity covered by the classical homogenization theory, which motivates our use of the term ‘high-frequency homogenization’ when perturbing about these standing waves. The resulting long-wave equations are deduced only explicitly dependent upon the macroscale, with the microscale represented by integral quantities. These equations accurately reproduce the behaviour of the Bloch mode spectrum near the edges of the Brillouin zone, hence yielding an explicit way for homogenizing periodic media in the vicinity of ‘cell resonances’. The similarity of such model equations to high-frequency long wavelength asymptotics, for homogeneous acoustic and elastic waveguides, valid in the vicinities of thickness resonances is emphasized. Several illustrative examples are considered and show the efficacy of the developed techniques.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Bulgakov, A. A., S. A. Bulgakov et M. Nieto-Vesperinas. « Complex polaritons in periodic layered media ». Physical Review B 52, no 15 (15 octobre 1995) : 10788–91. http://dx.doi.org/10.1103/physrevb.52.10788.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

de Sterke, C. Martijn. « Stability analysis of nonlinear periodic media ». Physical Review A 45, no 11 (1 juin 1992) : 8252–58. http://dx.doi.org/10.1103/physreva.45.8252.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Ketcheson, David I., et Randall J. Leveque. « Shock dynamics in layered periodic media ». Communications in Mathematical Sciences 10, no 3 (2012) : 859–74. http://dx.doi.org/10.4310/cms.2012.v10.n3.a7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie