Articles de revues sur le sujet « Peracid »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Peracid.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Peracid ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Patil, Vilas Venunath, et Ganapati Subray Shankarling. « Nonanebis(peroxoic acid) : a stable peracid for oxidative bromination of aminoanthracene-9,10-dione ». Beilstein Journal of Organic Chemistry 10 (24 avril 2014) : 921–28. http://dx.doi.org/10.3762/bjoc.10.90.

Texte intégral
Résumé :
A new protocol for the oxidative bromination of aminoanthracene-9,10-dione, which is highly deactivated towards the electrophilic substitution is investigated. The peracid, nonanebis(peroxoic acid), possesses advantages such as better stability at room temperature, it is easy to prepare and non-shock sensitiv as compared to the conventional peracids. The present protocol has a broad scope for the bromination of various substituted and unsubstituted aminoanthracene-9,10-diones.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Pikh, Zoryan. « Oxidation of unsaturated aldehydes by different oxidants ». Chemistry & ; Chemical Technology 1, no 2 (15 juin 2007) : 61–69. http://dx.doi.org/10.23939/chcht01.02.061.

Texte intégral
Résumé :
The new data about oxidation of unsaturated aldehydes of a general structure R–CH = C(R)–CHO by molecular oxygen (in liquid and gaseous phase), peracids and hydrogen peroxide were obtained. The composition of reaction products for a series of aldehydes with different structures was determined. The dependencies of the selectivity of reaction from an aldehyde structure and oxidant type have been evaluated. It has been assumed that a stage of aldehyde interaction with peracid determines the formation of reaction products. The common mechanisms of unsaturated aldehydes oxidation by different oxidants have been established on the basis of generalization of obtained results.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Armstrong, Alan, Paul A. Barsanti, Paul A. Clarke et Anthony Wood. « Ketone-directed peracid epoxidation ». Tetrahedron Letters 35, no 33 (août 1994) : 6155–58. http://dx.doi.org/10.1016/0040-4039(94)88103-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Minning, Stefan, Albrecht Weiss, Uwe T. Bornscheuer et Rolf D. Schmid. « Determination of peracid and putative enzymatic peracid formation by an easy colorimetric assay ». Analytica Chimica Acta 378, no 1-3 (janvier 1999) : 293–98. http://dx.doi.org/10.1016/s0003-2670(98)00612-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Bouzid, Mouna, Hassen Ben Salah et Majed Kammoun. « Peracid Oxidation of Dihydroisoquinoline Iminium ». Asian Journal of Organic and Medicinal Chemistry 3, no 3 (2018) : 121–25. http://dx.doi.org/10.14233/ajomc.2018.ajomc-p148.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hassan, Suriaya, Abdul Ansari, Arvind Kumar, Munna Ram, Sulaxna Sharma et Awanish Sharma. « Corrosion Resistance of Electroless Ni-P-W/ZrO<sub>2</sub> ; Nanocomposite Coatings in Peracid Solutions ». Materials Science Forum 1048 (4 janvier 2022) : 72–79. http://dx.doi.org/10.4028/www.scientific.net/msf.1048.72.

Texte intégral
Résumé :
In current investigation, the Ni-P-W/ZrO2 electroless nanocomposite coatings are deposited upon mild steel substrate (AISI 1040 grade). The W/ZrO2 nanoparticles (50 to 130 nm range) were incorporated separately into acidic electroless Ni-P matrix as a second phase materials. The as-plated EL Ni-P-W/ZrO2 depositions were also heated at 400 οC in Argon atmosphere for one hour duration and analyzed by SEM/EDAX and XRD physical methods. The Ni-P-W/ZrO2 as-plated coupons revealed nebulous type structures while heated coupons showed crystalline structures in both cases. Furthermore Ni-P-ZrO2 coatings have very less cracks and gaps as compared to Ni-P-W coatings. The corrosion tests result in peracid (0.30 ± 0.02 % active oxygen) solutions point up that corrosivity of peracid ( 500 ppm Cl) is more than peracid (0 ppm Cl) and corrosion resistance of tested coupons varies as Ni-P-ZrO2 (as-plated) > Ni-P-ZrO2 (heated) > Ni-P-W (as-plated) > Ni-P-W (heated) > MS. The utilization of Ni-P-ZrO2 nanocomposite coatings in peracid solutions can be considered a cost effective option on the basis of its better cost/strength ratio in addition to its fair corrosion resistance.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Buggle, Katherine, et Bernadette Fallon. « Peracid oxidation of benzothiopyranthiones and benzopyranthiones ». Monatshefte f�r Chemie Chemical Monthly 118, no 10 (octobre 1987) : 1197–99. http://dx.doi.org/10.1007/bf00811293.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

