Littérature scientifique sur le sujet « Pathways metabolici »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Pathways metabolici ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Pathways metabolici"
Le Grazie, Giulia, Nicola Marrano, Annalisa Natalicchio et Francesco Giorgino. « L’irisina : un ormone con benefici multiorgano ». L'Endocrinologo 23, no 2 (3 mars 2022) : 189–92. http://dx.doi.org/10.1007/s40619-022-01046-z.
Texte intégralŠindelář, L., et M. Šindelářová. « Regulation of metabolic pathways PVY-RNA biosynthesis in tobacco : glycolytic pathway ». Plant Protection Science 40, No. 3 (7 mars 2010) : 101–6. http://dx.doi.org/10.17221/991-pps.
Texte intégralGiri, Shailendra, Poisson Laila, Hamid Suhail, Jaspreet Singh, Mandar Deshpande, Indrani Datta, Aleksandar Denic, Moses Rodriguez, Ramandeep Rattan et Ashutosh Mangalam. « Nontargeted urinary metabolite profiling of a chronic mouse model of multiple sclerosis (THER3P.884) ». Journal of Immunology 192, no 1_Supplement (1 mai 2014) : 136.10. http://dx.doi.org/10.4049/jimmunol.192.supp.136.10.
Texte intégralHaj, Amelia K., Haytham Hasan et Thomas J. Raife. « Heritability of Protein and Metabolite Biomarkers Associated with COVID-19 Severity : A Metabolomics and Proteomics Analysis ». Biomolecules 13, no 1 (27 décembre 2022) : 46. http://dx.doi.org/10.3390/biom13010046.
Texte intégralMidford, Peter E., Mario Latendresse, Paul E. O’Maille et Peter D. Karp. « Using Pathway Covering to Explore Connections among Metabolites ». Metabolites 9, no 5 (2 mai 2019) : 88. http://dx.doi.org/10.3390/metabo9050088.
Texte intégralBrister, Danielle, Brianna A. Werner, Geoffrey Gideon, Patrick J. McCarty, Alison Lane, Brian T. Burrows, Sallie McLees et al. « Central Nervous System Metabolism in Autism, Epilepsy and Developmental Delays : A Cerebrospinal Fluid Analysis ». Metabolites 12, no 5 (20 avril 2022) : 371. http://dx.doi.org/10.3390/metabo12050371.
Texte intégralAhmed, Eman A., Marwa O. El-Derany, Ali Mostafa Anwar, Essa M. Saied et Sameh Magdeldin. « Metabolomics and Lipidomics Screening Reveal Reprogrammed Signaling Pathways toward Cancer Development in Non-Alcoholic Steatohepatitis ». International Journal of Molecular Sciences 24, no 1 (22 décembre 2022) : 210. http://dx.doi.org/10.3390/ijms24010210.
Texte intégralLin, Xiangping, Xinyu Liu, Mohamed N. Triba, Nadia Bouchemal, Zhicheng Liu, Douglas I. Walker, Tony Palama et al. « Plasma Metabolomic and Lipidomic Profiling of Metabolic Dysfunction-Associated Fatty Liver Disease in Humans Using an Untargeted Multiplatform Approach ». Metabolites 12, no 11 (8 novembre 2022) : 1081. http://dx.doi.org/10.3390/metabo12111081.
Texte intégralThurley, Kevin, Christopher Herbst, Felix Wesener, Barbara Koller, Thomas Wallach, Bert Maier, Achim Kramer et Pål O. Westermark. « Principles for circadian orchestration of metabolic pathways ». Proceedings of the National Academy of Sciences 114, no 7 (3 février 2017) : 1572–77. http://dx.doi.org/10.1073/pnas.1613103114.
Texte intégralVILLAS-BÔAS, Silas G., Joel F. MOXLEY, Mats ÅKESSON, Gregory STEPHANOPOULOS et Jens NIELSEN. « High-throughput metabolic state analysis : the missing link in integrated functional genomics of yeasts ». Biochemical Journal 388, no 2 (24 mai 2005) : 669–77. http://dx.doi.org/10.1042/bj20041162.
Texte intégralThèses sur le sujet "Pathways metabolici"
De, Rosa Maria Caterina. « Studio dell’espressione di geni coinvolti in pathways metabolici regolati da nutrienti ». Doctoral thesis, Universita degli studi di Salerno, 2015. http://hdl.handle.net/10556/1864.
