Articles de revues sur le sujet « Pedestrian dynamics, crowd, agent-based approach, simulation »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 47 meilleurs articles de revues pour votre recherche sur le sujet « Pedestrian dynamics, crowd, agent-based approach, simulation ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Hayashida, Tomohiro, Shinya Sekizaki, Yushi Furuya, and Ichiro Nishizaki. "ACS2-Powered Pedestrian Flow Simulation for Crowd Dynamics." AppliedMath 5, no. 3 (2025): 88. https://doi.org/10.3390/appliedmath5030088.
Texte intégralLi, Liang, Hong Liu, and Yanbin Han. "An approach to congestion analysis in crowd dynamics models." Mathematical Models and Methods in Applied Sciences 30, no. 05 (2020): 867–90. http://dx.doi.org/10.1142/s0218202520500177.
Texte intégralAbdelghany, Ahmed, Hani Mahmassani, Khaled Abdelghany, Hasan Al-Ahmadi, and Wael Alhalabi. "Incidents in high-volume elongated crowd facilities: A simulation-based study." SIMULATION 95, no. 9 (2018): 823–43. http://dx.doi.org/10.1177/0037549718794882.
Texte intégralKim, Daewa, Kaylie O’Connell, William Ott, and Annalisa Quaini. "A kinetic theory approach for 2D crowd dynamics with emotional contagion." Mathematical Models and Methods in Applied Sciences 31, no. 06 (2021): 1137–62. http://dx.doi.org/10.1142/s0218202521400030.
Texte intégralWirth, Ervin, and György Szabó. "Overlap-avoiding Tickmodel: an Agent- and GIS-Based Method for Evacuation Simulations." Periodica Polytechnica Civil Engineering 62, no. 1 (2017): 72. http://dx.doi.org/10.3311/ppci.10823.
Texte intégralMitrovic, Tanja, Vesna Stojakovic, and Milica Vracaric. "Simulation of pedestrian accessibility to assess the spatial distribution of urban amenities." Spatium, no. 00 (2022): 2. http://dx.doi.org/10.2298/spat210429002m.
Texte intégralColombi, A., and M. Scianna. "Modelling human perception processes in pedestrian dynamics: a hybrid approach." Royal Society Open Science 4, no. 3 (2017): 160561. http://dx.doi.org/10.1098/rsos.160561.
Texte intégralAlqurashi, Raghda, and Tom Altman. "Hierarchical Agent-Based Modeling for Improved Traffic Routing." Applied Sciences 9, no. 20 (2019): 4376. http://dx.doi.org/10.3390/app9204376.
Texte intégralLohner, R., Muhammad Baqui, Eberhard Haug, and Britto Muhamad. "Real-time micro-modelling of a million pedestrians." Engineering Computations 33, no. 1 (2016): 217–37. http://dx.doi.org/10.1108/ec-02-2015-0036.
Texte intégralAlrashed, Mohammed, and Jeff Shamma. "Agent Based Modelling and Simulation of Pedestrian Crowds in Panic Situations." Collective Dynamics 5 (August 12, 2020): A100. http://dx.doi.org/10.17815/cd.2020.100.
Texte intégralYasufuku, Kensuke, and Akira Takahashi. "Development of a Real-Time Crowd Flow Prediction and Visualization Platform for Crowd Management." Journal of Disaster Research 19, no. 2 (2024): 248–55. http://dx.doi.org/10.20965/jdr.2024.p0248.
Texte intégralHartmann, Dirk, and Peter Hasel. "Efficient Dynamic Floor Field Methods for Microscopic Pedestrian Crowd Simulations." Communications in Computational Physics 16, no. 1 (2014): 264–86. http://dx.doi.org/10.4208/cicp.200513.290114a.
Texte intégralFörster, Nick, Ivan Bratoev, Jakob Fellner, Gerhard Schubert, and Frank Petzold. "Collaborating with the crowd." International Journal of Architectural Computing 20, no. 1 (2022): 76–95. http://dx.doi.org/10.1177/14780771221082258.
Texte intégralSenasinghe, Asiri P., Willem Klumpenhouwer, Ahmed Labidi, and Lina Kattan. "An Agent-Based Crowd Dynamics Simulation that Considers Idling and Time-and-Distance-Conscious Optimising Behaviour." Journal of South Asian Logistics and Transport 4, no. 1 (2024): 119–44. http://dx.doi.org/10.4038/jsalt.v4i1.90.
Texte intégralKiyama, Masato, Motoki Amagasaki, and Toshiaki Okamoto. "Multi-Agent Reinforcement Learning-Based Control Method for Pedestrian Guidance Using the Mojiko Fireworks Festival Dataset." Electronics 14, no. 6 (2025): 1062. https://doi.org/10.3390/electronics14061062.