ARMSTRONG, A., P. A. BARSANTI, P. A. CLARKE et A. WOOD. « ChemInform Abstract : Ketone-Directed Peracid Epoxidation. » ChemInform 26, no 1 (18 août 2010) : no. http://dx.doi.org/10.1002/chin.199501079.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kim, Kwang-Seo, Jeffrey G. Pelton, William B. Inwood, Ulla Andersen, Sydney Kustu et David E. Wemmer. « The Rut Pathway for Pyrimidine Degradation : Novel Chemistry and Toxicity Problems ». Journal of Bacteriology 192, no 16 (16 avril 2010) : 4089–102. http://dx.doi.org/10.1128/jb.00201-10.

Texte intégral
Résumé :
ABSTRACT The Rut pathway is composed of seven proteins, all of which are required by Escherichia coli K-12 to grow on uracil as the sole nitrogen source. The RutA and RutB proteins are central: no spontaneous suppressors arise in strains lacking them. RutA works in conjunction with a flavin reductase (RutF or a substitute) to catalyze a novel reaction. It directly cleaves the uracil ring between N-3 and C-4 to yield ureidoacrylate, as established by both nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. Although ureidoacrylate appears to arise by hydrolysis, the requirements for the reaction and the incorporation of 18O at C-4 from molecular oxygen indicate otherwise. Mass spectrometry revealed the presence of a small amount of product with the mass of ureidoacrylate peracid in reaction mixtures, and we infer that this is the direct product of RutA. In vitro RutB cleaves ureidoacrylate hydrolytically to release 2 mol of ammonium, malonic semialdehyde, and carbon dioxide. Presumably the direct products are aminoacrylate and carbamate, both of which hydrolyze spontaneously. Together with bioinformatic predictions and published crystal structures, genetic and physiological studies allow us to predict functions for RutC, -D, and -E. In vivo we postulate that RutB hydrolyzes the peracid of ureidoacrylate to yield the peracid of aminoacrylate. We speculate that RutC reduces aminoacrylate peracid to aminoacrylate and RutD increases the rate of spontaneous hydrolysis of aminoacrylate. The function of RutE appears to be the same as that of YdfG, which reduces malonic semialdehyde to 3-hydroxypropionic acid. RutG appears to be a uracil transporter.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Parbat, Papiya, Alka Devi et Vikas D. Ghule. « Computational assessment of nitrogen-rich peracids : a family of peroxide-based energetic materials ». RSC Advances 7, no 35 (2017) : 21585–91. http://dx.doi.org/10.1039/c7ra02201h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Armstrong, Alan, Paul A. Barsanti, Paul A. Clarke et Anthony Wood. « Ketone-directed peracid epoxidation of cyclic alkenes ». Journal of the Chemical Society, Perkin Transactions 1, no 12 (1996) : 1373. http://dx.doi.org/10.1039/p19960001373.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