Texte intégralIl profilo sierico, con particolare riferimento ai livelli di biomarkers, rappresenta uno strumento efficace ed affidabile per la diagnosi di malattie metaboliche, come il diabete o le malattie cardiovascolari. La composizione del siero è influenzata sia dal metabolismo endogeno che dall’apporto nutrizionale. In effetti, lo stile alimentare, con particolare riferimento alla qualità e alla quantità dell’apporto nutrizionale, può fortemente influenzare il rischio e la progressione di malattia, poiché alcuni nutrienti agiscono come composti bioattivi. A questo proposito, la letteratura attuale indica un importante ruolo di specifiche molecole nutrizionali provenienti dalla dieta che interessano specifiche vie metaboliche. L'obiettivo del nostro progetto è quello di individuare pathways metabolici regolati da nutrienti, con lo scopo di identificare possibili taget terapeutici in stati patologici. [ a cura dell'autore]
XIII n.s.
Gupta, Apoorv. « Dynamic regulation of bacterial metabolic pathways using autonomous, pathway-independent control strategies ». Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112511.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (pages 86-91).
Metabolic engineering efforts have so far focused on strain optimization through careful metabolic modeling and tinkering with host genomes, through gene knockouts or knockins, to direct flux in desired channels. These efforts have borne fruit with the development of large manufacturing processes for numerous chemicals. The next challenge for metabolic engineering, however, lies in tackling issues associated with construction of more complex pathways, such as those that directly interfere with host metabolism, have branchpoints with promiscuous enzymes, or synthesize toxic intermediates or products. Dynamic metabolic engineering has emerged as a new frontier for tool development to allow regulation and control of native and cellular pathways during the course of a production run. Advantages in dynamic strategies are especially apparent in the aforementioned examples where traditional static strategies of gene knockouts or knockins are not an option. Instead, it is necessary to be able to control when certain genes are expressed, such as to build biomass before switching on growth-limiting production pathways, or accumulating intermediates to drive the reaction of a promiscuous enzyme along a certain branch. In this thesis, we propose enzyme control strategies that are independent of any biosynthetic pathway of interest. Therefore, they can theoretically be applied to a wide variety of contexts in a "plug-and-play" fashion to control pathway enzyme expression. After initial work to understand the limitations of nutrient starvation strategies to induce genetic circuits, we decided to use quorum sensing circuitry to create circuits that can be autonomously induced. We used parts of the Esa QS system (derived from Pantoea stewartii) to create circuit variants in the Lscherichia cohi genome, which switch off expression of the targeted gene at various times and cell densities. Switching times were varied by modulating the expression of the AHL synthase, and therefore the production rate of AHL, the quorum sensing molecule. Switching dynamics were characterized and ranked for the entire library of circuit variants using fluorescent reporters. The characterized device was used to identify optimal switching times for redirection of glycolytic fluxes into heterologous pathways, resulting in a 5.5-fold boost in myo-inositol (MI) and increasing glucaric acid titers from unmeasurable quantities up to >0.8 g/L. With a focus on industrial application, consistency of device performance was verified in benchtop bioreactors, achieving nearly 10-fold and 5-fold boosts in specific titers of myoinositol and glucaric acid, respectively. To demonstrate broad utility and "off-the-shelf" applicability, the control module was applied to dynamic downregulation of flux into aromatic amino acid biosynthesis to accumulate the industrially-relevant intermediate, shikimate, resulting in an increase in titers from unmeasurable quantities to >100 mg/L. Finally, this QS device was coupled with a MI-biosensor circuit to institute two layers of dynamic regulation and further improve glucaric acid titers. Production trials in these composite strains resulted in the highest glucaric titers (-2 g/L) reported to date from E. coli K-strains. This work reports the first completely autonomous dynamic regulation module and its application in bioproduction of multiple products from different metabolic pathways. We envision that the strategy presented here may be adapted to any pathway context and gene of interest. With increased prevalence of dynamic regulation, the relevant strategies may become standardized for general use.
by Apoorv Gupta.
Ph. D.
Lisowska, Beata. « Genomic analysis and metabolic modelling of Geobacillus thermoglucosidasius NCIMB 11955 ». Thesis, University of Bath, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.690738.
Texte intégralLeung, Shuen-yi, et 梁舜頤. « Predicting metabolic pathways from metabolic networks ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B42664317.
Texte intégralLeung, Shuen-yi. « Predicting metabolic pathways from metabolic networks ». Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B42664317.