Texte intégralNicolas, Alexandre, and Simon Mendez. "Viral Transmission in Pedestrian Crowds: Coupling an Open-source Code Assessing the Risks of Airborne Contagion with Diverse Pedestrian Dynamics Models." Collective Dynamics 9 (June 20, 2024): 1–10. http://dx.doi.org/10.17815/cd.2024.159.
Texte intégralPlatt, A., and A. Kneidl. "A Case for Identity Hierarchies in Simulating Social Groups." Collective Dynamics 5 (August 12, 2020): A98. http://dx.doi.org/10.17815/cd.2020.98.
Texte intégralKleinmeier, Benedikt, Gerta Köster, and John Drury. "Agent-based simulation of collective cooperation: from experiment to model." Journal of The Royal Society Interface 17, no. 171 (2020): 20200396. http://dx.doi.org/10.1098/rsif.2020.0396.
Texte intégralElzie, ME, Terra, Erika Frydenlund, MS, Andrew J. Collins, PhD, and R. Michael Robinson, PhD. "Conceptualizing intragroup and intergroup dynamics within a controlled crowd evacuation." Journal of Emergency Management 13, no. 2 (2015): 109. http://dx.doi.org/10.5055/jem.2015.0224.
Texte intégralGasparini, Francesca, Marta Giltri, and Stefania Bandini. "Safety perception and pedestrian dynamics: Experimental results towards affective agents modeling." AI Communications 34, no. 1 (2021): 5–19. http://dx.doi.org/10.3233/aic-201576.
Texte intégralLocatelli, M., L. Pellegrini, D. Accardo, E. Sulis, L. C. Tagliabue, and G. M. Di Giuda. "People flow management in a healthcare facility through crowd simulation and agent-based modeling methods." Journal of Physics: Conference Series 2600, no. 14 (2023): 142007. http://dx.doi.org/10.1088/1742-6596/2600/14/142007.
Texte intégralDang, Huu-Tu, Benoit Gaudou, and Nicolas Verstaevel. "HyPedSim: A Multi-Level Crowd-Simulation Framework—Methodology, Calibration, and Validation." Sensors 24, no. 5 (2024): 1639. http://dx.doi.org/10.3390/s24051639.
Texte intégralPapelis, YE, RA Kady, LJ Bair, and E. Weisel. "Modeling of human behavior in crowds using a cognitive feedback approach." SIMULATION 93, no. 7 (2016): 567–78. http://dx.doi.org/10.1177/0037549716673153.
Texte intégralStubenschrott, Martin, Thomas Matyus, Helmut Schrom-Feiertag, Christian Kogler, and Stefan Seer. "Route-Choice Modeling for Pedestrian Evacuation Based on Infrastructure Knowledge and Personal Preferences." Transportation Research Record: Journal of the Transportation Research Board 2623, no. 1 (2017): 82–89. http://dx.doi.org/10.3141/2623-09.
Texte intégralTordeux, Antoine, and Claudia Totzeck. "Multi-scale description of pedestrian collective dynamics with port-Hamiltonian systems." Networks and Heterogeneous Media 18, no. 2 (2023): 906–29. http://dx.doi.org/10.3934/nhm.2023039.
Texte intégralShirvani, Mohammad, and Georges Kesserwani. "Flood–pedestrian simulator for modelling human response dynamics during flood-induced evacuation: Hillsborough stadium case study." Natural Hazards and Earth System Sciences 21, no. 10 (2021): 3175–98. http://dx.doi.org/10.5194/nhess-21-3175-2021.
Texte intégralLópez, Baeza Jesús, Jose Carpio-Pinedo, Julia Sievert, et al. "Modeling Pedestrian Flows: Agent-Based Simulations of Pedestrian Activity for Land Use Distributions in Urban Developments." Sustainability 13, no. 16 (2021): 9268. https://doi.org/10.3390/su13169268.
Texte intégralZhang, Deyin, Gang Liu, Kaifa Kang, et al. "Quantifying Thermal Demand in Public Space: A Pedestrian-Weighted Model for Outdoor Thermal Comfort Design." Buildings 15, no. 13 (2025): 2156. https://doi.org/10.3390/buildings15132156.
Texte intégralZafar, Muzna, Kashif Zia, Dinesh Kumar Saini, Arshad Muhammad, and Alois Ferscha. "Modeling human factors influencing herding during evacuation." International Journal of Pervasive Computing and Communications 13, no. 2 (2017): 211–34. http://dx.doi.org/10.1108/ijpcc-03-2017-0024.
Texte intégralDumitrescu, Catalin, Petrica Ciotirnae, and Constantin Vizitiu. "Fuzzy Logic for Intelligent Control System Using Soft Computing Applications." Sensors 21, no. 8 (2021): 2617. http://dx.doi.org/10.3390/s21082617.
Texte intégralBatty, Michael. "Agents, Cells, and Cities: New Representational Models for Simulating Multiscale Urban Dynamics." Environment and Planning A: Economy and Space 37, no. 8 (2005): 1373–94. http://dx.doi.org/10.1068/a3784.