GINGERICH, S. B., et P. W. JENNINGS. « ChemInform Abstract : Peracid Oxidations of Furan Systems ». ChemInform 22, no 6 (23 août 2010) : no. http://dx.doi.org/10.1002/chin.199106328.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Broggini, Gianluigi, et Gaetano Zecchi. « Peracid oxidation of chiral isoxazolidines : developments and perspectives ». Tetrahedron : Asymmetry 8, no 9 (mai 1997) : 1431–34. http://dx.doi.org/10.1016/s0957-4166(97)00098-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Mello, Rossella, Ana Alcalde-Aragonés, María Elena González Núñez et Gregorio Asensio. « Epoxidation of Olefins with a Silica-Supported Peracid ». Journal of Organic Chemistry 77, no 15 (26 juillet 2012) : 6409–13. http://dx.doi.org/10.1021/jo300533b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Cox, M., G. Klass, S. Morey et P. Pigou. « Chemical markers from the peracid oxidation of isosafrole ». Forensic Science International 179, no 1 (juillet 2008) : 44–53. http://dx.doi.org/10.1016/j.forsciint.2008.04.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Hsiue, Ging-Ho, Tirng-Lair Perng et Jen-Ming Yang. « New peracid-type polymeric initiator for radical polymerization ». Journal of Applied Polymer Science 42, no 7 (5 avril 1991) : 1899–904. http://dx.doi.org/10.1002/app.1991.070420712.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Aitken, R. Alan, Fiona M. Fotherby et Alexandra M. Z. Slawin. « 2,6-exo-8,10-exo-4-Butyl-9-oxa-4-azatetracyclo[5.3.1.02,6.08,10]undecane-3,5-dione ». Molbank 2022, no 1 (20 janvier 2022) : M1320. http://dx.doi.org/10.3390/m1320.

Texte intégral
Résumé :
The title epoxide was obtained by spontaneous epoxidation of the corresponding unsaturated imide in air or by peracid oxidation. Unambiguous assignment of the 1H- and 13C-NMR spectra is achieved by comparison between analogous compounds and its X-ray structure confirms the exo,exo-configuration.
Styles APA, Harvard, Vancouver, ISO, etc.
18

ZHANG, GUODONG, LI MA, VANESSA H. PHELAN et MICHAEL P. DOYLE. « Efficacy of Antimicrobial Agents in Lettuce Leaf Processing Water for Control of Escherichia coli O157:H7 ». Journal of Food Protection 72, no 7 (1 juillet 2009) : 1392–97. http://dx.doi.org/10.4315/0362-028x-72.7.1392.

Texte intégral
Résumé :
The objectives of this research were to study transfer and control of Escherichia coli O157:H7 during simultaneous washing of inoculated and uninoculated lettuce pieces and to determine the efficacy of antimicrobial agents (peroxyacetic acid, mixed peracid, and sodium hypochlorite) on reducing the transfer of E. coli O157:H7 through processing water with or without organic load. Lettuce leaf pieces (5 by 5 cm) were inoculated with a five-strain mixture of green fluorescent protein–labeled E. coli O157:H7 at 5.6 log CFU per piece. One inoculated lettuce piece was added to five uninoculated leaves during washing. Peroxyacetic acid and mixed peracid were tested at 10, 20, and 30 ppm, and chlorine was tested at 30 and 50 ppm. No organic load (liquefied lettuce leaves) and 10% organic load in processing water were compared. Without organic load, peroxyacetic acid at 30 ppm, mixed peracid at 10, 20, and 30 ppm, and chlorine at 30 and 50 ppm all significantly reduced E. coli O157: H7 in processing water by 1.83, 1.73, 1.50, 1.83, 1.34, and 1.83 log CFU/ml, respectively, compared with washing with water alone. These antimicrobials at all concentrations tested also significantly reduced transfer of the bacteria from an inoculated leaf to uninoculated leaves in the processing water by 0.96 to 2.57 log CFU per piece. A 10% organic load in the processing water reduced efficacy of antimicrobial agents. In this contaminated water, peroxyacetic acid at 10 and 20 ppm and chlorine at 30 ppm produced effects not significantly different from those of water alone. Therefore, it is important to understand the impact of organic load when validating the effectiveness of antimicrobial treatments.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Haras, Alicja, et Tom Ziegler. « DFT mechanistic studies on the epoxidation of cyclohexene by non-heme tetraaza manganese complexes ». Canadian Journal of Chemistry 87, no 1 (1 janvier 2009) : 33–38. http://dx.doi.org/10.1139/v08-065.