Texte intégralEdwards-Hicks, Joy. « Metabolic remodelling driven by MYC overexpression regulates the p53 tumour suppressor response ». Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31223.
Texte intégralZumbaugh, Morgan Daughtry. « Signaling pathways regulating skeletal muscle metabolism and growth ». Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/101750.
Texte intégralDoctor of Philosophy
Skeletal muscle is responsible for approximately 20% of basal energy expenditure and 70-90% of insulin-mediated glucose disposal, and as such changes in skeletal muscle metabolism and insulin sensitivity have profound impacts on whole body metabolism. Skeletal muscle is a plastic tissue that can perceive nutrient availability, which permits metabolic adaptations to environmental changes. Deletion of the nutrient sensing pathway O-GlcNAcylation in skeletal muscle (mKO) protected mice from high-fat diet induced obesity and ameliorates whole-body insulin sensitivity. Skeletal muscle can secrete myokines to elicit endocrine effects on other tissues in the body, and as such, we proposed perturbation of this nutrient sensing pathway in skeletal muscle alters myokine secretion to elicit responses in other metabolically active tissues to support its energy requirements. Indeed, circulating levels of interleukin-15, a potent anti-obesity myokine, increased 3-fold in mKO mice. To determine the contribution of IL-15 to the mKO phenotype, we used a genetic approach to blunt IL-15 secretion from skeletal muscle (mDKO), which partially negated the lean mKO phenotype. Our findings show the ability of skeletal muscle to "sense" changes in nutrients through O-GlcNAcylation is necessary for proper muscle and whole-body metabolism. Moreover, this nutrient sensing mechanism is also important for proper muscle stem cell function, also known as satellite cells (SCs). Loss of O-GlcNAcylation in SCs impairs their ability to regenerate muscle after injury, which can be attributed to a reduced capacity to proliferate and an inability to maintain a healthy SC population. Interestingly, SCs lacking O-GlcNAcylation have a greater mitochondrial content. Using a myoblast cell line, we investigated the contribution of mitochondria to myogenesis, the formation of muscle, and found mitochondrial energy production is dispensable in the myogenic process. Our studies show skeletal muscle and SCs rely on highly integrated signaling cascades that sense and respond to intrinsic metabolic changes and extrinsic nutritional cues to function properly.
McArthur, George Howard IV. « Orthogonal Expression of Metabolic Pathways ». VCU Scholars Compass, 2013. http://scholarscompass.vcu.edu/etd/3087.
Texte intégralBhargava, Prerna. « Immunomodulatory Pathways and Metabolism ». Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10696.
Texte intégralJohnston, Hannah. « The role of lipid metabolism in melanoma and identifying therapeutic targets in lipid metabolic pathways ». Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/the-role-of-lipid-metabolism-in-melanoma-and-identifying-therapeutic-targets-in-lipid-metabolic-pathways(44800322-0da3-4056-bc19-b947058ff203).html.
Texte intégralLivres sur le sujet "Pathways metabolici"
Jensen, Michael Krogh, et Jay D. Keasling, dir. Synthetic Metabolic Pathways. New York, NY : Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7295-1.
Texte intégral1943-, Roberts T. R., Hutson D. H. 1935- et Royal Society of Chemistry (Great Britain). Information Services., dir. Metabolic pathways of agrochemicals. Cambridge : Royal Society of Chemistry, 1998.
Trouver le texte intégralRoberts, Terry R., David H. Hutson, Philip W. Lee, Peter H. Nicholls et Jack R. Plimmer, dir. Metabolic Pathways of Agrochemicals. Cambridge : Royal Society of Chemistry, 2007. http://dx.doi.org/10.1039/9781847551375.
Texte intégralRoberts, Terry R., David H. Hutson, Philip W. Lee, Peter H. Nicholls et Jack R. Plimmer, dir. Metabolic Pathways of Agrochemicals. Cambridge : Royal Society of Chemistry, 2007. http://dx.doi.org/10.1039/9781847551382.
Texte intégralWang, Xiaoyuan, Jian Chen et Peter Quinn, dir. Reprogramming Microbial Metabolic Pathways. Dordrecht : Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5055-5.
Texte intégralHimmel, Michael E., et Yannick J. Bomble, dir. Metabolic Pathway Engineering. New York, NY : Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0195-2.
Texte intégralCarbonell, Pablo. Metabolic Pathway Design. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29865-4.