Texte intégralWang, Guan-ning, Tao Chen, Jin-wei Chen, Kaifeng Deng, and Ru-dong Wang. "Simulation study of crowd dynamics in pedestrian evacuation concerning panic contagion: A cellular automaton approach." Chinese Physics B, January 12, 2022. http://dx.doi.org/10.1088/1674-1056/ac4a66.
Texte intégralBera, Aniket, Sujeong Kim, and Dinesh Manocha. "Modeling Trajectory-level Behaviors using Time Varying Pedestrian Movement Dynamics." Collective Dynamics 3 (May 29, 2018). http://dx.doi.org/10.17815/cd.2018.15.
Texte intégralWang, Yiyu, Jiaqi Ge, and Alexis Comber. "Modelling emergent pedestrian evacuation behaviors from intelligent, game-playing agents." Journal of Computational Social Science 8, no. 2 (2025). https://doi.org/10.1007/s42001-025-00369-9.
Texte intégralBode, Nikolai. "Parameter Calibration in Crowd Simulation Models using Approximate Bayesian Computation." Collective Dynamics 5 (March 27, 2020). http://dx.doi.org/10.17815/cd.2020.68.
Texte intégralNappi, Manuela Marques Lalane, Ivana Righetto Moser, and João Carlos Souza. "Influence of different merging angles of pedestrian flows on evacuation time." Fire Research 3, no. 1 (2019). http://dx.doi.org/10.4081/fire.2019.75.
Texte intégralDing, Ning, Zhenyu Fan, Xiaopeng Zhu, Shancheng Lin, and Yang Wang. "Multi-agent modeling of crowd dynamics under bombing attack cases." Frontiers in Physics 11 (January 10, 2024). http://dx.doi.org/10.3389/fphy.2023.1200927.
Texte intégralZhang, Yong, Bo Yang, and Jianlin Zhu. "A double‐layer crowd evacuation simulation method based on deep reinforcement learning." Computer Animation and Virtual Worlds 35, no. 3 (2024). http://dx.doi.org/10.1002/cav.2280.
Texte intégralSuchak, Keiran, Minh Kieu, Yannick Oswald, Jonathan A. Ward, and Nick Malleson. "Coupling an agent-based model and an ensemble Kalman filter for real-time crowd modelling." Royal Society Open Science 11, no. 4 (2024). http://dx.doi.org/10.1098/rsos.231553.
Texte intégralZhang, Feiyang, Becky P. Y. Loo, and Chang Jiang. "Behavioural changes in open space during COVID-19 with deep learning-based video analytics." Proceedings of the Institution of Civil Engineers - Municipal Engineer, September 8, 2023, 1–30. http://dx.doi.org/10.1680/jmuen.23.00020.
Texte intégralHesham, Omar, and Gabriel Wainer. "Advanced models for centroidal particle dynamics: short-range collision avoidance in dense crowds." SIMULATION, April 16, 2021, 003754972110031. http://dx.doi.org/10.1177/00375497211003126.
Texte intégralWu, Yanru, Junxin Li, and Qing Sun. "Study on human-induced vibration of a cable-stayed bridge without backstays located in abrupt valley." Advances in Structural Engineering, May 30, 2021, 136943322110203. http://dx.doi.org/10.1177/13694332211020397.
Texte intégralLi, Ruowei, Farah Ghizzawi, Tho V. Le, and Matthew J. Roorda. "Behavior of a Person-Following Robot in Pedestrian Environments: Laboratory Experimentation and Simulation." Transportation Research Record: Journal of the Transportation Research Board, April 30, 2025. https://doi.org/10.1177/03611981251332248.
Texte intégralNegi, Rajendra Singh, Priyanka Iyer, and Gerhard Gompper. "Controlling inter-particle distances in crowds of motile, cognitive, active particles." Scientific Reports 14, no. 1 (2024). http://dx.doi.org/10.1038/s41598-024-59022-6.
Texte intégralJia, Xiaolu, Claudio Feliciani, Daichi Yanagisawa, and Katsuhiro Nishinari. "Experimental study on the evading behaviour of single pedestrians encountering an obstacle." Collective Dynamics 5 (March 27, 2020). http://dx.doi.org/10.17815/cd.2020.36.
Texte intégralGu, Zongchao, Sunhao Su, Wei Lu, and Yishu Yao. "Estimating Spatiotemporal Contacts Between Individuals in Underground Shopping Streets Based on Multi-Agent Simulation." Frontiers in Physics 10 (May 13, 2022). http://dx.doi.org/10.3389/fphy.2022.882904.
Texte intégralMatthews, Justin Robert, and Angelique Nairn. "The Actotron." M/C Journal 27, no. 6 (2024). http://dx.doi.org/10.5204/mcj.3118.
Texte intégral