Texte intégral
Résumé :
Herein, we report density functional calculations on the epoxidation of cyclohexene with H2O2 activated by (Me2EBC)MnCl2 (Me2EBC stands for 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane). The computed energy landscapes for different interaction modes of cyclohexene with the MnIV-hydroperoxo complex and the MnV-oxo species support recent experimental findings by Busch and co-workers [J. Am. Chem. Soc. 127, 17170 (2005)], according to which the MnIV-hydroperoxo species is the active complex for olefin epoxidation. Thus, the dominant olefin epoxidation pathway is via direct transfer of the distal protonated oxygen of the hydroperoxo adduct without changes in the oxydation state of its tetravalent metal centre, i.e., the mechanism commonly observed in the uncatalyzed epoxidation by peracids. The homolytic decomposition of the O–OH bond in the active manganese complex leading to the MnV-oxo species is found to be the only epoxidation pathway that could possibly compete with the Oβ transfer from the hydroperoxo adduct. However, the generated MnV-oxo is shown to be a rather poor oxidant resulting in low yields of the target epoxy cyclohexane.Key words: epoxidation, density functional theory, permanganic acid, peracid.
Styles APA, Harvard, Vancouver, ISO, etc.
20

FATEMI, PAYMAN, et JOSEPH F. FRANK. « Inactivation of Listeria monocytogenes/Pseudomonas Biofilms by Peracid Sanitizers ». Journal of Food Protection 62, no 7 (1 juillet 1999) : 761–65. http://dx.doi.org/10.4315/0362-028x-62.7.761.

Texte intégral
Résumé :
The ability of peracetic acid and peroctanoic acid sanitizers to inactivate mixed-culture biofilms of a Pseudomonas sp. and Listeria monocytogenes on stainless steel was investigated. Types of biofilms tested included a 4-h attachment of the mixed-cell suspension and a 48-h biofilm of mixed culture formed in skim milk or tryptic soy broth. Biofilm-containing coupons were immersed in solutions of hypochlorite, peracetic acid, and peroctanoic acid either with or without organic challenge. Organic challenge consisted of either coating the biofilms with milk that were then allowed to dry, or adding milk to the sanitizing solution to achieve a 5% concentration. Surviving cells were enumerated by pouring differential agar directly on the treated surfaces. The peracid sanitizers were more effective than chlorine for inactivating biofilm in the presence of organic challenge. The 48-h mixed-culture biofilm grown in milk was reduced to less than 3 CFU/cm2 by 160 ppm of peracid sanitizer after 1 min of exposure. Peroctanoic acid was more effective than peracetic acid against biofilm cells under conditions of organic challenge. Pseudomonas and L. monocytogenes were inactivated to similar levels by the sanitizer treatments, even though Pseudomonas predominated in the initial biofilm population.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Makitra, R. G., G. G. Midyana et R. E. Pristanskii. « Solvent effects on the decomposition kinetics of peracid esters ». Russian Journal of General Chemistry 78, no 7 (juillet 2008) : 1418–21. http://dx.doi.org/10.1134/s1070363208070232.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Ali, Sk Asrof, et Mohammed I. M. Wazeer. « Peracid induced ring opening of isoxazolidines. A mechanistic study. » Tetrahedron Letters 33, no 22 (mai 1992) : 3219–22. http://dx.doi.org/10.1016/s0040-4039(00)79856-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Black, DS, et RJ Strauch. « Nitrones and Oxaziridines. XL. Oxidation of 2H-Pyrroles and 3-Benzoyloxy-1-pyrrolines ». Australian Journal of Chemistry 42, no 5 (1989) : 699. http://dx.doi.org/10.1071/ch9890699.