Texte intégralWaring, Rosemary. Pathways in drug metabolism. Birmingham : University of Birmingham, 1992.
Trouver le texte intégralWolfinbarger, Lloyd. Enzyme Regulation in Metabolic Pathways. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119155423.
Texte intégralLee, Philip W. Handbook of metabolic pathways of xenobiotics. Chichester, West Sussex : John Wiley & Sons Inc., 2014.
Trouver le texte intégralChapitres de livres sur le sujet "Pathways metabolici"
Slenter, Denise N., Martina Kutmon et Egon L. Willighagen. « WikiPathways : Integrating Pathway Knowledge with Clinical Data ». Dans Physician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases, 1457–66. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-67727-5_73.
Texte intégralLi, Ting, Christopher Copeland et Anne Le. « Glutamine Metabolism in Cancer ». Dans The Heterogeneity of Cancer Metabolism, 17–38. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65768-0_2.
Texte intégralParo, Renato, Ueli Grossniklaus, Raffaella Santoro et Anton Wutz. « Epigenetics and Metabolism ». Dans Introduction to Epigenetics, 179–201. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68670-3_9.
Texte intégralMal, Chittabrata, Ayushman Kumar Banerjee et Joyabrata Mal. « Genome Scale Pathway-Pathway Co-functional Synergistic Network (PcFSN) in Oryza Sativa ». Dans Proceedings of the Conference BioSangam 2022 : Emerging Trends in Biotechnology (BIOSANGAM 2022), 47–57. Dordrecht : Atlantis Press International BV, 2022. http://dx.doi.org/10.2991/978-94-6463-020-6_6.
Texte intégralSpeedie, Marilyn K., James J. Zulty, Bonnie M. Fox et Kimberlee K. Wallace. « Methylation Pathways in Antibiotic Producing Streptomycetes ». Dans Secondary-Metabolite Biosynthesis and Metabolism, 61–76. Boston, MA : Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3012-1_5.
Texte intégralWünschiers, Röbbe, Martina Jahn, Dieter Jahn, Ida Schomburg, Susanne Peifer, Elmar Heinzle, Helmut Burtscher et al. « Metabolism ». Dans Biochemical Pathways, 37–209. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118657072.ch3.
Texte intégralGooch, Jan W. « Metabolic Pathway ». Dans Encyclopedic Dictionary of Polymers, 907. New York, NY : Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_14204.
Texte intégralFloss, H. G., H. Cho, R. Casati, K. A. Reynolds, E. Kennedy, B. S. Moore, J. M. Beale, U. M. Mocek et K. Poralla. « Diversions of the Shikimate Pathway — The Biosynthesis of Cyclohexanecarboxylic Acid ». Dans Secondary-Metabolite Biosynthesis and Metabolism, 77–88. Boston, MA : Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3012-1_6.
Texte intégralCarbonell, Pablo. « Pathway Modeling ». Dans Metabolic Pathway Design, 27–44. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29865-4_3.
Texte intégralCarbonell, Pablo. « Pathway Discovery ». Dans Metabolic Pathway Design, 83–97. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29865-4_6.
Texte intégralActes de conférences sur le sujet "Pathways metabolici"
Inoue, Katsumi, Andrei Doncescu, Gabriel Synaeve et Nabil Kabbak. « Main Pathway Discovery in Metabolic Pathways ». Dans 2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops. IEEE, 2010. http://dx.doi.org/10.1109/waina.2010.88.
Texte intégralEl-fadl, Rihab, Nasser Rizk, Amena Fadel et Abdelrahman El Gamal. « The Profile of Hepatic Gene Expression of Glucose Metabolism in Mice on High Fat Diet ». Dans Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0213.
Texte intégralKamareddine, Layla, Hoda Najjar, Abeer Mohbeddin, Nawar Haj Ahmed et Paula Watnick. « Between Immunity, Metabolism, and Development : A story of a Fly Gut ! » Dans Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0141.
Texte intégralYuan, Tai-Yi, Hanan N. Fernando, Jessica Czamanski, Chong Wang, Wei Yong Gu et Chun-Yuh Huang. « Effects of Static Compression on Energy Metabolism of Porcine Intervertebral Disc ». Dans ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19600.
Texte intégralPireddu, L., B. Poulin, D. Szafron, P. Lu et D. S. Wishart. « Pathway Analyst Automated Metabolic Pathway Prediction ». Dans 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology. IEEE, 2005. http://dx.doi.org/10.1109/cibcb.2005.1594924.