Texte intégral
Résumé :
Peracid oxidation of 2H-pyrroles (1a-d) gave the related 2H-pyrrole 1-oxides (2a-d). Similar oxidation of the 3-benzoyloxy-1-pyrroline (7a) also gave a 2H-pyrrole 1-oxide (9), while other benzoyloxy pyrrolines (7b,c) yielded the related oxaziridines (8b,c). Some other oxygenated by-products were also identified.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Binder, W. H., et F. M. Menger. « Assay of Peracid in the Presence of Excess Hydrogen Peroxide ». Analytical Letters 33, no 3 (janvier 2000) : 479–88. http://dx.doi.org/10.1080/00032710008543067.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Manfredi, K. P., et P. W. Jennings. « Effect of acid on the peracid oxidations of 3-methyltetrahydrobenzofuran ». Journal of Organic Chemistry 54, no 21 (octobre 1989) : 5186–88. http://dx.doi.org/10.1021/jo00282a044.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Tokushige, N., Y. Yamaguchi et Y. Hanada. « Bleaching detergent compositions containing hydrogen peroxide and organic peracid precursors ». Zeolites 18, no 1 (janvier 1997) : 86. http://dx.doi.org/10.1016/s0144-2449(97)85006-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Bragd, P. « Selective oxidation of carbohydrates by 4-AcNH-TEMPO/peracid systems ». Carbohydrate Polymers 49, no 4 (1 septembre 2002) : 397–406. http://dx.doi.org/10.1016/s0144-8617(01)00344-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

McElroy, Andrew B., et Stuart Warren. « Stereoselective peracid epoxidation of allylic and δ-hydroxyallylic diphenylphosphine oxides ». Tetrahedron Letters 26, no 17 (1985) : 2119–22. http://dx.doi.org/10.1016/s0040-4039(00)94795-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Wu, Shao-Yung, Robert F. Toia et John E. Casida. « Mechanism of phosphinyloxysulfonate formation on peracid oxidation of ,,′ ,′-tetrasubstituted phosphorodiamidothiolates ». Tetrahedron Letters 32, no 35 (janvier 1991) : 4427–30. http://dx.doi.org/10.1016/0040-4039(91)80003-o.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Fujise, Yutaka, Kenshu Fujiwara et Yukiko Ito. « Baeyer–Villiger Oxidation of β-Ionone with Surfactant Type Peracid ». Chemistry Letters 17, no 9 (5 septembre 1988) : 1475–76. http://dx.doi.org/10.1246/cl.1988.1475.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

BROGGINI, G., et G. ZECCHI. « ChemInform Abstract : Peracid Oxidation of Chiral Isoxazolidines : Developments and Perspectives. » ChemInform 28, no 39 (3 août 2010) : no. http://dx.doi.org/10.1002/chin.199739150.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Mello, Rossella, Ana Alcalde-Aragones, Maria Elena Gonzalez Nunez et Gregorio Asensio. « ChemInform Abstract : Epoxidation of Olefins with a Silica-Supported Peracid. » ChemInform 43, no 51 (10 décembre 2012) : no. http://dx.doi.org/10.1002/chin.201251099.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Hofmann, Hans, et Herbert Fischer. « Heterocyclische Siebenring-Verbindungen, XXX Synthese und Eigenschaften von 4-Methoxy-1,5-benzothiazepin, einem einfachen Vertreter des 1,4-Thiazepin-Ringsystems/ Heterocyclic Seven-Membered Ring Compounds, XXX Synthesis and Properties of 4-Methoxy-1,5-benzothiazepine, a Simple Derivative of the 1,4-Thiazepine Ring System ». Zeitschrift für Naturforschung B 42, no 2 (1 février 1987) : 217–20. http://dx.doi.org/10.1515/znb-1987-0216.

Texte intégral
Résumé :
Abstract Alkylation of 1,5-benzothiazepin-4(5H)-one (1) with dimethyl sulfate and base yields the N-methyl compound 2 whereas with trimethyloxonium fluoroborate the lactimether 3, a simple derivative of the unknown, 1,4-thiazepine is obtained. Compound 3 eliminates sulfur on heating in toluene, yielding 2-methoxy-quinoline. Oxidation of 3 with peracid produces the stable 1,1- dioxide (4).
Styles APA, Harvard, Vancouver, ISO, etc.
34

Wigfield, Donald C., et Sherry L. Perkins. « Oxidation of elemental mercury by hydroperoxides in aqueous solution ». Canadian Journal of Chemistry 63, no 2 (1 février 1985) : 275–77. http://dx.doi.org/10.1139/v85-045.

Texte intégral
Résumé :
The recent development of techniques in this and other laboratories has allowed the exploration of elemental mercury oxidations by compounds bearing the —O—O—H moiety. The peracid group appears to be a far more effective oxidant of mercury than the peroxide group, and both peracetic acid and m-chloroperbenzoic acid oxidize mercury at the trace level to both mercurous and mercuric forms.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Fossey, Jacques, Daniel Lefort, Massoud Massoudi, Jean-Yves Nedelec et Jeanine Sorba. « Régiosélectivité et stéréosélectivité de l'hydroxylation homolytique des hydrocarbures par le peracide benzoïque ». Canadian Journal of Chemistry 63, no 3 (1 mars 1985) : 678–80. http://dx.doi.org/10.1139/v85-111.

Texte intégral
Résumé :
Cyclohexane, methylcyclohexane, and adamantane are hydroxylated by a radical process using perbenzoic acid. A regioselectivity of 60–90% in favour of tertiary alcohols is noted. In the case of cis and trans decalins, stereoselection leading to 9-decalols can reach 97%. Such a stereoselectivity for hydroxylation by use of a peracid does not necessarily indicate lack of a radical pathway.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Casida, J. E., et L. O. Ruzo. « Reactive intermediates in pesticide metabolism : Peracid oxidations as possible biomimetic models ». Xenobiotica 16, no 10-11 (janvier 1986) : 1003–15. http://dx.doi.org/10.3109/00498258609038979.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Jumain Jalil, Mohd, Aliff Farhan Mohd Yamin, Mohd Saufi Md Zaini, Mohd Azahar Mohd Ariff, Siu Hua Chang, Norhashimah Morad et Abdul Hadi. « Synthesis Of Epoxidized Oleic Acid- Based Palm Oil by Peracid Mechanism ». IOP Conference Series : Materials Science and Engineering 551 (14 août 2019) : 012120. http://dx.doi.org/10.1088/1757-899x/551/1/012120.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Davidson, R. Stephen, et Martin D. Walker. « Peracid and Acyl Peroxy Radical Mediated Oxidation and Rearrangement of Phosphoramides ». Phosphorous and Sulfur and the Related Elements 30, no 1-2 (mars 1987) : 305–10. http://dx.doi.org/10.1080/03086648708080582.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Chagonda, Lameck S., et Brian A. Marples. « Peracid oxidation of 16-arylidene- and 16-alkylidene-17-oxo-steroids ». Journal of the Chemical Society, Perkin Transactions 1, no 4 (1988) : 875. http://dx.doi.org/10.1039/p19880000875.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Peris, Gorka, et Scott J. Miller. « A Nonenzymatic Acid/Peracid Catalytic Cycle for the Baeyer−Villiger Oxidation ». Organic Letters 10, no 14 (juillet 2008) : 3049–52. http://dx.doi.org/10.1021/ol8010248.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Washington, Ilyas, et K. N. Houk. « Epoxidations by Peracid Anions in Water : Ambiphilic Oxenoid Reactivity and Stereoselectivity ». Organic Letters 4, no 16 (août 2002) : 2661–64. http://dx.doi.org/10.1021/ol026105j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Benassi, Rois, Luca G. Fiandri et Ferdinando Taddei. « Ab-Initio MO Study of the Peracid Oxidation of Dimethyl Thiosulfinate ». Journal of Organic Chemistry 62, no 23 (novembre 1997) : 8018–23. http://dx.doi.org/10.1021/jo970758+.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Chakravarty, Ajit Kumar, Binayak Das et Sibabrata Mukhopadhyay. « Peracid oxidation products of swertanone, the novel triterpene of Swertia chirata ». Tetrahedron 47, no 12-13 (1991) : 2337–50. http://dx.doi.org/10.1016/s0040-4020(01)96141-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Bielawski, Jacek, et John E. Casida. « Phosphorylating intermediates in the peracid oxidation of phosphorothionates, phosphorothiolates, and phosphorodithioates ». Journal of Agricultural and Food Chemistry 36, no 3 (mai 1988) : 610–15. http://dx.doi.org/10.1021/jf00081a052.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Andrus, Merritt B., et Benjamin W. Poehlein. « Epoxidation of olefins with peracid at low temperature with copper catalysis ». Tetrahedron Letters 41, no 7 (février 2000) : 1013–14. http://dx.doi.org/10.1016/s0040-4039(00)00070-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Jacobsen, J. Steven, et M. Zafri Humayun. « Chloroperbenzoic acid induced DNA damage and peracid activation of alfatoxin B1 ». Carcinogenesis 7, no 3 (1986) : 491–93. http://dx.doi.org/10.1093/carcin/7.3.491.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Malona, John A., Kevin Cariou et Alison J. Frontier. « Nazarov Cyclization Initiated by Peracid Oxidation : The Total Synthesis of (±)-Rocaglamide ». Journal of the American Chemical Society 131, no 22 (10 juin 2009) : 7560–61. http://dx.doi.org/10.1021/ja9029736.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Azmi, Intan Suhada, Fakhrul Ariffin Md Nor Iskandar, Mohd Zulkipli Ab Kadir et Mohd Jumain Jalil. « Sustainable Synthesis of Polyols Derived via In Situ Epoxidation Peracid Mechanism ». Journal of The Institution of Engineers (India) : Series E 104, no 2 (décembre 2023) : 269–74. http://dx.doi.org/10.1007/s40034-023-00279-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Hoang, Le-Thuy-Thuy-Trang, Thanh-Nha Tran, Thi-Phi-Giao Vo, Hoang-Vinh-Truong Phan, Phan-Si-Nguyen Dong, Dinh-Tri Mai, Ngoc-An Nguyen et al. « Tinctoride A, a New Hopan-Type Triterpenoic Peracid from the Thallus of Lichen Parmotrema Tinctorum (Despr. ex Nyl.) Hale ». Journal of Chemistry 2022 (11 avril 2022) : 1–4. http://dx.doi.org/10.1155/2022/9092098.