Texte intégralAkella, Sridevi, et Chanchal K. Mitra. « Metabolic pathways as electronic circuits ». Dans 2011 6th International Symposium on Health Informatics and Bioinformatics (HIBIT). IEEE, 2011. http://dx.doi.org/10.1109/hibit.2011.6450815.
Texte intégralUmeton, Renato, Giovanni Stracquadanio, Anilkumar Sorathiya, Pietro Liò, Alessio Papini et Giuseppe Nicosia. « Design of robust metabolic pathways ». Dans the 48th Design Automation Conference. New York, New York, USA : ACM Press, 2011. http://dx.doi.org/10.1145/2024724.2024892.
Texte intégral« METABOLIC MODELING OF CONVERGING METABOLIC PATHWAYS - Analysis of Non-steady State Stable Isotope-resolve Metabolism of UDP-GlcNAc and UDP-GalNAc ». Dans International Conference on Bioinformatics Models, Methods and Algorithms. SciTePress - Science and and Technology Publications, 2011. http://dx.doi.org/10.5220/0003129401080115.
Texte intégralFardilha, Margarida, et Magda Carvalho Henriques. « How to motivate students to learn Metabolic Biochemistry in a Biomedical Sciences curricula ». Dans Fifth International Conference on Higher Education Advances. Valencia : Universitat Politècnica València, 2019. http://dx.doi.org/10.4995/head19.2019.9315.
Texte intégralMakrydaki, Foteini, Kyongbum Lee et Christos Georgakis. « Tendency Stoichiometric Modeling of Metabolic Pathways ». Dans 2007 American Control Conference. IEEE, 2007. http://dx.doi.org/10.1109/acc.2007.4282891.
Texte intégralRapports d'organisations sur le sujet "Pathways metabolici"
Knaff, David, et Hirasawa Mussakaz. Ferredoxin Dependent Plant Metabolic Pathways. Office of Scientific and Technical Information (OSTI), septembre 2007. http://dx.doi.org/10.2172/1417307.
Texte intégralSchaffer, Arthur A., D. Mason Pharr, Joseph Burger, James D. Burton et Eliezer Zamski. Aspects of Sugar Metabolism in Melon Fruit as Determinants of Fruit Quality. United States Department of Agriculture, septembre 1994. http://dx.doi.org/10.32747/1994.7568770.bard.
Texte intégralLee, L. Parallel Extreme Pathway Computation for Metabolic Networks. Office of Scientific and Technical Information (OSTI), juin 2004. http://dx.doi.org/10.2172/827001.
Texte intégralJiao, Y., et A. Navid. Metabolic Engineering and Modeling of Metabolic Pathways to Improve Hydrogen Production by Photosynthetic Bacteria. Office of Scientific and Technical Information (OSTI), décembre 2014. http://dx.doi.org/10.2172/1179401.
Texte intégralKarp, Peter D. Curation and Computational Design of Bioenergy-Related Metabolic Pathways. Office of Scientific and Technical Information (OSTI), septembre 2014. http://dx.doi.org/10.2172/1171111.
Texte intégralMetallo, Christian. Targeting Metabolic Survival Pathways in Lung Cancer via Combination Therapy. Fort Belvoir, VA : Defense Technical Information Center, juin 2014. http://dx.doi.org/10.21236/ada611017.
Texte intégralCheng, Yan. Targeting Energy Metabolic Pathways as Therapeutic Intervention for Breast Cancer. Fort Belvoir, VA : Defense Technical Information Center, octobre 2012. http://dx.doi.org/10.21236/ada573205.
Texte intégralCheng, Yan. Targeting Energy Metabolic Pathways as Therapeutic Intervention for Breast Cancer. Fort Belvoir, VA : Defense Technical Information Center, octobre 2013. http://dx.doi.org/10.21236/ada592686.
Texte intégralLuthey-Schulten, Zaida. Computational Modeling of Fluctuations in Energy and Metabolic Pathways of Methanogenic Archaea. Office of Scientific and Technical Information (OSTI), janvier 2017. http://dx.doi.org/10.2172/1337955.
Texte intégralGregory Stephanopoulos. Development of DNA Microarrays for Metabolic Pathway and Bioprocess Monitoring. Office of Scientific and Technical Information (OSTI), juillet 2004. http://dx.doi.org/10.2172/837870.
Texte intégral