Texte intégral
Résumé :
A new hopan-type triterpenoic peracid, tinctoride A (1), together with three known compounds, zeorin (2), 6β,22-dihydroxyhopane (3), and ergosterol peroxide (4), was isolated from Parmotrema tinctorum (Despr. ex Nyl.) Hale. Their chemical structures were identified by extensive 1D and 2D NMR analysis and high-resolution mass spectroscopy and compared with those reported in the literature. The enzyme inhibitory potential of compounds 1–3 against α-glucosidase was investigated, exhibiting nil to weak inhibitory activity.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Schenk, Wolfdieter A., Johanna Leißner et Christian Burschka. « Vier- und fünffach koordinierte Schwefelmonoxid-Komplexe des Rhodiums und Iridiums [1] / Four- and Five-Coordinated Sulfur Monoxide Complexes of Rhodium and Iridium [1 ] ». Zeitschrift für Naturforschung B 40, no 10 (1 octobre 1985) : 1264–73. http://dx.doi.org/10.1515/znb-1985-1007.

Texte intégral
Résumé :
The complexes trans-[M(PR3)2(SO)Cl] (M = Rh. Ir; R = isopropyl, cyclohexyl) were synthesized from [(C8H14)2MCl]2, PR3 and C2H4SO. The X-ray structure of [Ir(P/Pr3)2(SO)Cl] shows the sulfur monoxide to be coordinated in a bent η1 fashion. A bonding model is pro- posed which explains the similarity between SO- and SO2-complexes. Peracid oxidation trans- forms coordinated SO to SO2. CO displaces SO via isolable 5-coordinated intermediates [Ir(PR3)2(CO)(SO)Cl].
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie